
Problems: Partial Evaluation and Symbolic Composition

1. (a) Describe three ways in which partial evaluation can speed up the execution of a program.
That is, what are three optimizations that a partial evaluator may apply so that the
execution of ps on d is faster than the execution of p on [s, d].

(b) Explain why partial evaluation might slow a program down.

2. (a) One way of speeding up the creation of specialized programs is via the notion of a
generating extension. A program pgen is a generating extension for p if

[[pgen]]s = p′s, such that for all d, [[p′s]]d = [[p]][s, d].

That is, unlike normal partial evaluation of p, pgen already has p “built into it” so that,
when supplied with an argument s, it creates a program p′s, where p′s operates just like
the program ps produced via partial evaluation. (Note that p′s and ps are not necessarily
identical programs—just ones with identical behaviors.)

Suppose that DotProduct computes the dot product of two vectors of length N:

const int N = <some constant>;

int DotProduct(int x[], int y[]) // x and y assumed to be of length N

{
int answer = 0;

for (int i = 0; i < N; i++) {
answer = answer + x[i] * y[i];

}
return answer;

}
Write a procedure DotProduct-gen that writes a version of DotProduct, specialized to
the value of x[], to the standard output:

void DotProduct-gen(int x[])

{
// MISSING -- body of DotProduct-gen

}
(b) Compared with applying a partial evaluator to p and s, why is applying pgen to s likely

to be faster?
(c) Suppose that pe is a self-applicable partial evaluator. Let cogen

def
= [[pe]][pe,pe] = pepe.

Show that [[cogen]]p yields a program that is a generating extension for p.

1



Questions 3 and 4 explore certain aspects of symbolic composition, which is a program trans-
formation that bears some relationship to partial evaluation.

3. An m×n matrix M over the real numbers R determines a linear transformation [[M ]]: Rn →
Rm. That is, if v ∈ Rn, then [[M ]](v) is a vector u ∈ Rm. (We can compute u by doing a
matrix-vector multiplication: u = M × v.)

If M , N are matrices of dimensions m × n and n × p, respectively, and M × N is their
matrix product, then [[M ×N ]]: Rp → Rm. We have

([[M ]] ◦ [[N ]])(w)) = [[M ]]([[N ]](w)) = [[M ×N ]](w),

which means that M ×N represents the symbolic composition of M and N .
Suppose that we have a collection of vectors {vi} that we wish to transform by [[M ]]◦[[N ]]. We

can do the computation either as {M(N(vi))} (“sequential application”) or as {(M×N)(vi)}
(“symbolic composition”). What is the break-even point for symbolic composition? That is,
how many vectors do we have to have for it to be better to use the symbolic-composition
method rather than the sequential-application method? (Your answer should focus on the
number of scalar-multiplication operations performed; you do not have to count additions
exactly.)

4. A (nondeterministic) finite-state transducer is a finite-state machine that transforms input
strings from Σ∗ into output strings from ∆∗ (where, in general, Σ and ∆ are two different
alphabets). A finite-state transducer is similar to a standard finite-state automaton except
that it also has an output alphabet ∆, and the transiton relation, λ, associates each transition
with an output symbol in ∆ ∪ {ε}. Formally, a finite-state transducer has five components:

Q, a set of states
Σ, the input alphabet
∆, the output alphabet
λ ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})×Q, the transition relation
q0, the initial state

(Note that there is no set of final states.)
At run-time, whenever the machine is in state q and the current input symbol is a, the
permissible transitions—with output b—are to the states r such that 〈q, a, b, r〉 ∈ λ. For
an input string x, the machine’s output string can be any of the strings of output symbols
generated in this nondeterministic fashion.
It is convenient to think of a finite-state transducer as a directed multi-graph whose nodes
are the states, and where each tuple 〈q, a, b, r〉 ∈ λ corresponds to an edge from q to r, labeled
with the pair “(a, b)” (meaning that on a transition from q to r on which a is “consumed”
from the input string, b is generated in the output string, where a and b are possibly ε).

(a) Give the formal definition of a nondeterministic finite-state transducer M that is the
“single-error introducer” from {0, 1}∗ to {0, 1}∗. That is, M should be a transducer that
“corrupts” up to one bit of the input string. For example, if the input string is 101,
M can produce any of the following strings: 101, 100, 111, 001, 01, 11, 10, 0101, 1101,
1001, 1011, and 1010 (but not, for instance, 011, 000, 00, or 0000).

(b) Suppose that you are given two finite-state transducers: M , which transforms strings
from Σ∗ to strings from ∆∗, and N , which transforms strings from ∆∗ to strings from
Γ∗.

Give an algorithm for the composition of N and M ; that is, the output of the algorithm
is to be a single finite-state transducer P = N ◦ M that transforms strings from Σ∗

2



directly to Γ∗, such that P gives the same transduction that we would have if M were to
be applied first and then N applied to M ’s output. (Of course, since P is a single finite-
state transducer, there is no opportunity for it to produce any kind of “intermediate
string.”)

Hint/warning: make sure that you specify how the algorithm handles transitions that
involve ε—i.e., transitions of the form 〈q, ε, b, r〉, 〈q, a, ε, r〉, and 〈q, ε, ε, r〉.

(c) Give the composed transducer that your construction from Part (b) creates when the
machine from Part (a) is composed with itself.

3


