
Problems: Regular Trees

1. A non-deterministic, bottom-up, finite-state tree automaton (which will be abbreviated as
FSTA) is a formalism for recognizing (or “accepting”) members of a language of trees. An
FSTA A = (Q,QF ,Σ, δ) has a set of states Q, a set of final states QF ⊆ Q, a ranked alphabet
Σ, and a transition relation δ.
A ranked alphabet means that each symbol has an arity, which indicates how many children
it has. We will denote, e.g., a binary (arity-2) symbol foo by foo2. Thus, if T1 and T2 are two
trees, foo2(T1, T2) is another tree; it has the symbol foo2 at its root.
The transition relation δ consists of rules of the form

q(fn)← fn(q1, . . . , qn),

where q, q1, . . . , qn ∈ Q and fn is an n-ary symbol. We allow A to be non-deterministic; that
is, one can have multiple result states (i.e., left-hand-side states) for a given combination of
symbol and child states:

q(fn) ← fn(q1, . . . , qn)
q′(fn) ← fn(q1, . . . , qn)

An FSTA A accepts a language of trees L(A). For a given tree T , T is accepted or rejected
depending on the outcome of the possible runs of A over T . A run labels each leaf of T with a
state, and then moves upward to successively label each node of T with a state, using the rules
of δ. That is, if we have the rule

q(fn)← fn(q1, . . . , qn)

in δ and there is a subtree S whose root symbol is fn and whose n children are labeled with
q1, . . . , qn, respectively, then the root of S can be labeled with q.
An accepting run is one that labels the root of the tree with a state in Qf . Because we allow
A to be non-deterministic, only one of the possible runs of A over T needs to be an accepting
run for T to be accepted (i.e., for T ∈ L(A) to hold).
An FSTA has no initial state, but the rules for 0-ary symbols cause certain states to act as
initial states at a tree’s various leaves. For instance, suppose that we have the rule

q17(a0)← a0()

Then if T has any instance of a0 as a leaf, that leaf can be labeled with q17, and serves as one
of the “initial” states for runs of A over T . Note that we are permitted to have multiple rules
for a 0-ary symbol:

q15(a0) ← a0()
q17(a0) ← a0()

1

Example. Consider the FSTA Aexp defined as follows:

Aexp = ({qint, qfloat, qerror}, {qint, qfloat}, {plus2, a0,m0, x0},

qint(a
0) ← a0()

qint(m
0) ← m0()

qfloat(m
0) ← m0()

qfloat(x
0) ← x0()

qint(plus2) ← plus2(qint, qint)
qfloat(plus2) ← plus2(qfloat, qfloat)
qerror(plus2) ← plus2(qint, qfloat)

qerror(plus2) ← plus2(qfloat, qint)
qerror(plus2) ← plus2(qerror, qint)
qerror(plus2) ← plus2(qerror, qfloat)
qerror(plus2) ← plus2(qint, qerror)
qerror(plus2) ← plus2(qfloat, qerror)
qerror(plus2) ← plus2(qerror, qerror)


).

Let T1 and T2 be two trees defined as follows:

T1 = plus2(plus2(m0(), a0()), a0())
T2 = plus2(plus2(a0(), b0()), x0())

Note that there is both an accepting run for T1, namely,

plus2(plus2(m0(), a0()), a0())
⇒ plus2(plus2(qint(m

0), qint(a
0)), qint(a

0))
⇒ plus2(qint(plus2(m0(), a0())), qint(a

0))
⇒ qint(plus2(plus2(m0(), a0()), a0()))

and a non-accepting run for T1,

plus2(plus2(m0(), a0()), a0())
⇒ plus2(plus2(qfloat(m

0), qint(a
0)), qint(a

0))
⇒ plus2(qerror(plus2(m0(), a0())), qint(a

0))
⇒ qerror(plus2(plus2(m0(), a0()), a0()))

In contrast, there is only a non-accepting run for T2, namely,

plus2(plus2(a0(), b0()), x0())
⇒ plus2(plus2(qint(a

0), qint(b
0)), qfloat(x

0))
⇒ plus2(qint(plus2(a0(), b0())), qfloat(x

0))
⇒ qerror(plus2(plus2(a0(), b0()), x0))

Consequently, T1 ∈ L(Aexp) but T2 6∈ L(Aexp). 2

Abbreviations:
• You may drop superscripts on alphabet symbols.
• Although we wrote out all of the possible transitions involving qerror, it would have been

convenient to treat qerror as a “stuck” state—in which case, in the set of rules for Aexp we
would have omitted the last two rules in the first column and all the rules in the second
column. Such rules would be implicit: an occurrence of qerror in any child of an arity-k
symbol results in the symbol being labeled with qerror.

