
state = (pp, (values of supplied vars, values of delayed vars))
 ≃ ((pp, values of supplies vars), value of delayed vars)

pp: -----------

(pp, vs1): -----------

(pp, vs2): -----------

(pp, vs3): -----------

"Polyvariant specialization"
= 1 to many

Advantages: concordance of
original/residual traces

But what is the algorithm to perform such
splitting? (Today's lecture . . .)

Review
Thursday, March 26, 2020 10:52 PM

 Partial Evaluation 3 Page 1

PE = BTA ; Specialization ; Transition compression

Preprocessing step:
Produces information
used to guide specialization

Specialization: ଴

Easily combined

Var
(for the supplied variables)

Overview of today's lecture
Thursday, March 26, 2020 10:55 PM

 Partial Evaluation 3 Page 2

Input: Given CFG and an initial division (classification of inputs as S or D)
Output: A uniform, congruent division

"division" : a classification of the variables as S or D

"uniform" : each variable v has the same classification at every point in the program
 non-uniform: v is S at some points; D at others

"congruent" : variables classified S can only depend on variables classified S
 i.e., if a variable v depends on a variable w classified D, then v must be D, as well

 Examples:

Binding-Time Analysis (BTA)
Thursday, March 26, 2020 11:02 PM

 Partial Evaluation 3 Page 3

Source-code form:

unsigned int mult(unsigned int a, unsigned int b) {
 unsigned int answer = 0;
 unsigned int mask = 020000000000 // 32-bit
 while (mask > 0) {
 answer = answer << 1;
 if (mask & b) { // examine a bit of b
 answer = answer + a;
 }
 mask = mask >> 1;
 }
 return answer;
}

 read a
 read b

begin: answer = 0
 mask = 010
 goto loop

loop: if mask > 0 goto body else end_loop

body: answer = answer << 1
 if (mask & b) goto addin else shift

addin: answer = answer + a
 goto shift

shift: mask = mask >> 1
 goto loop

end_loop: return answer

IR form:

Example: Compute the product of a and b by interpreting
the bits of b
Thursday, March 26, 2020 11:10 PM

 Partial Evaluation 3 Page 4

BTA via dataflow analysis:

Find a non-uniform division (per-program-point view)a.

Finding a congruent division, method 1
Thursday, March 26, 2020 11:08 PM

 Partial Evaluation 3 Page 5

Find a uniform division using a dependence graph (per-variable view)

Finding a congruent division, method 2
Thursday, March 26, 2020 11:23 PM

 Partial Evaluation 3 Page 6

Need additional passes of dataflow analysis
Friday, March 27, 2020 11:22 AM

 Partial Evaluation 3 Page 7

 read a
 read b

begin: answer = 0
 mask = 010
 goto loop

loop: if mask > 0 goto body else end_loop

body: answer = answer << 1
 if (mask & b) goto addin else shift

addin: answer = answer + a
 goto shift

shift: mask = mask >> 1
 goto loop

end_loop: return answer

Example: BTA (method 2) for mult()
Friday, March 27, 2020 11:36 AM

 Partial Evaluation 3 Page 8

prog: CFG (in IR form) of the original program
new_prog: CFG (in IR form) of the residual program
poly: set of pairs of the form (program-point, StaticVars Val)
 [each pair can be marked or unmarked]

Global variables:

Specialize(DynInputVars, VS0) { // VS0: values of static variables
 new_prog = (<list of (Read v) for each v DynInputVars> ())
 poly = { (begin, VS0) }
 while (poly contains an unmarked pair (pp, vs) {
 mark (pp, vs) // leave (pp, vs) in poly; marked so only time processed
 Generate (pp, vs)
 }
 return new_prog
}

may insert other (pp', vs') pairs into poly
 may attach a new basic block to new-prog

