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Worksheets
Problem 1: how many accesses with TLB? 

Problem 2: how large are PTEs?  
 - tip, use indexes to save memory 

Problem 3: how large are PTs?



Smaller Page Tables



Paging Problems
Too slow [last time] 

Too big [today’s focus]
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Make pages bigger 

Worksheet: Problem 4 

Why are 4 MB pages bad?  Internal fragmentation.

Approach 1: Change Page Size



Mixed Page Sizes
Some systems support multiple page sizes 
 - better TLB is bigger motivation, though 

Mechanisms: what are implications for  
 - PTs? 
 - TLBs? 

Policy: when to use large pages?



Approach 2: abandon simple linear page tables

Use more complex PTs, instead of just a big array. 

Suggestions? 

Look at problem more closely…
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Waste!
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Called an inverted page table. 

Pros/Cons? 

Nice if we trapped on TLB misses…



Many invalid PT entries
PFN  valid prot 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid…how to avoid 
storing these?



Many invalid PT entries
PFN  valid prot 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our 
addr space: invalids are clustered. 



Many invalid PT entries
PFN  valid prot 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our 
addr space: invalids are clustered. 
!
How did we fix holes in phys 
memory before?



Many invalid PT entries
PFN  valid prot 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid…how to avoid 
storing these?

Note there is a big “hole” in our 
addr space: invalids are clustered. 
!
How did we fix holes in phys 
memory before? 
 - segmentation 
 - paging
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Approach 2a: hashtable 

Approach 2b: segments over PTs 

Approach 2c: PTs over PTs 
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Idea: use different page tables for heap, stack, etc 
 - each PT can be a different size  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Segmentation/Paging Hybrid

PFN  valid prot 
0x10 1  r-x 
0x15 1  r-x 
0x12 1  r-x 

…

PFN  valid prot 
0x22 1  rw- 
0x02 1  rw- 
0x04 1  rw- …

segment 00: code segment 01: heap

PT idxSEG

16 012345678910111213141517

OFFSET What about the stack? 
(OSTEP skips this)



Approach 2

Approach 2a: hashtable 

Approach 2b: segments over PTs 

Approach 2c: PTs over PTs 

Approach 2d: PTs over PTs over PTs
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Multi-Level Page Tables
Idea: break PT itself into pages  
 - a page directory refers to pieces  
 - only have pieces with >0 valid entries 

Used by x86.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx

VPN



PFN 
0x3 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

 0x92

valid 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1

page directory
PFN 
0x10  
 0x23 

 - 
 - 

 0x80 
 0x59 

 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 -

valid 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0

page of PT (@PFN:0x3)

PFN 
- 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 
 - 

 0x55 
 0x45

valid 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1

page of PT (@PFN:0x92)

Problem 6 
(worksheet) 

!
assume 20-bit 
virtual addrs
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Motivation
Why do we want big virtual address spaces?  
 - programming is easier 
 - applications need not worry (as much) about fragmentation 

Paging goals: 
 - space efficiency (don’t waste on invalid data)  
 - simplicity (no bookkeeping should require contiguous pages) 
   - page directories are too big!



Approach 2

Approach 2a: hashtable 

Approach 2b: segments over PTs 

Approach 2c: PTs over PTs 

Approach 2d: PTs over PTs over PTs
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>2 Levels
Problem: page directories may not fit in a page 

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces.

PT idx
16 012345678910111213141517

OFFSET
1819

PD idx 1

VPN

PD idx 0
20212223



http://web.eecs.utk.edu/~mbeck/classes/cs560/560/oldtests/t2/2003/Answers.html
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>2 Levels
Problem: page directories may not fit in a page 

Solution: split page directories into pieces.  
Use another page dir to refer to the page dir pieces. 

How many levels do we need?  (Problem 7)



Approach 2

Approach 2a: hashtable 

Approach 2b: segments over PTs 

Approach 2c: PTs over PTs 

Approach 2d: PTs over PTs over PTs



What about TLBs?
Lookups in multiple levels more expensive. 

How much does a miss cost?  (problem 8) 

Time/Space tradeoffs.



Summary
Many PT options are possible. 

Time/Space/Complexity tradeoffs. 

OS traps on TLB misses would be ideal. 

x86 walks multi-level PTs.



Announcements

P2a due in 9 days! 

Discussion tomorrow… 

FB tech talk tonight.


