SCHEMA REFINEMENT AND NORMAL FORMS
[CH 19]
Database Design: The Story so Far

- Requirements Analysis
 - Data stored, operations, apps, ...

- Conceptual Database Design
 - Model high-level description of the data, constraints, ER model

- Logical Database Design
 - Choose a DBMS and design a database schema

- Schema Refinement
 - Normalize relations, avoid redundancy, anomalies ...

- Physical Database Design
 - Examine physical database structures like indices, restructure ...

- Security Design
Normalization

What is a good relational schema? How can we improve it?

- e.g.: Suppliers \((\text{name}, \text{item}, \text{desc}, \text{addr}, \text{price})\)

Redundancy Problems:

1. A supplier supplies two items: Redundant Storage
2. Change address of a supplier: Update Anomaly
3. Insert a supplier: Insertion Anomaly
 - What if the supplier does not supply any items (nulls?)
 - Record desc for an item that is not supplied by any supplier
4. Delete the only supplier tuple: Delete Anomaly
 - Use nulls?
 - Delete the last item tuple. Can’t make name null. Why?

Alternative:
Dealing with Redundancy

• Identify “bad” schemas
 – functional dependencies

• Main refinement technique: decomposition
 – replacing larger relation with smaller ones

• Decomposition should be used judiciously:
 – Is there a reason to decompose a relation?
 • Normal forms: guarantees against (some) redundancy
 – Does decomposition cause any problems?
 • Lossless join
 • Dependency preservation
 • Performance (must join decomposed relations)
Functional Dependencies (FDs)

• A form of IC

• D: $X \rightarrow Y$
 X and Y subsets of relation R’s attributes
 $t_1 \in r, t_2 \in r, \Pi_X(t_1) = \Pi_X(t_2) \implies \Pi_Y(t_1) = \Pi_Y(t_2)$

• An FD is a statement about all allowable relations.
 – Based only on application semantics, can’t deduce from instances
 – Can simply check if an instance violates FD (and other ICs)

• Consider, $(X,Y) \rightarrow Z$. Does this imply (X,Y) is a key?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22</td>
<td>B</td>
</tr>
</tbody>
</table>

Primary Key IC is a special case of FD
Example: Constraints on Entity Set

- \(S(\text{name, item, desc, addr, price}) \)
- \(\text{FD}: \{\text{n}, \text{i}\} \rightarrow \{\text{n}, \text{i}, \text{d}, \text{a}, \text{p}\} \)
- \(\text{FD}: \{\text{n}\} \rightarrow \{\text{a}\} \)
- \(\text{FD}: \{\text{i}\} \rightarrow \{\text{d}\} \)
- Decompose to: \(\text{NA, ID, INP} \)

- \(\text{Spl(name, item, price)} \)
 - \(\text{FD}: \{\text{n}, \text{i}\} \rightarrow \{\text{n}, \text{i}, \text{p}\} \)
- \(\text{Sup(name, addr)} \)
 - \(\text{FD}: \{\text{n}\} \rightarrow \{\text{n}, \text{a}\} \)
- \(\text{Item (item, desc)} \)
 - \(\text{FD}: \{\text{i}\} \rightarrow \{\text{i}, \text{d}\} \)

ER design is subjective and can have many E + Rs FDs: sanity checks + deeper understanding of schema

Same situation could happen with a relationship set
Refining an ER Diagram

- IS (item, name, desc, loc, price)
 S (name, addr)
- A supplier keeps all items in the same location
 FD: name → loc
- Solution:
Inferring FD

- **ename** \rightarrow **ejob,** **ejob** \rightarrow **esal;** \Rightarrow **ename** \rightarrow **esal**

- **Armstrong’s Axioms (X, Y, Z are sets of attributes):**
 - **Reflexivity:** If $Y \subseteq X,$ then $X \rightarrow Y$
 - **Augmentation:** If $X \rightarrow Y,$ then $XZ \rightarrow YZ$ for any Z
 - **Transitivity:** If $X \rightarrow Y$ and $Y \rightarrow Z,$ then $X \rightarrow Z$

