CS 760: Machine Learning

• Professor: David Page
 email: page@biostat.wisc.edu, put “760” in subject for any email
 office hours: 11am-Noon TR in 1157 WID, starting tomorrow
 other times by appointment in 3174 WID

• TAs:
 – Manish Bansal, mbansal2@wisc.edu
 – Kirthanaa Raghuraman, kraghuraman@wisc.edu
Monday, Wednesday and Friday?

- We’ll have 30 lectures in all, just like a standard TR class
- Most weeks we’ll just meet Mon and Wed
- Some weeks we’ll meet on Friday
- This arrangement facilitates making up for days I’m out of town
- First three weeks we will meet MWF
- I will give 2 weeks’ advance notice for other Fridays that the class meets
Class capacity

- Used to be limited to 30
- Demand has grown well over 200, hence now twice/year
- I’ve allowed 105 to register (room capacity)
- Others still on the waiting list, so if you decide to drop, please be nice and do so as soon as possible
Course emphases

• a variety of learning settings: supervised learning, unsupervised learning, reinforcement learning, active learning, etc.

• a broad toolbox of machine-learning methods: decision trees, nearest neighbor, Bayesian networks, SVMs, etc.

• some underlying theory: bias-variance tradeoff, PAC learning, mistake-bound theory, etc.

• experimental methodology for evaluating learning systems: cross validation, ROC and PR curves, hypothesis testing, etc.
Two major goals

1. Understand what a learning system should do

2. Understand how (and how well) existing systems work
Course requirements

• 5 homework assignments: 40%
 – 1 computational experiment
 – 2 programming
 – 2 written

• midterm exam: 30%

• final exam (not cumulative): 30%
Homework 1

- Due a week from Friday (1/29)
- Download Weka (it’s free; you might already have access; if not, Google it)
- Create a data set of your choosing
 - At least 20 examples (data points)
 - At least 10 features (variables)
- Run decision trees, nearest neighbor, others if you want and submit a PDF report (1 page) at course moodle
Expected background

• CS 540 (Intro to Artificial Intelligence) or equivalent
 – search
 – first-order logic
 – unification
 – deduction
• reasonable programming skills
• basics of probability: but we’ll review
• linear algebra
 – vectors and matrices
• calculus
 – partial derivatives
Programming languages

• for the programming assignments, you can use
 C
 C++
 Java
 Python
 possibly others if you get an OK from TAs

• programs must be callable from the command line and must run on the CS lab machines (this is where they will be tested during grading!)
Course readings

• additional on-line articles, surveys, and chapters
What is machine learning?

• the study of algorithms that improve their performance P
 at some task T
 with experience E

• to have a well defined learning task, we must specify: $< T, P, E >$
ML example: spam filtering
ML example: spam filtering

- T: given new mail message, classify as spam vs. other
- P: minimize misclassification costs
- E: previously classified (filed) messages
ML example: mammography

[Burnside et al., Radiology 2009]
ML example: mammography

- T: given new mammogram, classify as benign vs. malignant
- P: minimize misclassification costs
- E: previously encountered patient histories (mammograms + subsequent outcomes)
ML example: predictive text input

Your mom and I are going to divorce next month

what??? why! call me please?

I wrote Disney and this phone changed it. We are going to Disney.

DAMN YOU AUTOCORRECT.COM
ML example: predictive text input

- T: given (partially) typed word, predict the word the user intended to type
- P: minimize misclassifications
- E: words previously typed by the user (+ lexicon of common words + knowledge of keyboard layout)

domain knowledge
ML example: Netflix Prize
ML example: Netflix

- T: given a user/movie pair, predict the user’s rating (1-5 stars) of the movie
- P: minimize difference between predicted and actual rating
- E: histories of previously rated movies (user, movie, rating triples)
Goals for this part of lecture

• define the supervised and unsupervised learning tasks
• consider how to represent instances as fixed-length feature vectors
• understand the concepts
 • instance (example)
 • feature (attribute)
 • feature space
 • feature types
 • supervised learning
 • classification (concept learning)
 • regression
 • i.i.d. assumption
 • generalization
Goals for the lecture (continued)

• understand the concepts
 • unsupervised learning
 • clustering
 • anomaly detection
 • dimensionality reduction
Can I eat this mushroom?

