Problems: Partial Evaluation and Symbolic Composition

(a)

Describe three ways in which partial evaluation can speed up the execution of a program.
That is, what are three optimizations that a partial evaluator may apply so that the
execution of ps on d is faster than the execution of p on [s, d].

Explain why partial evaluation might slow a program down.

One way of speeding up the creation of specialized programs is via the notion of a
generating extension. A program pgen is a generating extension for p if

[pgen]s = pl,, such that for all d, [pl]d = [p][s, d].

That is, unlike normal partial evaluation of p, pgen already has p “built into it” so that,
when supplied with an argument s, it creates a program p/,, where p, operates just like
the program ps produced via partial evaluation. (Note that p/, and ps are not necessarily
identical programs—just ones with identical behaviors.)

Suppose that DotProduct computes the dot product of two vectors of length N:

const int N = <some constant>;

int DotProduct(int x[], int y[l) // x and y assumed to be of length N

{

int answer = 0;

for (int i = 0; i < N; i++) {
answer = answer + x[i] * y[i];

}

return answer;

Write a procedure DotProduct-gen that writes a version of DotProduct, specialized to
the value of x[], to the standard output:

void DotProduct-gen(int x[])

{

// MISSING -- body of DotProduct-gen
}
Compared with applying a partial evaluator to p and s, why is applying pgen to s likely
to be faster?
Suppose that pe is a self-applicable partial evaluator. Let cogen = [pe][pe, pe] = Pepe-
Show that [cogen]p yields a program that is a generating extension for p.



Questions 3 and 4 explore certain aspects of symbolic composition, which is a program trans-
formation that bears some relationship to partial evaluation.

. An m x n matrix M over the real numbers R determines a linear transformation [M]: R"™ —
R™. That is, if v € R", then [M](v) is a vector u € R™. (We can compute u by doing a
matrix-vector multiplication: v = M X v.)

If M, N are matrices of dimensions m X n and n X p, respectively, and M x N is their
matrix product, then [M x N]: RP — R™. We have

([M] o [N])(w)) = [M]([N](w)) = [M x N](w),

which means that M x N represents the symbolic composition of M and N.

Suppose that we have a collection of vectors {v; } that we wish to transform by [M]o[N]. We
can do the computation either as { M (N (v;))} (“sequential application”) or as {(M x N)(v;)}
(“symbolic composition”). What is the break-even point for symbolic composition? That is,
how many vectors do we have to have for it to be better to use the symbolic-composition
method rather than the sequential-application method? (Your answer should focus on the
number of scalar-multiplication operations performed; you do not have to count additions
exactly.)

. A (nondeterministic) finite-state transducer is a finite-state machine that transforms input
strings from ¥* into output strings from A* (where, in general, ¥ and A are two different
alphabets). A finite-state transducer is similar to a standard finite-state automaton except
that it also has an output alphabet A, and the transiton relation, A, associates each transition
with an output symbol in A U {e}. Formally, a finite-state transducer has five components:

Q), a set of states

Y., the input alphabet

A, the output alphabet

AC Q% (EU{e}) x (AU{e}) x Q, the transition relation

qo, the initial state
(Note that there is no set of final states.)
At run-time, whenever the machine is in state ¢ and the current input symbol is a, the
permissible transitions—with output b—are to the states r such that (g,a,b,7) € A. For
an input string z, the machine’s output string can be any of the strings of output symbols
generated in this nondeterministic fashion.
It is convenient to think of a finite-state transducer as a directed multi-graph whose nodes
are the states, and where each tuple (q,a,b,r) € A corresponds to an edge from ¢ to r, labeled
with the pair “(a,b)” (meaning that on a transition from ¢ to r on which a is “consumed”
from the input string, b is generated in the output string, where a and b are possibly ¢).

(a) Give the formal definition of a nondeterministic finite-state transducer M that is the
“single-error introducer” from {0, 1}* to {0,1}*. That is, M should be a transducer that
“corrupts” up to ome bit of the input string. For example, if the input string is 101,
M can produce any of the following strings: 101, 100, 111, 001, 01, 11, 10, 0101, 1101,
1001, 1011, and 1010 (but not, for instance, 011, 000, 00, or 0000).

(b) Suppose that you are given two finite-state transducers: M, which transforms strings
from X* to strings from A*, and N, which transforms strings from A* to strings from
.

Give an algorithm for the composition of N and M; that is, the output of the algorithm
is to be a single finite-state transducer P = N o M that transforms strings from X*



directly to I'*, such that P gives the same transduction that we would have if M were to
be applied first and then N applied to M’s output. (Of course, since P is a single finite-
state transducer, there is no opportunity for it to produce any kind of “intermediate
string.”)

Hint/warning: make sure that you specify how the algorithm handles transitions that
involve e—i.e., transitions of the form (q,€,b,7), (q,a,¢,7), and (g, €, ¢€,r).
Give the composed transducer that your construction from Part (b) creates when the
machine from Part (a) is composed with itself.



