Review

Wednesday, March 25, 2020 12:20 AM

lped [ps]= ps

gintl o] = o
Removal of interpretation overhead
in-line substitution of functions called by int
ﬂ Pt] [J P’kt_, ‘i] = ‘E‘(E compiling elimination of cases not needed to interpret q
stores of q -- part of the information is known

\ \4 e.g., binding list
2 F [ee,int] =(P Cur compiler
0 pel 1=(PEr P

1,
E‘Pe_—ﬂ EPQ Pej o~ ?OEFE compiler-compiler 5 r T \VL} vy . J
’ S ?\ i
4
D
/
(M\ > VL\W
n, N - T
R

Partial Evaluation 2 Page 1



Reparenthesization Principle

Wednesday, March 25, 2020 12:21 AM

Goal: Ensure that there is a concordance between the residual-program states and the subject-program states

Subject-program states Residual-program states
(label, (vs, vd)) ((label, vs), vd)
L._,.-—u]:r—--_.-
values of supplied values of delayed . .,
variables variables compound label" (conceptually)

Theme: "Conversion of data to control"
("control" = position in the code)

pc == 11 + the value pc == (1, [3,99,17])

of vs ([3,99,17] or or
Concordance: (6,97,13]) pc == (I1, [6,97,13])
Subject-program trace Residual-program trace
: : The trace
(13, ([3,99,17], [2,6])) ((11, [3,99,17]), [2,6]) .
: . visits label
The trace (159, (112,99,15], [2,27])) (159, [12,99,15]), [2,27]) (11, [6,97,13])
visits label . : once
11 three (11, ([6,97,13], [2,25])) (11, [6,97,13)), [2,25])
times : : The trace
(11, ([3,99,17], [15,3])) ((11, [3,99,17]), [15,3]) < visits label
: : (11, [3,99,17])
twice

Partial Evaluation 2 Page 2



What does a specialized program look like?

Wednesday, March 25, 2020 12:51 AM

Subject Residual program ~
program ps = [[pe1][p,s] -
p

Partial Evaluation 2 Page 3



Languages, languages, languages, . . .

Wednesday, March 25, 2020 1:06 AM

1. "surface syntax" of the language of
subject programs

L = A simple imperative flow-chart language
with int and list data

Constructs of L

assignment

if cond goto label else label'
goto label

read of initial data

return final value

print

Also, as syntactic sugar

begin ... end

while ... do ... od

repeat ... until ...

Data types Operators
integers plus, <, >, =, ...

s-expressions hd, tl, cons, nil, isnil

Partial Evaluation 2 Page 4

2. "deep syntax" of the language of

subject programs

s-expression representation of a
program's control-flow graph (CFG)
+ algebraic data type to represent
expressions

Algebraic datatype for representing L expressions

exp ::= ConstExpr(constant)

| IdentExpr(identifier)

| Compound(op exp exp)
constant ::= <integer constants>
identifier ::= [a-zA-Z]+
operator::=+ | * | cons | hd | tl | ...

3. meta-language in which to describe
the partial-evaluation algorithm

o pidgin Algol

o tables of cases

o informal graph diagrams

o <hand-waving> + <smoke & mirrors>

meta-language permits deconstructing
expressions via pattern matching:

cases e of
ConstExpr(c): ... expression involving e, ¢, ...
IdentExpr(i): ... expression involving e, i, ...
Compound(o, a, b): ... expression involving
e,0,a,b...
end



Simplification (not the whole story of partial evaluation!!)