Part (a)
Explain how ordinary non-deterministic finite-state (string) automata are a degenerate case of
FSTAs.

2

We now describe ideas needed for Parts (b), (c), and (d).
FSTAs are useful in dataflow-analysis and model-checking problems because they can be used
to describe the matched call-and-return structure of paths in multi-procedure programs. Parts
(b) and (c) concern how to define an FSTA to specify a tree-language that captures the matched
paths specific to a particular program, namely, the one shown below. (The “if(*)” denotes a
non-deterministic branch.)

void foo() {
n1: x1 = 0;
n2: x2 = 1;
n3: bar();
n4: ;
}

void bar() {
n5: if (*) {

x1 = x1 + x2;
n6: bar();
n7: x2 = x2+1;
}
n8: ;
}

n5

n7

n8

x1 = x1+x2
x1 = 0

n1

n2

n6

bar()

procedure barprocedure foo

n3

bar()

n4

x2 = 1

x2 = x2+1

The FSTA you will define should accept a language, each tree of which represents a properly
matched path from n1 to n4. For each properly matched path ρ from n1 to n4, the FSTA should
accept a tree that represents ρ. The FSTA should reject trees that either (i) do not represent a
path, or (ii) represent a path that violates matched call-and-return structure in the graph given
above.
The alphabet Σ consists of three kinds of symbols:
(a) Nine 0-ary symbols for the nine edges in the graph given above:

{e0
n1→n2

, e0
n2→n3

, e0
n3→n5

, e0
n5→n8

, e0
n5→n6

, e0
n6→n5

, e0
n7→n8

, e0
n8→n7

, e0
n8→n4

}.

(b) Sixty-four binary symbols for possible start/end positions in a sub-path:

{p2
ni→nj

| 1 ≤ i, j ≤ 8}.

(c) Sixty-four ternary symbols for subtrees that represent possible matched call-and-return sub-
paths: {c3

ni→nj
| 1 ≤ i, j ≤ 8}. (The symbols are ternary so that the three children can

represent a call-edge from caller-to-callee, an edge or a matched path from the entry node
to the exit node of the callee, and a return-edge from callee-to-caller.)

Part (b)
The idea is that the frontier of each tree (i.e., its sequence of leaves in left-to-right order)
represents a candidate path. Draw the three trees that represent the following paths:
(a) [n1→ n2, n2→ n3, n3→ n5, n5→ n8, n8→ n4]

3

(b) [n1 → n2, n2 → n3, n3 → n5, n5 → n6, n6 → n5, n5 → n6, n6 → n5, n5 → n8, n8 →
n7, n7→ n8, n8→ n7, n7→ n8, n8→ n4]

(c) [n1→ n2, n2→ n3, n3→ n5, n5→ n8, n8→ n7]
(Note: the first two trees should be accepted by the FSTA that you will define in Part (c); the
third tree should be rejected by the FSTA from Part (c).)

Part (c)
The alphabet Σ of the FSTA has been defined above. The set of states Q of the FSTA consists
of a stuck state, qerror, together with 64 states that are indexed by a pair of node names: Q =
{qerror} ∪ {qni→nj | 1 ≤ i, j ≤ 8}. The set of final states is defined as follows: QF = {qn1→n4}.
Using Q, QF , and Σ as defined above, sketch the definition of an FSTA that accepts the language
of trees that represent all properly matched paths from n1 to n4. The intention is that state
qni→nj only arises in a run when there exists a matched path from ni to nj .
Note: There are 65 different states and 137 alphabet symbols. We do not expect you to write
out the full transition relation; however, it should be clear from your answer what the essential
features are and what the intended pattern is.
Explain why your FSTA accepts the first two trees from your answer to Part (b), and why it
rejects the third tree from Part (b).

