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 Let A be a binary matrix of size m X n, let c T be a positive row vector of length n and let e
 be the column vector, all of whose m components are ones. The set-covering problem is to
 minimize c Tx subject to Ax > e and x binary. We compare the value of the objective function
 at a feasible solution found by a simple greedy heuristic to the true optimum. It turns out that
 the ratio between the two grows at most logarithmically in the largest column sum of A.
 When all the components of c T are the same, our result reduces to a theorem established
 previously by Johnson and Lovisz.

 In the set-covering problem [2], the data consist of finite sets PI, P2,. ., Pn and
 positive numbers cl, c2,..., Cn. We denote U(P:' 1< j < n) by I and write I
 = (1, 2,..., m}, J= {1, 2, .. ., n}. A subset J* of J is called a cover if U(P :' j
 E J*) = I; the cost of this cover is 2(cj: j E J*). The problem is to find a cover of
 minimum cost.

 The set-covering problem is notoriously hard; in fact, it is known to be NP-
 complete [4], [1]. In view of this fact, the relative importance of heuristics for solving
 the set-covering problem increases. The purpose of this note is to establish a tight
 bound on the worst-case behaviour of a rather straightforward heuristic. In case cj = 1
 for all j, our theorem reduces to one obtained previously by Johnson [3] and Lovaisz
 [5].

 Intuitively, it seems that the desirability of includingj in an optimal cover increases

 with the ratio iPjl/cj which counts the number of points covered by Pj per unit cost.
 This sentiment suggests a recursive procedure for finding near-optimal covers.

 Step 0. Set J* = 0.
 Step 1. If Pj =0 for all j then stop: J* is a cover. Otherwise find a subscript k

 maximizing the ratio IPjl/c. and proceed to Step 2.
 Step 2. Add k to J*, replace each P. by Pj - Pk and return to Step 1.
 Heuristic procedures of a similar character are called greedy.
 For illustration, consider sets PI, P2, ..., Pm+ and numbers c, c2, . . ., c,m+l such

 that P. = {j) and cj = 1/j for j = 1, 2, .. ., m whereas Pm+i = I and cm+, > 1. Our
 greedy heuristic returns J* = {1, 2, . . ., m), the winning ratio in iteration r being
 P,,,M+-r/cm+ r = m + 1 - r. The cost of J* is

 m

 H(m)=f 1

 However, (m + 1) is also a cover and its cost cm+ I can be arbitrarily close to 1. Thus
 the cost of the cover returned by the greedy heuristic can exceed the cost of an
 optimal cover by a factor arbitrarily close to H(m). On the other hand, we shall show
 that the factor never exceeds H(m). In fact, the upper bound can be improved into
 H(d) such that d is the size of the largest set P1.
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 THEOREM. The cost of the cover returned by the greedy heuristic is at most H(d)
 times the cost of an optimal cover.

 We shall prove a stronger but less concise result. Define an m x n matrix A = (a,)
 by

 , 1 if i E P.

 = 1.0 otherwise,

 so that the n columns of A are the incidence vectors of P, P2, . .., P. Clearly, the
 incidence vector x = (xj) of an arbitrary cover satisfies

 n

 E axj > 1 for all i,
 j=l

 xj > 0 for allj.

 We claim that these inequalities imply

 j=l i=l

 for the cover J* returned by the greedy heuristic. Once (1) is proved, the theorem will
 follow by letting x be the incidence vector of an optimal cover.

 To prove (1), it will suffice to exhibit nonnegative numbers y1, Y2, .. . Ym such that

 m m

 aiy .< H aij Cj for allj (2)
 i= - i =l

 and such that

 m

 yi= (Cj :j E J*), (3)
 i=-

 for then

 n m n m m f n 8

 2 H 2 ac cxj x > ,j 2 av y= Z 2 aij Y,
 j=1 i= 1 j= i=l i= j1 -1 =

 m

 > Yi='(c j _ J*)
 i=l

 as desired.

 The numbers y1, y2, ... , Ym satisfying (2) and (3) have a simple intuitive interpreta-
 tion: each yi is the price paid by the greedy heuristic for covering the point i. To make

 this definition more precise, let us denote by Pj the set Pj at the beginning of iteration
 r; for typographical simplicity, we shall denote the size of PJ by wJ. Without loss of
 generality, we may assume that J* is (1, 2, ..., r} after r iterations, and so

 Wf/cr > Wfr/Cj

 for all r and j. If there are t iterations altogether then

 E(cj J E J*)= E c.
 j=1

 Observe that each i E I belongs to precisely one of the sets Pf, with r = 1, 2,. . ., t.
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 For this r, we have

 Yi = Cr/Wf

 Now (3) becomes a triviality: we have
 m t t t

 Y yi= 2 (yi : i E/ Pr )= 2 wr (cr/wr)= Cr.
 i=l r=l r=l r=1

 To prove (2), observe that P nl Prr = pr - Pr;+1 and so
 m t

 E aijyi= 2 (yi : i E P. n Prr)
 i-= I r= I

 = Z (w - wr+1 ) (Cr/Wr)
 r= I

 If s is the largest superscript such that ws > 0 then

 m s

 aiji E (wjr - wr+l)' (cr/ w)

 < cj ~ (w;--w r+l)/w;.
 r= 1

 The rest is a routine manipulation: we have
 s s

 E (w'r - Wr+I)/Wr < E (H(Wjr) - H(wjr+ ))= H(wl)
 r=1 r= I

 and, of course,
 m

 W = Pji = aij.
 i=1

 The author is indebted to Roy Marsten and to an anonymous referee for helpful
 suggestions which led to an improved presentation of this note.
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