- **Additional rules (derivable):**
 - **Union:** If $X \rightarrow Y$ and $X \rightarrow Z,$ then $X \rightarrow YZ$
 - **Decomposition:** If $X \rightarrow YZ,$ then $X \rightarrow Y$ and $X \rightarrow Z$

- **Set of all FD = closure of F, denoted as F^+**
- **AA sound:** only generates FD in F^+
- **AA complete:** repeated application generates all FD in F^+
Decomposition

- Replace a relation with two or more relations
- Problems with decomposition

1. Some queries become more expensive. (more joins)

2. **Lossless Join**: Can we reconstruct the original relation from instances of the decomposed relations?

3. **Dependency Preservation**: Checking some dependencies may require joining the instances of the decomposed relations.
Lossless Join Decompositions

• Relation R, FDs F: Decomposed to X, Y
• Lossless-Join decomposition if:
 \[\Pi_X(r) \Join \Pi_Y(r) = r \quad \text{for every instance } r \text{ of } R \]
• Note, \(r \subseteq \Pi_X(r) \Join \Pi_Y(r) \) is always true, not vice versa, unless the join is lossless
• Can generalize to three more relations
Lossless Join ...

- Relation R, FDs F: Decomposed to X, Y
 - Test: lossless-join w.r.t. F if and only if the closure of F contains:
 - $X \cap Y \rightarrow X$, or
 - $X \cap Y \rightarrow Y$
 - i.e. attributes common to X and Y contain a key for either X or Y
 - Also, given FD: $X \rightarrow Y$ and $X \cap Y = \emptyset$, the decomposition into R-Y and XY is lossless
 - X is a key in XY, and appears in both
Dependency Preserving Decomposition

- R (sailor, boat, date) \{D \rightarrow S, D \rightarrow B\)
 \rightarrow X (sailor, boat)
 Y (boat, date) \{D \rightarrow B\)

- To check D \rightarrow S need to join R1 and R2 (expensive)

- Dependency preserving:
 - R \rightarrow X, Y \quad F^+ = (F_x \cup F_y)^+
 - Note: F not necessarily \(= F_x \cup F_y\)
Normal Forms

• Is any refinement is needed!
• Normal Forms: guarantees that certain kinds of problems won’t occur
 – 1 NF : Atomic values
 – 2 NF : Historical
 – 3 NF : …
 – BCNF : Boyce-Codd Normal Form

Role of FDs in detecting redundancy:

- Relation R with 3 attributes, ABC.
 - No ICs (FDs) hold \(\Rightarrow\) no redundancy.
 - \(A \rightarrow B\) \(\Rightarrow\) 2 or more tuples with the same A value, redundantly have the same B value!
Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in **BCNF** if, for all $X \rightarrow A$ in F^+
 - $A \subseteq X$ (trivial FD), or
 - X is a super key

i.e. all non-trivial FDs over R are key constraints.

- **No redundancy in R** (at least none that FDs detect)
- Most desirable normal form

Consider a relation in BCNF and FD: $X \rightarrow A$, two tuples have the same X value

- Can the A values be the same (i.e. redundant)?

- **NO!** X is a key, $\Rightarrow y_1 = y_2$. Not a set!
3NF

• Relation R with FDs F is in 3NF if, for all X → A in F⁺
 – A ∈ X or
 – X is a super key or
 – A is part of some key for R (prime attribute)
 - Minimality of a key (not superkey) is crucial!

• BCNF implies 3NF

• e.g.: Sailor (Sailor, Boat, Date, CreditCrd)
 – SBD -> SBDC, S -> C (not 3NF)
 – If C -> S, then CBD -> SBDC (i.e. CBD is also a key). Now in 3NF!
 – Note redundancy in (S, C); 3NF permits this
 – Compromise used when BCNF not achievable, or perf. Consideration

• Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.