1537] Smaller Page Tables

Tyler Harter
9/24/14

Worksheets

- how many accesses with TLB?

- how large are PTES”
- tip, use indexes to save memory

- how large are PTs”

Smaller Page Tables

Paging Problems

Too slow [last time]

Too big [today’s focus]

Motivation

Why do we want big virtual address spaces?

Motivation

Why do we want big virtual address spaces?
- programming IS easier
- applications need not worry (as much) about fragmentation

Motivation

Why do we want big virtual address spaces?
- programming IS easier
- applications need not worry (as much) about fragmentation

Paging goals:
- space efficiency (don't waste on invalid data)
- simplicity (no bookkeeping should require contiguous pages)

Motivation

Why do we want big virtual address spaces?
- programming IS easier
- applications need not worry (as much) about fragmentation

Paging goals:
- space efficiency (don’t waste on invalid data)
- simplicity (no bookkeeping should require contiguous pages)

Approach 1: Change Page Size

Make pages bigger

Worksheet;

Approach 1: Change Page Size

Make pages bigger
Worksheet:

Why are 4 MB pages bad?

Approach 1: Change Page Size

Make pages bigger
Worksheet:

Why are 4 MB pages bad?” Internal fragmentation.

Mixed Page Sizes

Some systems support multiple page sizes
- better TLB is bigger motivation, though

Mechanisms: what are implications for
- PTs?
- TLBs?

Policy: when to use large pages”

Approach 2: abandon simple linear page tables

Use more complex PTs, instead of just a big array.
Suggestions”

Look at problem more closely...

Virt Mem Phys Mem
code
heap

stack

Virt Mem Phys Mem
code
heap

pu—

Wastel

stack

Many Iinvalid P1 entries

N valid prot

10 1 r-X
i, 0 .
23 1 rw-
i, 0 i,

0

0

0
...many more invalid...

0

0
- 0
i, 0 i,
28 1 rw-
4 1 rw-

Many Iinvalid P1 entries

PFEN valid prot

10 1 r-X
i 0 -
23 1 rw-

how to avoid
storing these?

Approach 2a. hash-table lookup

Called an inverted page table.

Pros/Cons”

Approach 2a. hash-table lookup

Called an inverted page table.
Pros/Cons?

Nice If we trapped on TLB misses...

Many Iinvalid P1 entries

PFN valid prot

10 1 -X
. 0 i
23 1 rw-

how to avoid
storing these”

4 1 rw-

Many Iinvalid P1 entries

PFN valid prot

10 1 -X
. 0 i
23 1 r'W-
B Note there is a big "hole” in our
addr space: invalids are clustered.
how to avoid
storing these”
28 1 rw

4 1 rw-

Many Iinvalid P1 entries

PFN valid prot

10 1 -X

. 0 i

23 1 r'W-

B Note there is a big "hole” in our
addr space: invalids are clustered.
how to avoid
storing these? How did we fix holes in phys

memory before”?

28 1 rw

4 1 rw-

Many Iinvalid P1 entries

PFN valid prot

10 1 -X
. 0 i
23 1 rw-

Note there is a big "hole” in our

addr space: invalids are clustered.
how to avoid

storing these? How did we fix holes in phys

memory before”?

- segmentation

28 1 w- - paging
4 1 rw-

Approach 2

Approach 2a: hashtable
Approach 2b: segments over P1Is

Approach 2c: Pls over PIs

Approach 2

Approach 2a: hashtable
Approach 2b: segments over P1Is

Approach 2c: Pls over PIs

Approach 2d: Pls over PIs over Pls over P
for fun!

Approach 2

Approach 2a: hashtable
Approach 2b: segments over P1Is

Approach 2c: Pls over PIs

Approach 2d: Pls over PIs over P

Approach 2

Approach 2b: segments over Pls

Approach 2c: Pls over PIs

Approach 2d: Pls over PIs over P

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc
- each PT can be a different size
- each PT has a base/bounds (where?)

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc

-

- each PT can be a different size
- each PT has a base/bounds (where”)
Before: VPN

1716151413 121110 9 8 7 6 5 4 3 2 1 O

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc

- €aC
- €acC

i

A

vow: (I

-

- can be a different size

D)

has a base/bounds (where?)

«— VPN —

1716151413 121110 9 8 7 6 5 4 3 2 1 O

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc

- €aC
- €acC

i

A

Now

-

- can be a different size

D)

has a base/bounds (where?)

«— VPN —

1716151413 121110 9 8 7 6 5 4 3 2 1 O

Segmentation/Paging Hybrid

|dea: use different page tables for heap, stack, etc

- €aC
- €acC

i

A

vow: (I

-

- can be a different size

D)

has a base/bounds (where?)

