Review
Thursday, March 26, 2020 10:52 PM

state = (pp, (values of supplied vars, values of delayed vars))
=~ ((pp, values of supplies vars), value of delayed vars)

(Pp, vs1): ---mmmmmm-
S /
___________ "Polyvariant specialization
___________ — (pp, v$2): ----------- =1 to many
Advantages: concordance of
(pp, vs3): ----------- original/residual traces

——————————— But what is the algorithm to perform such
splitting? (Today's lecture. . .)

Partial Evaluation 3 Page 1

Overview of today's lecture

Thursday, March 26, 2020 10:55 PM
VAT S Easily combined

e\
\,\)\/\\ Lre ‘S/D\ /_‘_k/_\

PE = BTA ; Specialization ; Transition compression
A

Preprocessing step:
Produces information
used to guide specialization

/

Specialization: CFG X VS, = CFG

!

Var — Val
(for the supplied variables)

Partial Evaluation 3 Page 2

Binding-Time Analysis (BTA)

Thursday, March 26, 2020 11:02 PM

Input: Given CFG and an initial division (classification of inputs as S or D)
Output: A uniform, congruent division

"division" : a classification of the variables as S or D

"uniform" : each variable v has the same classification at every point in the program
non-uniform: v is S at some points; D at others

"congruent" : variables classified S can only depend on variables classified S
i.e., if a variable v depends on a variable w classified D, then v must be D, as well

Examples: D == tamT

Q)

Partial Evaluation 3 Page 3

Example: Compute the product of a and b by interpreting

the bits of b

Thursday, March 26, 2020 11:10 PM

Source-code form:

unsigned int mult(unsigned int a, unsigned int b) {
unsigned int answer = 0; Olg
unsigned int mask = 0200060000000 // 32-bit
while (mask > 0) {
answer = answer<<1; & 2_
if (mask & b) { // examine a bit of b
answer = answer + a;

}

mask = mask >> 1;

} b _@/

return answer;

}

Partial Evaluation 3 Page 4

begin:

loop:

body:

addin:

shift:

= | 00|
reaj; e b S
red IR form:
answer =0 <—
mask = 010 <
goto loop

if mask > 0 goto body else end_loop

answer =answer<<1l & —
if (mask & b) goto addin else shift

answer =answer+a <
goto shift
mask = mask >> 1 S

goto loop

end_loop: return answer

Finding a congruent division, method 1

Thursday, March 26, 2020 11:08 PM

l&
BTA via dataflow analysis:

a. Find a non-uniform division (per-program-point view)

Ffop?ja"‘e 0\1\/13'!‘!:% o the CFG
S S S/n >
< S/D} /o, %D, /D
Mash o L arswer

1 V\,"nazoz'—vms S S> at a(’ Folv\’h

it
€ x cept S‘LaﬂL e D ot
{5,D,5, °7

Partial Evaluation 3 Page 5

£

’Tr awS‘E;MefS

sgjmme/m%'-

.07

o

N0
v -7
+1 350D
s|s D
DD D
@ (Corbrmed
O
<. S 2 <
e ../D/~o-->
sito =0

Finding a congruent division, method 2

Thursday, March 26, 2020 11:23 PM D

Find a uniform division using a dependence graph (per-variable view) /[i\

V:: r\r\'</| X’f“j
Ji= rhsa gV

v: V"(n33

Partial Evaluation 3 Page 6

Friday, March 27, 2020 11:22 AM

Need additional passes of dataflow analysis |
S

Partial Evaluation 3 Page 7

Example: BTA (method 2) for mult()

Friday, March 27, 2020 11:36 AM

5 @ 0
read a / @5 DZ/ D
read b ﬁ D E/@\\ 2 1) g
begin: answer=0 [a hswer ’ (gvswer +q ;K
mask = 010 w
goto loop

loop: if mask > 0 goto body else end_loop S
body: answer = answer << 1 S AES)
if (mask & b) goto addin else shift l\) \/
ook |—BE
addin: answer = answer + a :
goto shift
shift: mask = mask >> 1

goto loop

S S
end_loop: return answer (Ll l @

o) answes D b:s mash. S

Partial Evaluation 3 Page 8

Specialization Algorithm

Thursday, March 26, 2020 11:51 PM

Global variables:
prog: CFG (in IR form) of the original program
new_prog: CFG (in IR form) of the residual program
poly: set of pairs of the form (program-point, StaticVars — Val)
[each pair can be marked or unmarked]

