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Linear-algebra rank is the solution to an especially tractable optimization problem. This 
tractability is viewed abstractly, and extended to certain more general optimization problems 
which are linear programs relative to certain derived polyhedra. 

(0) Many discrete programming algorithms are being proposed. One 
thing most of  them have in common is that they do not  work very well. 
Solving problems that are a priori finite, astronomically finite, is pref- 
erably a matter  of  finding algorithms that are s o m e h o w  better  than 
finite. These considerations prompt  looking for good algorithms and 
trying to understand how and why at least a few combinatorial prob- 
lems have them. 
(1) Let H be a finite (for convenience) set of  real-valued vectors , 
x = [xj] , ]  ~ E. Often all the members of  H will be integer-valued; often 
they will all be {0, 1}-valued. The index-set, E, is any finite set of  
elements. Let c = [cj],  ] ~ E, be any real vector on E, called the objec- 
tive or weighting of  E. The problem of  finding a member  o f  H which 
maximizes (or minimizes) cx = iN cjx/, j ~ E, we call a loco problem or 
loco programming. "Loco"  stands for "linear-objective combinatorial".  
(2) In order for a loco problem to be a completely defined problem, 
the way H is given must of  course be specified. There are various ways 
to describe implicitly very large sets H so tha t  it is relatively easy to 
determine whether  or not  any particular vector is a member  of  H. 
One well-known:way is  in linear programming, where H is the set of  
extreme points of  the solution-set of  a given finite system, L, of  linear 
equations and <_ type linear inequalities in the variables xj (briefly, a 
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given finite "linear system, L, in x" )  for which cx is bounded. Another  
well-known way is in integer linear programming, where H is the set of  
integer-valued solutions of  a given finite linaer system having a bounded 
solution-set. (Strictly speaking, for example, in order to be able to call 
a general integer 1.p. problem a loco problem, we should allow H to be 
merely "discrete" rather than finite. However, for present purposes this 
is not important.)  
(3) A purpose of  this paper is to treat a certain loco problem which is 
not directly an l.p., and which probably cannot be reduced to an integer 
1.p. except by introducing some tremendously large linear system. On 
the other hand, a main point of  the paper is that we can, by introducing 
a tremendously large linear system, make the loco problem into an 1.p., 
and it is worth doing. 
(4) For the present type of  loco problem, called matroidal, or an m.1. 
problem, there is an algorithm, called the greedy algorithm, which is 
particularly simple and efficient. (If  you have ever taught the opt imum 
assignment problem, probably some students have proposed it to you 
for that.) Linear programming concepts, though evidently not  the sim- 
plex method,  provide a useful way of  viewing it. 
(5) Any matrix A, whose column-set we denote by E, determines the 
H of  an m.1. problem, though qu i te  differently than the way the cons- 
traint matrices of  1.p.'s or integer 1.p.'s determine their H's. In fact, 
this matrix A can be over any field. 
(6) A vec to rx  = [xj] ,j 6 E, of  zeroes and ones is called the (incidence) 
vector of  the subset o f j ' s  such that xj = 1. For  any family K of  subsets 
of  E, and for any weighting c --- [cj] of E, to find aB 6 K such that its 
weight e(B) = jNcj, j ~ B, is maximum is clearly a loco problem - a 
"{0, 1)-loco problem" - where the members of  H are the incidence 
vectors of  the members of K. 

An m.1. problem having "constraint matrix",  A, is a C0, 1}-loco 
problem where K is the family of  subsets of  the column-set E of  A 
which are column-bases of  A (or, to take a slight varient, where K is the 
family of linearly independent  subsets of  E.) For  any given A and any 
weighting c = [c/],  j ~ E, the m.1. problem is then to find a maximum 
(or minimum) weight column-basis of  A (or a maximum weight linearly 
independent subset of E.) 
(7) The greedy algorithm for the C0, 1)-loco problem, maximize cx 
over the incidence vectors of  the members of  K, is: In each step, choose 
any largest weight member  of  E, not  already chosen, which together 
with the members already chosen forms a subset of  some member  of K. 
Stop when the chosen members of  E comprise a member  of  K. 
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(8) Of  course, the algorithm presumes the use of  a subroutine which 
will decide for any given J c E, whether or not  J is contained in a mem- 
ber of  K. 
(9) Methods are well-known [5, 61 for finding an opt imum edge- 
weight-sum spanning tree in an edge-weighted (connected) graph, G, 
which are the greedy algorithm together with elaborations for ensuring 
that at each step the set of  edges so-far-chosen is the edge-set o f  some 
forest in G (a subset of  the edges of  some spanning tree of  G) - or, al- 
ternatively, is an edge-set contained in the complement  of  some span- 
ning tree. 