I don’t know what type it is – I’ve never seen it before. Is it edible or poisonous?
Can I eat this mushroom?

suppose we’re given examples of edible and poisonous mushrooms (we’ll refer to these as *training examples* or *training instances*)

can we learn a model that can be used to classify other mushrooms?
Representing instances using feature vectors

• we need some way to represent each instance
• one common way to do this: use a fixed-length vector to represent features (a.k.a. attributes) of each instance
• also represent class label of each instance

\[
\begin{align*}
x_1 &= \langle \text{bell, fibrous, gray, false, foul, \ldots} \rangle \\
x_2 &= \langle \text{convex, scaly, purple, false, musty, \ldots} \rangle \\
x_3 &= \langle \text{bell, smooth, red, true, musty, \ldots} \rangle \\
\vdots \\
y_1 &= \text{edible} \\
y_2 &= \text{poisonous} \\
y_3 &= \text{edible}
\end{align*}
\]
Standard feature types

- **nominal** (including Boolean)
 - no ordering among possible values

 e.g. \(\text{color} \in \{\text{red}, \text{blue}, \text{green}\} \) (vs. \(\text{color} = 1000 \) Hertz)

- **linear** (or ordinal)
 - possible values of the feature are totally ordered

 e.g. \(\text{size} \in \{\text{small}, \text{medium}, \text{large}\} \) ← discrete

 \(\text{weight} \in [0...500] \) ← continuous

- **hierarchical**
 - possible values are partially ordered in an ISA hierarchy

 e.g. \(\text{shape} \rightarrow \)
Feature hierarchy example
Lawrence et al., *Data Mining and Knowledge Discovery* 5(1-2), 2001

Structure of one feature!

- Product
 - Pet Foods
 - Dried Cat Food
 - Canned Cat Food
 - Friskies Liver, 250g
 - Tea

- 99 Product Classes
- ~30K Products
- 2,302 Product Subclasses

~30K Products
we can think of each instance as representing a point in a d-dimensional feature space where d is the number of features

example: optical properties of oceans in three spectral bands
Another view of the feature-vector representation: a single database table

<table>
<thead>
<tr>
<th>instance 1</th>
<th>feature 1</th>
<th>feature 2</th>
<th>...</th>
<th>feature (d)</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>small</td>
<td></td>
<td>red</td>
<td>true</td>
</tr>
<tr>
<td>instance 2</td>
<td>9.3</td>
<td>medium</td>
<td></td>
<td>red</td>
<td>false</td>
</tr>
<tr>
<td>instance 3</td>
<td>8.2</td>
<td>small</td>
<td></td>
<td>blue</td>
<td>false</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instance (n)</td>
<td>5.7</td>
<td>medium</td>
<td></td>
<td>green</td>
<td>true</td>
</tr>
</tbody>
</table>
Representation Caveat

• Feature vector format has proved very “workable”

• But much real world data doesn’t arrive in neatly aligned feature vectors
 – Sequences: events in time, genomes, books
 – Graphs: social networks, logistics, comms
 – Relational databases: patient’s health data distributed over many tables
ML example: Stock Forecasting

The day I bought it
ML example: Stock Forecasting

- T: given a stock, predict the value tomorrow/next week/next month
- P: minimize difference between predicted and actual value
- E: histories of this stock, other stocks

Alternatives in specification:
- T: given NYSE, choose an investment strategy
- P: maximize profit
- E: might also include background information about companies
ML example: Personalized Medicine

Demographics

<table>
<thead>
<tr>
<th>ID</th>
<th>Year of Birth</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3.10.1946</td>
<td>M</td>
</tr>
</tbody>
</table>

Diagnoses

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Diagnosis</th>
<th>Sign/Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>6.2.2011</td>
<td>Atrial fibrillation</td>
<td>Discomfort</td>
</tr>
</tbody>
</table>
The Electronic Health Record (EHR)

<table>
<thead>
<tr>
<th>Demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>P1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>P1</td>
</tr>
</tbody>
</table>
The Electronic Health Record (EHR)

Demographics

<table>
<thead>
<tr>
<th>ID</th>
<th>Year of Birth</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1946.03.10</td>
<td>M</td>
</tr>
</tbody>
</table>

Diagnoses

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Diagnosis</th>
<th>Sign/Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2.29.2012</td>
<td>Stroke</td>
<td>Schizophrenia</td>
</tr>
</tbody>
</table>
The Electronic Health Record (EHR)

Demographics

<table>
<thead>
<tr>
<th>ID</th>
<th>Year of Birth</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1946.03.10</td>
<td>M</td>
</tr>
</tbody>
</table>

