
Partial Evaluation, Part 1

CS701

Thomas Reps

Abstract

This lecture concerns partial evaluation. Comparisons are made between partial evaluation
and compiling. Two principles are given that help determine when to use partial evaluation.
We show how a partial evaluator can be used to translate a program from one language L2 into
another language L1 even if the partial evaluator’s capabilities are limited so that its input is
an L1 program and its output is an L1 program.

Contents

1 Introduction .. 2
1.1 Example: Ray Tracing .. 2

2 Relationship between Partial Evaluation and Compilation... 3
2.1 Properties of a Partial Evaluator .. 3
2.2 The Futamura Projections .. 3

3 Compiling (Translating) via Partial Evaluation .. 4

4 Applications of Partial Evaluation .. 4
4.1 Examples... 5

4.1.1 String Matching... 5
4.1.2 Printf ... 5
4.1.3 Cryptography .. 6
4.1.4 Cutting Through Abstraction Layers to Reduce Software Bloat....................... 6

4.2 A Drawback .. 7

5 A Simple Flow-Chart Language .. 7

1

Note: quite a lot (but not all) of the material presented here is taken from the following book
[?].

1 Introduction

When using a normal evaluator, one must supply all of the parameters. Otherwise, the output is
undefined.

program: P (x, y, z) −→
data: 〈x, y〉 −→

Evaluator
(Interpreter)

−→ ⊥

This outcome may be what we expected, but it can be improved. Using a partial evaluator, we
can obtain a modified version of the input program that is optimized for the supplied parameters.
Of course we expect the modified version of the input program to behave that same when given
the rest of its input as the original version of the program when it is given the same input.

program: P (x, y, z) −→
data: 〈x, y〉 −→

Partial
Evaluation

−→ P〈x,y〉(z) = P (x, y, z)

The input program is called the subject program1 and the output program in called the residual
program.

1.1 Example: Ray Tracing

In ray tracing, there is a tree T that describes the object(s) in the scene. Given this tree, ray
tracing code will determine how each ray contributes to the final image.

Algorithm 1: Ray Tracing Code

(1) foreach ray −→r
(2) pixel← Trace(T,−→r)
(3) display pixel

In other words, for many different rays, Trace is called with the same value of tree T . Using
partial evaluation, we can create a version of Trace that is optimized for T .

Trace(T,−→r) −→
〈T 〉 −→

Partial
Evaluation

−→ Trace〈T 〉(
−→r)

The residual program Trace〈T 〉(
−→r) would be used as follows:

Algorithm 2: Partially Evaluated Ray Tracing Code

(1) foreach ray −→r
(2) pixel← Trace〈T 〉(

−→r)
(3) display pixel

Other examples include
• Encryption: For many different blocks, Encrypt(key, block) is called with the same value

of key.
• Output: For many strings s, Write(fd, s) is called with the same value of fd.
• String matching: For many substrings s, Match(pat,s) is called with the same value of pat.

1In logic and philosophy, this program would be called the object program. We use “subject program” because in
the field of compilers the term “object program” is already used for something else.

2

2 Relationship between Partial Evaluation and Compilation

The notation [[p]] denotes the meaning of p, as distinct from uses of p, which indicate that p is being
treated as a data object (i.e., the text, abstract syntax tree, or control-flow graph for p).

For a program p and input i, let [[p]][i] denote the result of running p on i.

2.1 Properties of a Partial Evaluator

Let p be a program that takes a pair of inputs [s, d]. A partial evaluator pe has the following
property: for all programs p and inputs s, it produces

[[pe]][p, s] = ps, such that (1)

for all d, [[ps]][d] = [[p]][s, d]. (2)

The input variables s and d typically stand for static and dynamic (or supplied and delayed).

2.2 The Futamura Projections

Compilation/Translation An interpreter int is an example of a program that takes a pair of
inputs (in this case, a program p and input-datum i) and has the same behavior as that program
on its input:

[[int]][p, i] = [[p]][i]. (3)

Suppose that we want to run the same interpreted program p on many (dynamic) inputs. This
desire leads to the idea of applying a partial evaluator to an interpreter.

