
[537] Smaller Page Tables
Tyler Harter

9/24/14

Worksheets
Problem 1: how many accesses with TLB?

Problem 2: how large are PTEs?  
 - tip, use indexes to save memory

Problem 3: how large are PTs?

Smaller Page Tables

Paging Problems
Too slow [last time]

Too big [today’s focus]

Motivation
Why do we want big virtual address spaces?

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages)

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Paging goals: 
 - space efficiency (don’t waste on invalid data) 
 - simplicity (no bookkeeping should require contiguous pages)

Approach 1: Change Page Size

Make pages bigger

Worksheet: Problem 4

Make pages bigger

Worksheet: Problem 4

Why are 4 MB pages bad?

Approach 1: Change Page Size

Make pages bigger

Worksheet: Problem 4

Why are 4 MB pages bad? Internal fragmentation.

Approach 1: Change Page Size

Mixed Page Sizes
Some systems support multiple page sizes 
 - better TLB is bigger motivation, though

Mechanisms: what are implications for  
 - PTs? 
 - TLBs?

Policy: when to use large pages?

Approach 2: abandon simple linear page tables

Use more complex PTs, instead of just a big array.

Suggestions?

Look at problem more closely…

code
heap

stack

Virt Mem Phys Mem

code
heap

stack

Virt Mem Phys Mem

Waste!

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid 
storing these?

Approach 2a: hash-table lookup

Called an inverted page table.

Pros/Cons?

Approach 2a: hash-table lookup

Called an inverted page table.

Pros/Cons?

Nice if we trapped on TLB misses…

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid 
storing these?

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our
addr space: invalids are clustered.

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our
addr space: invalids are clustered.
!
How did we fix holes in phys
memory before?

Many invalid PT entries
PFN valid prot
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our
addr space: invalids are clustered.
!
How did we fix holes in phys
memory before?
 - segmentation 
 - paging

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs over PTs
for fun!

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  
 - each PT has a base/bounds (where?)

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  
 - each PT has a base/bounds (where?)

Before: OFFSETVPN
16 012345678910111213141517

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  
 - each PT has a base/bounds (where?)

Now: PT idxSEG

16 012345678910111213141517

OFFSET

VPN

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  
 - each PT has a base/bounds (where?)

PT idx SEG

16 012345678910111213141517

OFFSET

VPN

why not?

Now:

Segmentation/Paging Hybrid
Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  
 - each PT has a base/bounds (where?)

PT idxSEG

16 012345678910111213141517

OFFSET

VPN

Now:

Segmentation/Paging Hybrid

PFN valid prot
0x10 1 r-x
0x15 1 r-x
0x12 1 r-x

…

PFN valid prot
0x22 1 rw-
0x02 1 rw-
0x04 1 rw- …

segment 00: code segment 01: heap

PT idxSEG

16 012345678910111213141517

OFFSET

Segmentation/Paging Hybrid

PFN valid prot
0x10 1 r-x
0x15 1 r-x
0x12 1 r-x

…

PFN valid prot
0x22 1 rw-
0x02 1 rw-
0x04 1 rw- …

segment 00: code segment 01: heap

PT idxSEG

16 012345678910111213141517

OFFSET Problem 5
(worksheet)

Segmentation/Paging Hybrid

PFN valid prot
0x10 1 r-x
0x15 1 r-x
0x12 1 r-x

…

PFN valid prot
0x22 1 rw-
0x02 1 rw-
0x04 1 rw- …

segment 00: code segment 01: heap

PT idxSEG

16 012345678910111213141517

OFFSET What about the stack?
(OSTEP skips this)

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs

Multi-Level Page Tables
Idea: break PT itself into pages

Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries

Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries

Used by x86.

Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries

Used by x86.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx

VPN

PFN 
0x3 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

 0x92

valid 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1

page directory
PFN 
0x10  
 0x23 

 - 
 - 

 0x80 
 0x59 

 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 -

valid 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0

page of PT (@PFN:0x3)

PFN 
- 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

 0x55 
 0x45

valid 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1

page of PT (@PFN:0x92)

Problem 6
(worksheet)

!
assume 20-bit 
virtual addrs

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages)

Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages) 
 - page directories are too big!

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs

>2 Levels
Problem: page directories may not fit in a page

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

>2 Levels
Problem: page directories may not fit in a page

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx 1

VPN

PD idx 0
20212223

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

>2 Levels
Problem: page directories may not fit in a page

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

>2 Levels
Problem: page directories may not fit in a page

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

How many levels do we need? (Problem 7)

Approach 2

Approach 2a: hashtable

Approach 2b: segments over PTs

Approach 2c: PTs over PTs

Approach 2d: PTs over PTs over PTs

What about TLBs?
Lookups in multiple levels more expensive.

How much does a miss cost? (problem 8)

Time/Space tradeoffs.

Summary
Many PT options are possible.

Time/Space/Complexity tradeoffs.

OS traps on TLB misses would be ideal.

x86 walks multi-level PTs.

Announcements

P2a due in 9 days!

Discussion tomorrow…

FB tech talk tonight.