Specialize(DynlnputVars, VS0) { // VSO: values of static variables
new_prog = (<list of (Read v) for each v € DyninputVars> ())
poly = { (begin, VSO) }
while (poly contains an unmarked pair (pp, vs) {
mark (pp, vs) // leave (pp, vs) in poly; marked so only time processed

Generate (pp, vs) ¢

} may insert other (pp’, vs') pairs into poly
return new_prog may attach a new basic block to new-prog

}

Partial Evaluation 3 Page 9

Generate(pp, vs)

Friday, March 27, 2020 12:12 AM

Generate(pp, vs) {
new_block = empty block; pp_init = pp; vs_init = vs
for (command = Lookup(pp, prog): command != null: command = Next(command) {

ngwk{o(—(t (B

A\

exp:S & eval(exp,vs) =T
exp:S & eval(exp,vs) = F -

"goto (pp’," << vs <<)"

"goto (pp"," <<vs <<)"

Command type Perform action Append to new_block Insert into poly
X 1= exp x: D residual_exp = simplify(exp,vs) "x :=" << residual_exp ---
X: S vs = vs[x—eval(exp,vs) ---
return exp | --- residual_exp = simplify(exp,vs) "return " << residual_exp ---
goto pp' | --- - "goto (pp'," <<vs <<)" (pp', vs)
if exp exp: D | residual_exp = simplify(exp,vs) "if " << residual_exp (pp', vs) (pp", vs)
goto ppI llgoto (ppl'll << VS << II)II
else pplI IlelSe (pplI’H << VS << II)II

(pp', vs)
(pp", vs)

}

Insert new_block into new_prog, with tag (pp_init, vs_init)

}

Partial Evaluation 3 Page 10

Example: mult with mask: S, b: S, a: D, answer: Dand b =9 read a

Friday, March 27,2020 12:41 AM read b
Residual nrogram: 9is 011 (octal) and 1001 (binary) begin: answer=0 <
“”’i\\, &}g read VS0 = (?,011) vt
goto loop
in ? . =
(begm' ! 011). aniwzr 0 010 011) loop: if mask > 0 goto body else end_loop
goto (loop, ,
body: answer=answer<<1 <
(lOOp 010 011) goto (body 010 011) if (mask & b) goto addin else shift
(body, 010,011): answer = answer << 1 addin: answeL;answeHa &
goto (addin,010,011) goto shift
(addin,010,011): answer = answer + a shift: ~ mask=mask>>1 &
goto (shift,010,011) goto loop
(Shift,Ol0,0ll): goto (Ioop,04,011) end_loop: return answer /
_ looplO U
(loop,04,011): goto (body, 04,011) PDlj = ? C\oeTv\) (7,‘)”»,((VA >}
(body, 04,011): answer = answer << 1 Lbody,0l0,01)
goto (shift,04,011) Maokb - _ 5 oll
(shift,04,011): goto (loop,02,011) B 33 US - <9/) \
b (o4, Ol1)
(loop,02,011): .. o D
Ginswal 1 1D

(end_loop,0,011): return answer

Partial Evaluation 3 Page 11

Compress Transitions

Friday, March 27, 2020 12:55 AM

read a
(begin, ??,011): answer=0
answer = answer<<1
answer = answer + a
{answer = answer<<1
[answer =answer << 1
answer =answer<<1
answer = answer + a
4 O O return answer

Could simplify further by building "the dag for this basic block" (a standard compiler technique)
Emit code:
return ((((a << 1) << 1) << 1) +a)

Partial Evaluation 3 Page 12

Compress transitions on-the-fly

Friday, March 27, 2020

12:12 AM

Generate(pp, vs) {
new_block = empty block; pp_init = pp; vs_init = vs
for (command = Lookup(pp, prog);: command != null: command = Next(command) {

}

}

exp:S & eval(exp,vs) =T
exp:S & eval(exp,vs) = F

command = Lookup(pp',prog)
command = Lookup(pp",prog)

Command type Perform action Append to new_block Insert into poly
X 1= exp x: D residual_exp = simplify(exp,vs) "x :=" << residual_exp ---
X: S vs = vs[x—eval(exp,vs) --- ---
return exp| --- residual_exp = simplify(exp,vs) "return " << residual_exp ---
goto pp' | --- command = Lookup(pp',prog) --- ---
if exp exp: D | residual_exp = simplify(exp,vs) "if " << residual_exp (pp', vs) (pp", vs)
gOtO ppI llgot0 (ppl’ll << VS << Il)ll
else pplI IlelSe (pplI’II << VS << Il)ll

Insert new_block into new_prog, with tag (pp_init, vs_init)

Partial Evaluation 3 Page 13