[[pe]][int, p] = intp, such that (4)

for all i, [[intp]][i] = [[int]][p, i] (from Eqn. (2))

= [[p]][i] (from Eqn. (3))

Notice that intp and p take the same input and produce the same output. The explanation is that
intp is a “compiled” version of p.

Compiler/Translator Suppose that we want to partially evaluate the same interpreter on many
(dynamic) programs. This desire leads to the idea of applying a partial evaluator to a second partial
evaluator whose input is an interpreter.

[[pe]][pe, int] = peint, such that (5)

for all p, [[peint]][p] = [[pe]][int, p] (from Eqn. (2))

= intp (from Eqn. (4))

Note that peint takes in p and returns intp, the compiled version of p. Therefore, peint is a compiler.

Compiler-Compilation/Translator-Generation Suppose that we want to partially evaluate
the same partial evaluator on many (dynamic) interpreters. This desire leads to the idea of applying
a partial evaluator to second partial evaluator that expects a partial evaluator as input.

[[pe]][pe, pe] = pepe, such that (6)

for all int, [[pepe]][int] = [[pe]][pe, int] (from Eqn. (2))

= peint (from Eqn. (5))

Note that pepe takes in an interpreter and returns a (compiled) compiler. Therefore, pepe is a com-
piler generator—also known as a “compiler-compiler”—whose input specification of the compiler
to be generated is an interpreter. What we mean by this last remark should become clearer in §3.

3

Futamura Projections Eqns. (4), (5), and (6) are known as the first, second, and third Fu-
tamura projections, respectively. Note the pattern of right-shifting in Eqn. (3) and the Futamura
projections:

[[int]][p, i]
[[pe]] [int,p]
[[pe]] [pe, int]
[[pe]] [pe, pe]

3 Compiling (Translating) via Partial Evaluation

We now look at various possibilities for the programming languages that could be involved. We can
write down more detailed versions of the Futamura projections by using subscripts and superscripts
on pe, int, and p to indicate various languages with which these programs are associated.

Notation:
1. [[pL]]L means that the program p is an L-program that is interpreted as an L-program. (The

outer L is typically redundant because it would not make sense to perform something like
[[pL1]]L2 , and thus the outer L can be omitted.)

2. intL2
L1

means that the interpreter int is an L1-program that interprets L2-programs. Thus, the
fully annotated version of Eqn. (3) is

[[intL2
L1

]]L1 [pL2 , i] = [[pL2]]L2 [i]. (7)

3. peL1
L3

means that the partial evaluator pe is an L3-program that partially evaluates an L1-
program (to produce another L1-program).

Notice that interpreters and partial evaluators are special because they must indicate which lan-
guage they interpret and partially evaluate respectively.

To be more general, we could have introduced notation like peL1→L2
L3

to mean that pe is an
L3-program that partially evaluates L1-programs to produce L2-programs. However, that would
mean that pe has language translation already “built into it,” and as we now show, translation
between languages can be achieved without the partial evaluator having the capability to perform
language translation per se. The only feature that we rely on is that pe and int can be written in
one language L, but operate on programs written in a different language L′.

Using the above-defined notation, we can rewrite the first Futamura projection (Eqn. (4)) as
follows:

[[peL1
L3

]][intL2
L1
, pL2] = (intp)L1 , such that

for all d, [[(intp)L1]][d] = [[pL2]][d].

For all inputs, the programs intp and p produce the same output. However, (intp)L1 is written in
L1, whereas pL2 is written in L2. Therefore, (intp)L1 is a compiled—or at least translated—version
of pL2 .

Note that what captured our knowledge of how languages L1 and L2 are related is the interpreter
intL2

L1
. In other words,

If we are given a partial evaluator that works on L1 programs, to be able to translate
an arbitrary L2 program into L1, all we need do is specify in L1 how to interpret L2

programs.