Specialization Algorithm
Thursday, March 26, 2020 11:51 PM

 Partial Evaluation 3 Page 9

Generate(pp, vs) {
 new_block = empty block; pp_init = pp; vs_init = vs
 for (command = Lookup(pp, prog); command != null; command = Next(command) {
 Command type Perform action Append to new_block Insert into poly
 x := exp x: D residual_exp = simplify(exp,vs) "x := " << residual_exp ---
 x: S vs = vs[x↦eval(exp,vs) --- ---

 return exp --- residual_exp = simplify(exp,vs) "return " << residual_exp ---

 goto pp' --- --- "goto (pp'," << vs << ")" (pp', vs)

 if exp exp: D residual_exp = simplify(exp,vs) "if " << residual_exp (pp', vs) (pp'', vs)
 goto pp' "goto (pp'," << vs << ")"
 else pp'' "else (pp''," << vs << ")"
 exp:S & eval(exp,vs) = T --- "goto (pp'," << vs << ")" (pp', vs)
 exp:S & eval(exp,vs) = F --- "goto (pp''," << vs << ")" (pp'', vs)
 }
 Insert new_block into new_prog, with tag (pp_init, vs_init)
}

Generate(pp, vs)
Friday, March 27, 2020 12:12 AM

 Partial Evaluation 3 Page 10

9 is 011 (octal) and 1001 (binary)
VS0 = (?, 011)

Residual program:
 read a
(begin, ?, 011): answer = 0
 goto (loop, 010, 011)

(loop, 010, 011): goto (body, 010,011)
(body, 010,011): answer = answer << 1
 goto (addin,010,011)
(addin,010,011): answer = answer + a
 goto (shift,010,011)
(shift,010,011): goto (loop,04,011)

(loop,04,011): goto (body, 04,011)
(body, 04,011): answer = answer << 1
 goto (shift,04,011)
(shift,04,011): goto (loop,02,011)

(loop,02,011): …
…
(end_loop,0,011): return answer

 read a
 read b

begin: answer = 0
 mask = 010
 goto loop

loop: if mask > 0 goto body else end_loop

body: answer = answer << 1
 if (mask & b) goto addin else shift

addin: answer = answer + a
 goto shift

shift: mask = mask >> 1
 goto loop

end_loop: return answer

Example: mult with mask: S, b: S, a: D, answer: D and b = 9
Friday, March 27, 2020 12:41 AM

 Partial Evaluation 3 Page 11

 read a
(begin, ??, 011): answer = 0
 answer = answer << 1
 answer = answer + a
 answer = answer << 1
 answer = answer << 1
 answer = answer << 1
 answer = answer + a
 return answer

Could simplify further by building "the dag for this basic block" (a standard compiler technique)
Emit code:
 return ((((a << 1) << 1) << 1) +a)

Compress Transitions
Friday, March 27, 2020 12:55 AM

 Partial Evaluation 3 Page 12

Generate(pp, vs) {
 new_block = empty block; pp_init = pp; vs_init = vs
 for (command = Lookup(pp, prog); command != null; command = Next(command) {
 Command type Perform action Append to new_block Insert into poly
 x := exp x: D residual_exp = simplify(exp,vs) "x := " << residual_exp ---
 x: S vs = vs[x↦eval(exp,vs) --- ---

 return exp --- residual_exp = simplify(exp,vs) "return " << residual_exp ---

 goto pp' --- command = Lookup(pp',prog) --- ---

 if exp exp: D residual_exp = simplify(exp,vs) "if " << residual_exp (pp', vs) (pp'', vs)
 goto pp' "goto (pp'," << vs << ")"
 else pp'' "else (pp''," << vs << ")"
 exp:S & eval(exp,vs) = T command = Lookup(pp',prog) --- ---
 exp:S & eval(exp,vs) = F command = Lookup(pp'',prog) --- ---
 }
 Insert new_block into new_prog, with tag (pp_init, vs_init)
}

Compress transitions on-the-fly
Friday, March 27, 2020 12:12 AM

 Partial Evaluation 3 Page 13

