
[537] Schedulers
Tyler Harter

9/10/14

Overview
Review processes

Workloads, schedulers, and metrics (Chapter 7)

A general purpose scheduler, MLFQ (Chapter 8)

Lottery scheduling (Chapter 9)

Review: Processes

Process
Creation

!code
static data
Program

CPU Memory

Process
Creation

!code
static data
Program

CPU Memory

code
static data

heap
!

stack
Process

State Transitions

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

Running Ready

Blocked

Scheduled

Descheduled

I/O: initiate I/O: done

How to transition? (“mechanism”)
When to transition? (“policy”)

// Per-process state
struct proc {
 uint sz; // Size of process memory (bytes)
 pde_t* pgdir; // Page table
 char *kstack; // Bottom of kern stack for this proc
 enum procstate state; // Process state
 volatile int pid; // Process ID
 struct proc *parent; // Parent process
 struct trapframe *tf; // Trap frame for current syscall
 struct context *context; // swtch() here to run process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

// Per-process state
struct proc {
 uint sz; // Size of process memory (bytes)
 pde_t* pgdir; // Page table
 char *kstack; // Bottom of kern stack for this proc
 enum procstate state; // Process state
 volatile int pid; // Process ID
 struct proc *parent; // Parent process
 struct trapframe *tf; // Trap frame for current syscall
 struct context *context; // swtch() here to run process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 

Process A 
… 
 
 
 
 
 
 
 
 

Operating System Hardware Program

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 
 
 
restore regs(B) from k-stack(B)  
move to user mode  
jump to B’s IP

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 

Operating System Hardware Program
 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

 
 
timer interrupt 
save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler 
 
 
 
 
 
 
restore regs(B) from k-stack(B)  
move to user mode  
jump to B’s IP

Process A 
… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Process B 
…

Operating System Hardware Program
 
 
 
 
 
 
Handle the trap  
Call switch() routine  
 save regs(A) to proc-struct(A) 
 restore regs(B) from proc-struct(B) 
 switch to k-stack  
 return-from-trap (into B)

Basic Schedulers

Vocabulary
Workload: set of job descriptions

Scheduler: logic that decides when jobs run

Metric: measurement of scheduling quality

Vocabulary
Workload: set of job descriptions

Scheduler: logic that decides when jobs run

Metric: measurement of scheduling quality

Scheduler “algebra”, given 2 variables, find the 3rd:

f(W, S) = M

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Scheduling Basics
Metrics: 
 turnaround_time 
 response_time  

Schedulers: 
 FIFO 
 SJF  
 STCF  
 RR

Workloads: 
 arrival_time 
 run_time

Example: workload, scheduler, metric

JOB arrival_time (s) run_time (s)
A 0.0001 10
B 0.0002 10
C 0.0003 10

FIFO: First In, First Out (run jobs in arrival_time order)

What is our turnaround?: completion_time - arrival_time

Example: workload, scheduler, metric

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

FIFO: First In, First Out (run jobs in arrival_time order)

What is our turnaround?: completion_time - arrival_time

Event Trace
Time Event

0 A arrives
0 B arrives
0 C arrives
0 run A
10 complete A
10 run B

!20 complete B
20 run C
30 complete C

Trace Visualization

A B C

0 20 40 60 80

Trace Visualization

A B C

0 20 40 60 80

What is the average turnaround time? (Q1)
!

Def: turnaround_time = completion_time - arrival_time

[A,B,C arrive]

Trace Visualization

A B C

0 20 40 60 80

What is the average turnaround time? (Q1)
!

Def: turnaround_time = completion_time - arrival_time

[A,B,C arrive]

Trace Visualization

0 20 40 60 80

What is the average turnaround time? (Q1)
!

Def: turnaround_time = completion_time - arrival_time

A: 10s
B: 20s
C: 30s

Trace Visualization

0 20 40 60 80

What is the average turnaround time? (Q1)
!

(10 + 20 + 30) / 3 = 20s

A: 10s
B: 20s
C: 30s

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time  

Schedulers: 
 FIFO 
 SJF  
 STCF  
 RR

Workloads: 
 arrival_time 
 run_time

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

“Solve” for W
f(W, S) = M

Workload: ?

Scheduler: FIFO

Metric: turnaround is high

Example: Big First Job

JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time? (Q2)
!

Example: Big First Job

JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time? (Q2)
!

A CB

0 20 40 60 80

Average turnaround time: 70s

A: 60s
B: 70s
C: 80s

Example: Big First Job

Convoy Effect

Passing the Tractor

New scheduler: SJF (Shortest Job First)

Policy: when deciding what job to run next, 
 choose the one with smallest run_time

Example: Shortest Job First

JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time with SJF? (Q3)
!

Example: Shortest Job First

JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time with SJF? (Q3)
!

Q3 Answer

ACB

0 20 40 60 80

A: 80s
B: 10s
C: 20s

What is the average turnaround time with SJF? (Q3)
!

(80 + 10 + 20) / 3 = ~36.7s

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time  

Schedulers: 
 FIFO 
 SJF 
 STCF  
 RR

Workloads: 
 arrival_time 
 run_time

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Shortest Job First (Arrival Time)

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

What is the average turnaround time with SJF?
!

Stuck Behind a Tractor Again

A CB

0 20 40 60 80

What is the average turnaround time?
!

(Q4)

[B,C arrive]

Stuck Behind a Tractor Again

A CB

0 20 40 60 80

What is the average turnaround time?
!