A graph G may be regarded as a matrix A of  zeroes and ones, rood 
2, which has exactly two ones in every column. The columns of  A are 
the edges of  the graph and the rows of  A are the nodes of  the graph. An 
edge and a node "mee t"  if there is a one located in that row and that 
column. Assuming the graph is "connected" ,  i.e., the rows of  A cannot 
be partit ioned into two non-empty sets such that every column has both  
of  its ones in the same set, the column-bases of  A are precisely the edge- 
sets of  the "spanning-trees" of  G and the linearly independent  sets of  
columns are the edge-sets of  "forests"  in G. Thus, the opt imum span- 
ning tree problem is an m.1. problem relative to a matrix, A, o f  the type 
just described. 
(10) Abasis of  any subset S c_ E of  the columns of  matrix A may be d e -  
fined as a maximal linearly independent  subset J of  S. Maximal here 
means that there is no linearly independent  subset of  S which properly 
contains J. 
(11) The fact that the greedy algorithm will always yield a maximum 
weight basis of  the set E of  columns of  a matrix A for any {0, 1}-valued 
weighting c = [c/l, ] ~ E, is one  of  the best known theorems of  loco 
programming - indeed, of  all mathematics. It is precisely the fact that: 
(12) For  any S c__ E, every basis J o f  S has the same cardinality, k/I, 
called the rank r(S) of  S. 

(TakeS  to be { j~  E " c] = 1}.) 
(13) An independence system M = (E, F) on E is defined to be a s e t E  
and a non-empty family, F, of  so-called independent (or M-independent) 
subsets of  E, such that every subset of  an;independent set is indepen- 
dent. 
(14) For  any independence system M on a set E, and for any S c_ E, a 
basis (or M-basis) of  S is defined as in (10), replacing "linearly indepen- 
dent"  by "M-independent".  The M-bases of  E are also called the bases 
of M. 
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(15) A clutter K on a set E is a family of  subsets of  E such that no 
member  of  K is contained in another. Clearly the family of  bases of  any 
independence system on E form a clutter on E, and conversely for any 
clutter K on E there is a unique independence system on E whose 
family of  bases is K. 
(16) A matroid, M = (E, F), is an independence system having property 
(12). 
(17) In other  words, a matroid is an independence system M = (E, F)  
whose clutter, K, of  bases ( theM-bases of  E) is such that, for any (0, 1)- 
valued weighting of  E, the greedy algorithm always yields a maximum 
weight member  of  K. 
(18) We will see immediately that: For any matroid M on E, and for  
any weighting o f  E, the greedy algorithm always gives a maximum 
weight member o f  the family K o f  bases o f  M. 
(19) This is equivalent to the " i f"  part of  the statement that: 
(20) For any matroid M on E, and for  any weighting, c = [cj] , j  ~ E, a 
basis B ~ K o f  M has maximum weight, c(B) = i]~ci ,  i E B, i f  and only if, 
(21) for  every j ~ B, the set (i E B : c i > cj) is an M-basis o f  the set 
(i ~ E : c i>  cj}. 
(22) To see the equivalence asserted in (19), observe that a basis B 6 K 
has property (21) and is arranged in an order such that the ci's, i ~ B, 
are non-increasing if and only if it is the output  of  an application of  the 
greedy algorithm, arranged in the order in which its members  were 
chosen. 
(23) For  any matroid M on the-set E and for any weighting, c = [c/I, 
] ~ E, let B0, B1, and B 2 be bases of  M, each arranged in any order such 
that the weights of  its members are non-increasing. By (12), we have 
that IB 01 = IB 1 I = IB 2 t. # 
(24) Suppose that, for some k, the kth member,  call it ], of  B 1 has 
smaller weight than the kth member  of  B 2. Then by (12), J =  (i ~ B 1 : 
c i > c/) is not  a basis o f S  = (i ~ E : c i > c]}, since brl < k and since the 
first k members of  B 2 are contained in a baSis of  S. Thus, B 1 does not  
satisfy (21 ). 
(25) If  c(B 1 ) < c(B 2) then certainly the hypothesis  of  (24) is satisfied_ 
Thus the "if"  part of  ( 2 0 ) - ( 2 1 )  is proved. 
(26) M does have a basis, say B0, which satisfies (21) since, as noted in 
(22), the greedy algorithm produces one. By (24), for any basis, say B 1 , 
of  M, there is no k such that the kth member  o f B  0 has smaller weight 
then the kth member  o f B  1 . 