4 Applications of Partial Evaluation

There are two guiding principles to follow when considering where to use partial evaluation. Partial
evaluation is best used where (1) there are multiple parameters and (2) the parameters have different
rates of variation.

4

4.1 Examples

4.1.1 String Matching

Given a two string s and p, we want to know if p is a substring of s. The string p is called the
pattern and we say there is a match is p is a substring of s. We express this problem as Match(p, s).
To use partial evaluation, we need to determine which argument changes more frequently. Initially,
it seems that s changes more slowly than p.

Naive String Matching The naive algorithm just tries to match p to every possible location of
s.

s =s1s2s3 · · · smsm+1sm+2 · · · sn
p =p1p2p3 · · · pm (first try)

p1p2p3 · · · pm (second try)

p1p2p3 · · · pm (third try)

...

Notice that p is just compared to the fist |p| spots in s, and then, if there is no match, p is shifted
and compared to the second through |p|+ 1 spots. This continues until a match is found or all the
(valid) locations of s have been tested. The code for the naive string-matching algorithm is:

Algorithm 3: Naive String Matching
(1) for i = 1 to |s| − |p|+ 1
(2) if Match(p, si · · · si+|p|−1)
(3) return true
(4) return false

The cost of this approach is O(n·m). Notice that p is fixed throughout the loop, and hence looks
like a good candidate for partial evaluation. The second argument of Match is clearly changing.

Knuth-Morris-Pratt (KMP) String-Matching Algorithm KMP takes advantage of redun-
dancy by using memory to make larger shifts (rather than just shifts of size one as in the naive
algorithm).

1234567

s =abbabab

p =abbb (first try)

Observe that after this comparison, we know that a single shift will also fail (remembering that the
second character was a b while the first character in p is an a. Thus, the second test of KMP will
begin at s4.

The cost of the KMP algorithm is O(n + m). This same effect can be obtained via partial
evaluation.2

4.1.2 Printf

The printf function takes a format string s and a variable number of arguments va and prints the
format string in the context of the variable arguments. The format string can be thought of as a
program. If s = ab%d, then the corresponding program for printf(s, va) would be

2Consel and Danvy

5

Algorithm 4: Program of a Format String
(1) print a
(2) print b
(3) printSignedDecimalInteger va[0].

Now in C/C++, the format string must be constant or static. Even in other languages though,
programmers are most likely to have a static format string and a dynamic list of variable arguments.
Using partial evaluation, we can convert printf(s, va) into printfs(va). It is also interesting to point
out that printfs will also be partially evaluated to take an exact number of arguments instead of a
variable number.

4.1.3 Cryptography

While the creation of a cryptographic scheme maybe quite complex, using a cryptographic scheme
is quite easy. There are two functions, Encrypt(key, plainText) and Decrypt(key, crypterText)
which work as expected. Normally though, the entire text is not encrypted or decrypted at once.
Instead, the text in encrypted and decrypted a block at a time.

Algorithm 5: Encryption Code
(1) foreach block ∈ plainText
(2) add(Encrypt(key, block), cypterText)

Algorithm 6: Decryption Code
(1) foreach block ∈ cypterText
(2) add(Encrypt(key, block), plainText)

If the text is divided into many blocks, then this cryptographic scheme would benefit from
partially evaluated functions of the form Encryptkey(block) and Decryptkey(block). It does not
matter if the encryption and decryption keys are the same.

4.1.4 Cutting Through Abstraction Layers to Reduce Software Bloat

Abstraction is typically a good practice to follow. The benefit is that it reduces complexity because
you can think of each layer of a system as an abstract machine whose “instruction set” is the
layer’s API. However, a system constructed with multiple layers of abstraction can be very slow
because each operation first has to work its way down the chain of abstract machines—with each
higher-level abstract machine calling down into one or more lower-level abstract machines.