«— VPN —

1716151413 121110 9 8 7 6 5 4 3 2 1 O

Segmentation/Paging Hybrid

segment 00: code
PFEN valid prot

Ox10 1 r-X
Ox15 1 r-X
Ox12 1 r-X

segment 01: heap

N valid prot

1716151413121110 9 8 7 6 5 4 3 2 1 O

Ox22 1 rW-
0x02 1 rW-

0Ox04 1 rW-

Segmentation/Paging Hybrid

segment 00: code segment 01: heap
PFEN valid prot PEN valid prot
Ox10 1 r-X Ox22 1 rw-
Ox15 1 r-X Ox02 1 rw-
Ox12 1 %

0Ox04 1 rW-

(worksheet)
17161514131211109 8 7 6 5 4 3 2 1 0

Segmentation/Paging Hybrid

segment 00: code
PFEN valid prot

Ox10 1 r-X
Ox15 1 r-X
Ox12 1 r-X

segment 01: heap

N valid prot

1716151413121110 9 8 7 6 5 4 3 2 1 O

Ox22 1 rW-
0x02 1 rW-

0Ox04 1 rW-

Approach 2

Approach 2c: Pls over PIs

Approach 2d: Pls over PIs over P

Multi-Level Page Tables

|[dea: break PT itself into pages

Multi-Level Page Tables

|[dea: break PT itself into pages
- a page directory refers to pieces
- only have pieces with >0 valid entries

Multi-Level Page Tables

|[dea: break PT itself into pages
- a page directory refers to pieces
- only have pieces with >0 valid entries

Used by x86.

Multi-Level Page Tables

|[dea: break PT itself into pages
- a page directory refers to pieces
- only have pieces with >0 valid entries

Used by x86.

< VPN >

PDidx PTidx

191817 16151413121110 9 8 7 6 5 4 3 2 1 O

page directory page of PT (@PFN:0x3) page of PT (@PFN:0x92)

PEN valid PFEN valid PEN valid
0x3 1 0x10 1 i 0
. 0 0x23 1 . 0
_ 0 - 0 - 0
_ 0 - 0 - 0
- 0 0x80 1 - 0 (worksheet)
. 0 0x59 1 . 0
) 0) 0) 0 assume 20-bit
. 0 . 0 . 0 .
] 0] 0] 0 virtual addrs
_ 0 - 0 - 0
_ 0 - 0 - 0
_ 0 - 0 - 0
_ 0 - 0 - 0
. 0 . 0 0x55 1
0x92 1 . 0 Ox45 1

Motivation

Why do we want big virtual address spaces?
- programming IS easier
- applications need not worry (as much) about fragmentation

Paging goals:
- space efficiency (don't waste on invalid data)
- simplicity (no bookkeeping should require contiguous pages)

Motivation

Why do we want big virtual address spaces?
- programming IS easier
- applications need not worry (as much) about fragmentation

Paging goals:

- space efficiency (don't waste on invalid data)

- simplicity (no bookkeeping should require contiguous pages)
- page directories are too big!

Approach 2

Approach 2a: hashtable
Approach 2b: segments over P1Is

Approach 2c: Pls over PIs

Approach 2d: Pls over PIs over P

>2 Levels

Problem: page directories may not fit in a page

Solution: split page directories into pieces.
Use another page dir to reter to the page dir pieces.

>2 Levels

Problem: page directories may not fit in a page

Solution: split page directories into pieces.
Use another page dir to refer to the page dir pieces.

< VPN >

PDidx0 PDidx1 PTidx OFFSET

232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 O

Page 4, Addresses 0x1000-0x13ff

Page 5, Addresses Ox1400-0x17ff

Page 6, Addresses 0x1800-0x1bff

Page 7, Addresses Ox1c00-Ox188f

Page 8, Addresses 0x2000-0:23ff

Page 12, Addresses 0x3000-0x3f

Page 13, Addresses 0x2400-0x371f

Page 14, Addresses 0x3800-0x3bé

Page Ox3ffffc, Addresses Oxfiff000-Oxff3ff

Page Ox3ffffd, Addresses Oxfif400-OxEtff7 ff

Page Ox3ffffe, Addresses Oxfiiff800-Oxffifbff

Page Ox3fffff, Addresses Oxfffffc00-Oxfiffff

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.htm|

http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html

>2 Levels

Problem: page directories may not fit in a page

Solution: split page directories into pieces.
Use another page dir to reter to the page dir pieces.

>2 Levels

Problem: page directories may not fit in a page

Solution: split page directories into pieces.
Use another page dir to reter to the page dir pieces.

How many levels do we need? ()

Approach 2

Approach 2a: hashtable
Approach 2b: segments over P1Is

Approach 2c: Pls over PIs

Approach 2d: PTs over Pls over P

What about TLBs?

Lookups In multiple levels more expensive.
How much does a miss cost? ()

Time/Space tradeoffs.

summary

Many PT options are possible.
Time/Space/Complexity tradeoffs.
OS traps on TLB misses would be ideal.

x86 walks multi-level PTs.

Announcements

P2a due in 9 days!
Discussion tomorrow...

FB tech talk tonight.