Part (d)
Given an FSTA A = (Q,Σ, δ, q0, QF), give an algorithm for determining whether L(A) = ∅.

4

2. A regular tree grammar is a formalism for specifying languages of trees. For instance, the
following grammar G

exp ::= PlusExp(exp, exp)
| TimesExp(exp, exp)
| IntExp(natNum)
| Variable(ident)

where natNum = {0, 1, 2, . . .} and ident is some finite or infinite set of allowable identifiers (e.g.,
{A,B, . . . ,X, Y, Z}), defines a language L(G) of trees (or terms). L(G) includes the trees

Variable(A),Variable(B), . . . ,Variable(Z),
IntExp(0), IntExp(1), . . . ,
PlusExp(Variable(A), IntExp(0)),PlusExp(Variable(B), IntExp(0)), . . . ,
TimesExp(Variable(A), IntExp(0)),TimesExp(Variable(B), IntExp(0)), . . . ,
PlusExp(IntExp(0),Variable(A)),PlusExp(IntExp(0),Variable(B)), . . . ,
TimesExp(IntExp(0),Variable(A)),TimesExp(IntExp(0),Variable(B)), . . . ,

Let us now introduce some terminology: exp, natNum, and ident are called nonterminals (or
types); PlusExp, TimesExp, IntExp, and Variable are called operators. It is useful to con-
sider 0, 1, 2, . . . as nullary operators of type natNum (in which case we might write them as
0(), 1(), 2(), . . .) and A,B, . . . ,X, Y, Z as nullary operators of type ident (in which case we might
write them as A(), B(), . . . , X(), Y(), Z()). Hence, with this notation one of the trees in L(G)
is PlusExp(Variable(A()), IntExp(0())).
Note that each operator has a fixed arity that specifies the number of children that it has. For
instance, the arities of some of the operators of G are as follows:

Operator Arity

PlusExp 2
TimesExp 2
IntExp 1
Variable 1
0 0
1 0
2 0
...

...
A 0
B 0
...

...
Z 0

Let the children of an arity-k operator be numbered 1, . . . , k.
A path in a tree can be described by a string over an alphabet of (compound) symbols of the
form

(nonterminal :: Operator.childNum)

(By convention, if Operator is a nullary operator, childNum is 0.) For instance, the set of
root-to-leaf paths in the tree PlusExp(Variable(A()), IntExp(0())) is{

(exp :: PlusExp.1)(exp :: Variable.1)(ident :: A.0),
(exp :: PlusExp.2)(exp :: IntExp.1)(natNum :: 0.0)

}
.

5

Part (a)
Describe how to create an ordinary finite-state automaton that accepts the language of root-to-
leaf paths in given a regular tree grammar H. That is, given a regular tree grammar H, your
construction should produce the automaton AH that accepts

{p | p is a root-to-leaf path in some tree T ∈ L(H)}.

Part (b)
Give the automaton that would be produced by your construction for the regular tree grammar
G

exp ::= PlusExp(exp, exp)
| TimesExp(exp, exp)
| IntExp(natNum)
| Variable(ident)

Part (c)
Regular tree grammars are related to context-free grammars in the following way: Suppose
that you normalize a context-free grammar F by introducing additional nonterminals so that
terminal symbols only appear in leaf productions of the form nonterminal → terminal; then,
by introducing an operator symbol for each production (and treating each terminal symbol as
a nullary operator), one has a regular tree grammar whose language is the set of parse trees for
the context-free grammar F .

A context-free grammar can have two kinds of useless nonterminals:

Useless 1 : nonterminal n is useless if there is no derivation root→∗ α n β
Useless 2 : nonterminal n is useless if there is no finite parse tree derivable from n

Describe two algorithms, both working on finite automata of the kind described earlier for the
language of root-to-leaf paths of a regular tree grammar:

Part (c.i) The algorithm for this part returns the set of nonterminals that are useless because
of reason “Useless 1”.

Part (c.ii) The algorithm for this part returns the set of nonterminals that are useless because
of reason “Useless 2”. (For this part, you may assume that all “Useless 1” nonterminals were
removed from the context-free grammar before the automaton was constructed.)

Part (d)
Give an example of a context-free grammar that has both kinds of useless nonterminals, and
illustrate the two algorithms on it.

6