Wednesday, March 25, 2020 1:19 AM

simplify(e, store) = // store is a map from names to values
cases e of
ConstExpr(c): e
IdentExpr(i): DefinedIn(i,store) ? ConstExpr(Lookup(i,store)) : e
Compound(op, a, b):
let vl = simplify(a, store) and v2 = simplify(b, store) in
cases vl of
ConstExpr(cl):
cases v2 of
ConstExpr(c2): ConstExpr(funcof(op)(c1,c2))
default: Compound(op,vl,v2)
default: Compound(op,v1,v2)

Partial Evaluation 2 Page 5



Example of an L-program (surface and deep syntax)

Wednesday, March 25, 2020 1:28 AM

Surface syntax:
read(N)

begin:i:=1
sum:=0

goto loop

loop: if i > N goto end else body
body: sum :=sum +i
i=i+l

goto loop

end: return sum

Deep syntax:

(((Read N)) <=

( (Block begin
(Assign i ConstExpr(1))
(Assign sum ConstExpr(0))
(goto loop)
)
(Block loop
(Cond (Less i N)
end
body
)

)
(Block body

(Assign sum Compound(+, IdentExpr(sum), IdentExpr(i)))
(Assign i Compound(+, IdentExpr(i), ConstExpr(1)))

)
(Block end

(Return sum)
)
)
)

Partial Evaluation 2 Page 6

(Singleton) list of read statements

List of blocks



For partial evaluation, need >= 2 read statements

Wednesday, March 25, 2020 1:38 AM

read(y) A trace:
read(z)
Suppose that the inputis y: 1, z: ¢, where c is some specific value

begin: goto q

(begin, (1,c))

q: ify<3gotorelses (a, (1,¢)

(r, (1))

r: y = y+1 (ql (21 C+1))
z:=z+1 (r/ (21 C+1))
goto q (a, (3, c+2))

(s, (3,c+2))

S return z

Partial Evaluation 2 Page 7



Reparenthesization

Wednesday, March 25, 2020 1:44 AM

state = (pp, (values of supplied vars, values of delayed vars))
=~ ((pp, values of supplies vars), value of delayed vars)

___________ "Polyvariant specialization"
----------- \ (pp, vs2): -----m-=--- =1 to many

(IR i —

Partial Evaluation 2 Page 8



Examp

Wednesday,

begin:

le: Specialize program w.r.t. y—1

March 25, 2020 1:49 AM

read(y)
read(z)

goto q
ify<3gotorelses

y:i=y+l
z:=z+1
goto q

return z

Current partial state: y—3
Worklist: { ... }

(q,5): ...

(s,5): ...

(r,5): ...

(q,6): ...

(r,6): ...

Partial Evaluation 2 Page 9

read(z)

(begin, 1): goto (q,1)

(a,1):
(r,2):

(a,2):
(r,2):

(a,3):

(s,3):

goto (r,1)
z:=1z+1
goto (q,2)
goto (r,2)
z:=1z+1
goto (q,3)
goto (s,3)
return z

Trace (w.r.t. z—c¢)

((begin,1), c)
((a,1), c)
((r,1), ¢)
((a,2), c+1)
((r,2), c+1)
((a,3), c+2)
((s,3), c+2)

Current state: z—c+2

Trace of the original program

(begin, (1,c))
(0, (1,¢))
(r, (1,¢c))
(a, (2, c+1))
(r, (2, c+1))
(a, (3, c+2))
(s, (3, c+2))



Transition compression

Wednesday, March 25, 2020 1:53 AM

Lots of gotos to gotos
Most correspond to actions in the original program on supplied

guantities "swallowed by the partial evaluator" (i.e., performed
at PE-time -- in particular, "y := y+1")

Compress the goto transitions Trace (w.r.t. z—c)
read(z) ((r,1), c)

(r,1): z:=z+1 ((r,2), c+1)

(r,2): z:=z+1 ((s,3), c+2)

(s,3): returnz
Not as easy to make the correspondence
with the trace of the original program

Partial Evaluation 2 Page 10



Two-phase partial evaluation

Wednesday, March 25, 2020 12:00 PM

1: Binding-time analysis (BTA)
2: Specialization

BTA:
division: labeling of variables/statements into S and D

uniform: each variable has the same S/D classification at all
program points (think: "type")

read(z) //D
z:=27 //S, but makes the division non-uniform

congruence: Variables classified S, can only depend on variables
classified S.
- congruence analysis ~ taint analysis

-Dleadsto D
yi=y+l /] S<S (Q:=y D
z:=2z+¢1 // D<-D 3

w:=y+z // D<- S+D

=
‘1_ ]

Partial Evaluation 2 Page 11



