Problems: Partial Evaluation and Symbolic Composition

- 1. (a) Describe three ways in which partial evaluation can speed up the execution of a program. That is, what are three optimizations that a partial evaluator may apply so that the execution of p_s on d is faster than the execution of p on [s, d].
 - (b) Explain why partial evaluation might slow a program down.
- 2. (a) One way of speeding up the creation of specialized programs is via the notion of a generating extension. A program pgen is a generating extension for p if

```
[pgen]s = p'_s, such that for all d, [p'_s]d = [p][s, d].
```

That is, unlike normal partial evaluation of p, pgen already has p "built into it" so that, when supplied with an argument s, it creates a program p'_s , where p'_s operates just like the program p_s produced via partial evaluation. (Note that p'_s and p_s are not necessarily identical programs—just ones with identical behaviors.)

Suppose that DotProduct computes the dot product of two vectors of length N:

```
int DotProduct(int x[], int y[]) // x and y assumed to be of length N
{
  int answer = 0;
```

```
for (int i = 0; i < N; i++) {
   answer = answer + x[i] * y[i];
}
return answer;</pre>
```

const int N = <some constant>;

Write a procedure DotProduct-gen that writes a version of DotProduct, specialized to the value of x[], to the standard output:

```
void DotProduct-gen(int x[])
{
   // MISSING -- body of DotProduct-gen
}
```

- (b) Compared with applying a partial evaluator to p and s, why is applying pgen to s likely to be faster?
- (c) Suppose that pe is a self-applicable partial evaluator. Let $cogen \stackrel{\text{def}}{=} \llbracket pe \rrbracket \llbracket pe, pe \rrbracket = pe_{pe}$. Show that $\llbracket cogen \rrbracket p$ yields a program that is a generating extension for p.

Questions 3 and 4 explore certain aspects of *symbolic composition*, which is a program transformation that bears some relationship to partial evaluation.

3. An $m \times n$ matrix M over the real numbers \mathcal{R} determines a linear transformation $[\![M]\!]: \mathcal{R}^n \to \mathcal{R}^m$. That is, if $v \in \mathcal{R}^n$, then $[\![M]\!](v)$ is a vector $u \in \mathcal{R}^m$. (We can compute u by doing a matrix-vector multiplication: $u = M \times v$.)

If M, N are matrices of dimensions $m \times n$ and $n \times p$, respectively, and $M \times N$ is their matrix product, then $[M \times N]: \mathcal{R}^p \to \mathcal{R}^m$. We have

$$(\llbracket M \rrbracket \, \circ \, \llbracket N \rrbracket)(w)) = \llbracket M \rrbracket (\llbracket N \rrbracket(w)) = \llbracket M \times N \rrbracket(w),$$

which means that $M \times N$ represents the symbolic composition of M and N.

Suppose that we have a collection of vectors $\{v_i\}$ that we wish to transform by $[\![M]\!] \circ [\![N]\!]$. We can do the computation either as $\{M(N(v_i))\}$ ("sequential application") or as $\{(M \times N)(v_i)\}$ ("symbolic composition"). What is the break-even point for symbolic composition? That is, how many vectors do we have to have for it to be better to use the symbolic-composition method rather than the sequential-application method? (Your answer should focus on the number of scalar-multiplication operations performed; you do not have to count additions exactly.)

4. A (nondeterministic) finite-state transducer is a finite-state machine that transforms input strings from Σ^* into output strings from Δ^* (where, in general, Σ and Δ are two different alphabets). A finite-state transducer is similar to a standard finite-state automaton except that it also has an output alphabet Δ , and the transiton relation, λ , associates each transition with an output symbol in $\Delta \cup \{\epsilon\}$. Formally, a finite-state transducer has five components:

Q, a set of states

 Σ , the input alphabet

 Δ , the output alphabet

 $\lambda \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times Q$, the transition relation

 q_0 , the initial state

(Note that there is no set of final states.)

At run-time, whenever the machine is in state q and the current input symbol is a, the permissible transitions—with output b—are to the states r such that $\langle q, a, b, r \rangle \in \lambda$. For an input string x, the machine's output string can be any of the strings of output symbols generated in this nondeterministic fashion.

It is convenient to think of a finite-state transducer as a directed multi-graph whose nodes are the states, and where each tuple $\langle q, a, b, r \rangle \in \lambda$ corresponds to an edge from q to r, labeled with the pair "(a,b)" (meaning that on a transition from q to r on which a is "consumed" from the input string, b is generated in the output string, where a and b are possibly ϵ).

- (a) Give the formal definition of a nondeterministic finite-state transducer M that is the "single-error introducer" from $\{0,1\}^*$ to $\{0,1\}^*$. That is, M should be a transducer that "corrupts" up to one bit of the input string. For example, if the input string is 101, M can produce any of the following strings: 101, 100, 111, 001, 01, 11, 10, 0101, 1101, 1001, 1011, and 1010 (but not, for instance, 011, 000, 00, or 0000).
- (b) Suppose that you are given two finite-state transducers: M, which transforms strings from Σ^* to strings from Δ^* , and N, which transforms strings from Δ^* to strings from Γ^*

Give an algorithm for the composition of N and M; that is, the output of the algorithm is to be a single finite-state transducer $P = N \circ M$ that transforms strings from Σ^*

directly to Γ^* , such that P gives the same transduction that we would have if M were to be applied first and then N applied to M's output. (Of course, since P is a single finite-state transducer, there is no opportunity for it to produce any kind of "intermediate string.")

Hint/warning: make sure that you specify how the algorithm handles transitions that involve ϵ —i.e., transitions of the form $\langle q, \epsilon, b, r \rangle$, $\langle q, a, \epsilon, r \rangle$, and $\langle q, \epsilon, \epsilon, r \rangle$.

(c) Give the composed transducer that your construction from Part (b) creates when the machine from Part (a) is composed with itself.