(Q4)

[B,C arrive]

Stuck Behind a Tractor Again

A CB

0 20 40 60 80

What is the average turnaround time?
!

(60 + 60 + 70) / 3 = 63.3s

A: 60s
B: 60s
C: 70s

A Preemptive Scheduler

Prev schedulers: FIFO and SJF are non-preemptive

New scheduler: STCF (Shortest Time-to-Completion First)

Policy: switch jobs so we always run the one that 
 will complete the quickest

SJF

A CB

0 20 40 60 80

Average turnaround time: 70s

[B,C arrive]

STCF

A CB

0 20 40 60 80

Average turnaround time: (Q4)

[B,C arrive]

A

STCF

A CB

0 20 40 60 80

Average turnaround time: (Q4)

[B,C arrive]

A

STCF

A CB

0 20 40 60 80

Average turnaround time: 36.6

A

A: 80s
B: 10s
C: 20s

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time  

Schedulers: 
 FIFO 
 SJF 
 STCF 
 RR

Workloads: 
 arrival_time 
 run_time

Break!

Administrative Stuff

P1 due on 9/16 (6 days left!)

Office hours: today in CS 7373, 2-3pm

Reading: chapters 3-6 (last time) and 7-11 (today)

Discussion tomorrow: fork/exec, C review

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time  

Schedulers: 
 FIFO 
 SJF 
 STCF 
 RR

Workloads: 
 arrival_time 
 run_time

Response Time
Sometimes we care about when a job starts
instead of when it finishes.

Why?

response_time = first_run_time - arrival_time

Response vs. Turnaround

A

0 20 40 60 80

B’s turnaround: 20s

B

[B arrives]

B’s response: 10s

Round-Robin Scheduler

Prev schedulers: FIFO, SJF, and STCF have poor  
 response time

New scheduler: RR (Round Robin)

Policy: alternate between ready processes every  
 fixed-length slice

FIFO vs. RR (Q5) — which is each?

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time?
Q5

Avg Response Time?
Q5

FIFO vs. RR (Q5) — which is each?

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time?
Q5

Avg Response Time?
Q5

0 5 10 15 200 5 10 15 20

A B CABC…

Avg Response Time?
(0+1+2)/3 = 1

Avg Response Time?
(0+5+10)/3 = 5

FIFO vs. RR (Q5) — which is each?

Scheduling Basics
Metrics: 
 turnaround_time  
 response_time 

Schedulers: 
 FIFO 
 SJF 
 STCF 
 RR

Workloads: 
 arrival_time 
 run_time

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Not I/O Aware

A

0 20 40 60 80

Disk:

A BCPU:

A

A A

I/O Aware (Overlap)

A

0 20 40 60 80

Disk:

A BCPU:

A

A ABB

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known  
 (need smarter, fancier scheduler)

MLFQ

MLFQ (Multi-Level Feedback Queue)
Goal: general-purpose scheduling

Must support two job types with distinct goals 
 - “interactive” programs care about response time  
 - “batch” programs care about turnaround time

Approach: multiple levels of round-robin

Priorities
Rule 1: If priority(A) > Priority(B), A runs 
Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

Rule 1: If priority(A) > Priority(B), A runs 
Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

How to know process
type to set priority?

Approach 1: nice 
Approach 2: history

Priorities

Rule 1: If priority(A) > Priority(B), A runs 
Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

How to know process
type to set priority?

Approach 1: nice 
Approach 2: history

Priorities

History

Processes alternate between I/O and CPU work

Consider each CPU session it’s own “job”

Guess what a job will be like based on past jobs
from the same process

More MLFQ Rules
Rule 1: If priority(A) > Priority(B), A runs 
Rule 2: If priority(A) == Priority(B), A & B run in RR

More rules: 
Rule 3: Processes start at top priority  
Rule 4: If job uses whole slice, demote process 

0 5 10 15 20

One Long Job (Example)

Q3

Q2

Q1

Q0

120 140 160 180 200

An Interactive Process Joins

Q3

Q2

Q1

Q0

120 140 160 180 200

Improvements

Q3

Q2

Q1

Q0

What are problems?

120 140 160 180 200

Improvements

Q3

Q2

Q1

Q0

What are problems? 
 - unforgiving 
 - gaming the system  
 - hard to tune

(read OSTEP)

Lottery

Lottery Scheduling

Goal: proportional share

Approach: 
 - give processes lottery tickets  
 - whoever wins runs  
 - higher priority => more tickets

Random Algorithms

Discuss:  
 disadvantages?  
 advantages? 

Lottery Code
int counter = 0;  
int winner = getrandom(0, totaltickets); 
node_t *current = head;  
while(current) {  
 counter += current->tickets;  
 if (counter > winner) 
 break;  
 current = current->next;  
} 
// current is the winner

int counter = 0; 
int winner = getrandom(0, totaltickets); 
node_t *current = head; 
while(current) { 
 counter += current->tickets; 
 if (counter > winner) 
 break; 
 current = current->next; 
} 
// current gets to run

Job A 
(1)

Job B 
(1)head

Job C 
(100)

Job D 
(200)

Job E 
(100) null

Who runs if winner is: 
 50 (Q6) 
 350 (Q7) 
 0 (Q8)

Other Lottery Ideas
Ticket Transfers

Ticket Currencies

Ticket Inflation

(read more in OSTEP)

Summary
Understand your goals (metrics) and workload, then
design your scheduler around that.

General purpose schedulers need to support
processes with different types of goals.

Random algorithms are often simple to implement,
and avoid corner cases.