Diagnoses

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Diagnosis</th>
<th>Sign/Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>6.2.2011</td>
<td>Atrial fibrillation</td>
<td>Discomfort</td>
</tr>
<tr>
<td>P1</td>
<td>7.3.2011</td>
<td>Atrial fibrillation</td>
<td>Dizziness, Nausea</td>
</tr>
<tr>
<td>P1</td>
<td>2.29.2012</td>
<td>Stroke</td>
<td>Schizophrenia</td>
</tr>
</tbody>
</table>
Demographics

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Gender</th>
<th>Birthdate</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>M</td>
<td>3/22/1963</td>
</tr>
</tbody>
</table>

Diagnoses

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Date</th>
<th>Physician</th>
<th>Symptoms</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1/1/2001</td>
<td>Smith</td>
<td>palpitations</td>
<td>hypoglycemic</td>
</tr>
<tr>
<td>P1</td>
<td>2/1/2001</td>
<td>Jones</td>
<td>fever, aches</td>
<td>influenza</td>
</tr>
</tbody>
</table>

Lab Results

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Date</th>
<th>Lab Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1/1/2001</td>
<td>blood glucose</td>
<td>42</td>
</tr>
<tr>
<td>P1</td>
<td>1/9/2001</td>
<td>blood glucose</td>
<td>45</td>
</tr>
</tbody>
</table>

Vitals

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Date</th>
<th>Observation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1/1/2001</td>
<td>Height</td>
<td>5'11</td>
</tr>
<tr>
<td>P2</td>
<td>1/9/2001</td>
<td>BMI</td>
<td>34.5</td>
</tr>
</tbody>
</table>

Medications

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Date Prescribed</th>
<th>Date Filled</th>
<th>Physician</th>
<th>Medication</th>
<th>Dose</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>5/17/1998</td>
<td>5/18/1998</td>
<td>Jones</td>
<td>Prilosec</td>
<td>10mg</td>
<td>3 months</td>
</tr>
</tbody>
</table>
Personalized Treatment

Individual Patient
G + C + E

State-of-the-Art Machine Learning

Predictive Model for Disease Susceptibility & Treatment Response

Genetic, Clinical, & Environmental Data

Precision Medicine
ML example: Precision Medicine

- \(T \): given a patient and disease diagnosis, choose best treatment
- \(P \): cure disease
- \(E \): treatment and outcomes for other patients with same disease (+ electronic health records (EHRs) + genome sequences)

Alternatives in specification:
- \(T \): given a patient, choose lifestyle and treatment plan
- \(P \): maximize patient health as measured by survey questions
- \(E \): might also include answers to questionnaire about lifestyle
Back to Feature Vectors

<table>
<thead>
<tr>
<th></th>
<th>feature 1</th>
<th>feature 2</th>
<th>...</th>
<th>feature d</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance 1</td>
<td>0.0</td>
<td>small</td>
<td></td>
<td>red</td>
<td>true</td>
</tr>
<tr>
<td>instance 2</td>
<td>9.3</td>
<td>medium</td>
<td></td>
<td>red</td>
<td>false</td>
</tr>
<tr>
<td>instance 3</td>
<td>8.2</td>
<td>small</td>
<td></td>
<td>blue</td>
<td>false</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instance n</td>
<td>5.7</td>
<td>medium</td>
<td></td>
<td>green</td>
<td>true</td>
</tr>
</tbody>
</table>
The supervised learning task

problem setting

- set of possible instances: X
- unknown target function: $f : X \rightarrow Y$
- set of models (a.k.a. hypotheses): $H = \{ h \mid h : X \rightarrow Y \}$

given

- training set of instances of unknown target function f

 $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

output

- model $h \in H$ that best approximates target function
The supervised learning task

• when y is discrete, we term this a *classification* task (or *concept learning*)

• when y is continuous, it is a *regression* task

• later in the semester, we will consider tasks in which each y is more structured object (e.g. a *sequence* of discrete labels)
i.i.d. instances

• we often assume that training instances are *independent and identically distributed* (i.i.d.) – sampled independently from the same unknown distribution

• later in the course we’ll consider cases where this assumption does not hold
 – cases where sets of instances have dependencies
 • instances sampled from the same medical image
 • instances from time series
 • etc.
 – cases where the learner can select which instances are labeled for training
 • *active learning*
 – the target function changes over time (*concept drift*)
Generalization

• The primary objective in supervised learning is to find a model that generalizes – one that accurately predicts y for previously unseen x.