For example, consider the Open Systems Interconnection (OSI) protocols used in networking.
There are seven layers of abstraction in this model. For one application to communicate a message
to another application requires the message to pass through 14 layers: seven on the way out for
the sending application to send the message, and seven on the way in for the receiving application
to receive the message. While the OSI model can handle many different communication scenar-
ios, a single application that communicates with other instances of itself across the network will
probably only use only one or two of these scenarios. Consequently, it might be possible to make a
system more efficient if the implementation of the OSI protocols were partially evaluated with the
application as static input. The dynamic input would be the messages sent or received.

6

4.2 A Drawback

Partial evaluation can decrease the time need to execute a function, but it does not always produce
universally better code. Often the savings in time is paid for by an increase in program size.
Consider the following piece of code:

Algorithm 7: Draw Back Example
(1) for i = 1 to 9
(2) for j = 1 to 9
(3) print f(i, j)

The function f has multiple parameters (two to be exact) and its first parameter i varies much
slower than its second parameter j. Because of this property, it would seem like this piece of code
is a good candidate for partially evaluation. The code that is produced by partial evaluation can
be seen in algorithm Alg. 8.

Algorithm 8: Partially Evaluated Drawback Example
(1) for j = 1 to 9
(2) print f1(j)
(3) for j = 1 to 9
(4) print f2(j)
(5) for j = 1 to 9
(6) print f3(j)
(7) for j = 1 to 9
(8) print f4(j)
(9) for j = 1 to 9
(10) print f5(j)
(11) for j = 1 to 9
(12) print f6(j)
(13) for j = 1 to 9
(14) print f7(j)
(15) for j = 1 to 9
(16) print f8(j)
(17) for j = 1 to 9
(18) print f9(j)

Not only did the body of the original piece of code get much longer, but there are now nine
specialized version of the function f. As one might guess, the increased performance is not always
justified by the increase in code size.

Moreover, because of hardware caches, there can be a terrible effect on performance from having
a larger piece of code, and thus the partially evaluated code can run slower than the original code.

5 A Simple Flow-Chart Language

We will start by learning about intraprocedural partial evaluation—i.e., partial evaluation of single-
procedure program. After that, we will look at interprocedural partial evaluation—i.e., partial
evaluation across procedure boundaries. For intraprocedural partial evaluation, we will work with
an imperative programming language—in particular, a simple while-loop language that works on

7

integers and lists. For interprocedural partial evaluation, we will work with a simple first-order
functional programming language.

Meta-language Subject language

Pidgin-Algol
tables of cases
informal graph diagrams

flow-chart language L, with L programs represented
as S-expressions and expressions represented
as abstract syntax trees

In language L we have the following constructs:

assignment
if cond then goto label else label’
goto label
read of initial data
print
Syntactic sugar (as needed):

begin ... end
while (...) do ... od
repeat ... until (...)

Data type Operators

Booleans &, |, ∼
integers plus, <, >, =, . . .
S-expressions hd, tl, cons, nil, isNil

For convenience, we will use the following algebraic datatype (a.k.a. variant record) for repre-
senting expressions of L:

exp ::= ConstExpr(constant)
| IdentExpr(identifier)
| Compound(operator exp exp)

constant ::= true, false, . . . ,−2,−1, 0, 1, 2, . . .
identifier ::= [a-zA-Z]+
operator ::= + | − | * | cons | . . .

The partial evaluator uses the following subroutine for simplifying L expressions:

simplify(e, store) = // store is a map from names to values
cases e of

ConstExpr(*): e, // nothing to simplify
IdentExpr(i): definedIn(i, store) ? ConstExpr(lookup(i, store)) : e,
Compound(op, e1, e2):

let v1 = simplify(e1, store) and v2 = simplify(e2, store) in
cases v1 of

ConstExpr(c1):
cases v2 of

ConstExpr(c2): ConstExpr(funcOf(op)(c1,c2)), // evaluate
default: Compound(op, v1, v2) // residuate simplified expression

default: Compound(op, v1, v2) // residuate simplified expression

8