Can I eat this mushroom that was not in my training set?
Model representations

throughout the semester, we will consider a broad range of representations for learned models, including

• decision trees
• neural networks
• support vector machines
• Bayesian networks
• logic clauses
• ensembles of the above
• etc.
Mushroom features (from the UCI Machine Learning Repository)

- **cap-shape**: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
- **cap-surface**: fibrous=f, grooves=g, scaly=y, smooth=s
- **cap-color**: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w, yellow=y
- **bruises?**: bruises=t, no=f
- **odor**: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
- **gill-attachment**: attached=a, descending=d, free=f, notched=n
- **gill-spacing**: close=c, crowded=w, distant=d
- **gill-size**: broad=b, narrow=n
- **gill-color**: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, purple=u, red=e, white=w, yellow=y
- **stalk-shape**: enlarging=e, tapering=t
- **stalk-root**: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?
- **stalk-surface-above-ring**: fibrous=f, scaly=y, silky=k, smooth=s
- **stalk-surface-below-ring**: fibrous=f, scaly=y, silky=k, smooth=s
- **stalk-color-above-ring**: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, purple=u, red=e, white=w, yellow=y
- **stalk-color-below-ring**: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w, yellow=y
- **veil-type**: partial=p, universal=u
- **veil-color**: brown=n, orange=o, white=w, yellow=y
- **ring-number**: none=n, one=o, two=t
- **ring-type**: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s, zone=z
- **spore-print-color**: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w, yellow=y
- **population**: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y
- **habitat**: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d

sunken is one possible value of the **cap-shape** feature.
A learned decision tree

- If odor=almond, predict edible
- If odor=none ∧ spore-print-color=white ∧ gill-size=narrow ∧ gill-spacing=crowded, predict poisonous

```
odor = a: e (400.0)
odor = c: p (192.0)
odor = f: p (2160.0)
odor = l: e (400.0)
odor = m: p (36.0)
odor = n
  spore-print-color = b: e (48.0)
  spore-print-color = h: e (48.0)
  spore-print-color = k: e (1296.0)
  spore-print-color = n: e (1344.0)
  spore-print-color = o: e (48.0)
  spore-print-color = r: p (72.0)
  spore-print-color = u: e (0.0)
  spore-print-color = w
    gill-size = b: e (528.0)
    gill-size = n
      gill-spacing = c: p (32.0)
      gill-spacing = d: e (0.0)
      gill-spacing = w
        population = a: e (0.0)
        population = c: p (16.0)
        population = n: e (0.0)
        population = s: e (0.0)
        population = v: e (48.0)
        population = y: e (0.0)
  spore-print-color = y: e (48.0)
odor = p: p (256.0)
odor = s: p (576.0)
odor = y: p (576.0)
```
Classification with a learned decision tree

once we have a learned model, we can use it to classify previously unseen instances

\[x = \langle \text{bell, fibrous, brown, false, foul, …} \rangle \]

\[y = \text{edible or poisonous?} \]
Unsupervised learning

in unsupervised learning, we’re given a set of instances, without \(y \)’s

\[x_1, x_2 \ldots x_n \]

goal: discover interesting regularities that characterize the instances

common unsupervised learning tasks

• clustering
• anomaly detection
• dimensionality reduction
Clustering

given
 • training set of instances \(x_1, x_2 \ldots x_n \)

output
 • model \(h \in H \) that divides the training set into clusters such that there is intra-cluster similarity and inter-cluster dissimilarity
Clustering example

Clustering irises using three different features (the colors represent clusters identified by the algorithm, not y’s provided as input)
Anomaly detection

given
- training set of instances \(x_1, x_2, \ldots, x_n \)

output
- model \(h \in H \) that represents “normal” \(x \)

given
- a previously unseen \(x \)

determine
- if \(x \) looks normal or anomalous
Does the data for 2012 look anomalous?
Dimensionality reduction

given

• training set of instances $x_1, x_2 \ldots x_n$

output

• model $h \in H$ that represents each x with a lower-dimension feature vector while still preserving key properties of the data
Dimensionality reduction example

We can represent a face using all of the pixels in a given image.

More effective method (for many tasks): represent each face as a linear combination of *eigenfaces*.
Dimensionality reduction example

represent each face as a linear combination of eigenfaces

\[x_1 = \langle \alpha_{1,1}, \alpha_{1,2}, \ldots, \alpha_{1,20} \rangle \]

\[x_2 = \langle \alpha_{2,1}, \alpha_{2,2}, \ldots, \alpha_{2,20} \rangle \]

of features is now 20 instead of # of pixels in images
Other learning tasks

later in the semester we’ll cover other learning tasks that are not strictly supervised or unsupervised
 • reinforcement learning
 • semi-supervised learning
 • etc.