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(27) Therefore if B 1 is a maximum weight basis o f  M then there is no 
k such that the kth member  of  B 1 has a weight different from the 
weight of  the kth  member  o f B  0. 
(28) Suppose B 1 is a maximum weight basis of  M, but  does not  satisfy 
(21).  That is, for some j  E B1, J = {i ~ B 1 : c i > el} is not  a basis o f S  = 
{i E E : c i > ci}. Then for some i E S - J ,  the set J u {i} is independent  
and thus contained in some basis, say B 2 , of  M. Since c i > cj, there is a 
k such that the kth member  o f B  2 , has larger weight than the kth mem- 
ber of  B ! . Thus, by (27), the kth  member  o f B  2 has larger weight than 
the kth member  of  B 0 , which contradicts (26). Thus the "only  if' '  part 
of  ( 2 0 ) - ( 2 1 )  is proved. 
(29) Where M = "(E, F)  is any independence system, we say that an 
element ] ~ E M-depends on an independent  set J ~ F when either j ~ J 
or else U u {]}) ~ F. More generally we say that an element j ~ E. M- 
depends on a set S c E when j M-depends on some independent  subset 
of  S. 
(30) It is easy to prove that for a basis B of  M condition (21) is equiva- 
lent to the following condition: 
(31) For  every j ~ E, j M-depends on (i E B " c i >- c]}. 
(32) Thus, by (20 ) - (21) ,  where M is a matroid, (30) is another n. and 
s. condit ion for a basis B to be of  maximum weight. 
(33) In a sense, any loco problem, maximize cx over a finite set H of  
vectors, can be regarded as the linear programming problem, maximize 
cx over the extreme points (vertices) of  the solution-set (polyhedron)  P 
of a linear system L, by  taking L to be such that P is the convex hull of  
H. 
(34) It is well-known that there exists such an L, that the vertices of  its 
polyhedron P are all members of  H, that H c P, and that any linear 
function cx of  vectors x E P can be maximized over P (using linear pro- 
gramming) by  a vertex x ° o f  P. It follows immediately from these facts 
that x ° maximizes cx over H. 
(35) In fact, it can be shown that i f H  is all (0, 1}-valued vectors then 
the vertex-set of  P is precisely H. (This is rather beside the point.) 
(36) An apparent difficulty of  the above approach is, of  course, that L 
will generally be astronomically large, astronomically degenerate, and 
not  known in any practical way, even when H is rather small, and that 
for l o c o  problems of  interest, H itself will be astronomically large. 
(37) There is a "negative principle", which, with some justification, 
seems to have had wide acceptance in recent years, to the effect  that 
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L's, unless they happen to be small, are a futile aspect of  loco problems 
otherwise prescribed. To some extent  at least, the principle is wrong. 
I have shown this in solving two other loco problems in two other pu- 
blications [1, 3].  The matroidal loco problem provides an especially 
simple context  for illustrating again the same basic idea. We have already 
shown here that we can easily do without  it for solving the m.1. problem 
itself. However, I hope you  find the polyhedral appraoch to be interest- 
ing, and it does seem to be essential in solving more complicated loco 
problems which I will mention later. 
(38) Contrary to the "negative principle", it is plausible that  if H is 
describable in some combinatorially pleasant way, i.e., so that  it is easy 
to rec9gnize whether  or not  any given vector is a member  of  H, then an 
L which determines the convex hull of  H might be describable in some 
combinatorially pleasant way, i.e., so that it is easy to recognize wheth- 
er or not  any given linear constraint is a member  of  L. If  this is possible 
then the 1.p. duality theorem, applied to L and any cx, will provide a 
useful criterion for confirming that a given x ° E H is one which maxi- 
mizes cx over H. Conversely, one might expect a good algorithm for 
maximizing any cx over H to reveal, by its termination criteria, a good 
description of  an L. 
(39) For any matroid M on a set E, the set V o f  vertices o f  the solution- 
set P o f  linear system [(40), (41)1 is precisely the set H' o f  incidence 
vectors o f  independent sets o f  M. 
(40) x/>_ 0 for every ] ~ E. 
(41.)/Zx/<_ r ( A ) , / ~  A,  for every A ~ E, where r(A) is theM-rank of  A. 
(42) Since the bases of M are the independent  sets J such that brl-- r(E), 
it follows immediately from (39) that: 
(43) The set o f  vertices o f  the solution-set o f  [(40), (41), (44)] is pre- 
sicely the set H o f  incidence vectors o f  bases o f  M. 
( 4 4 ) / ~ x / =  r (E), j ~ E. 
(45) For  any independent  set J of  M, the incidence vector x ° of  J sa- 
tisfies (40) since it is all 0's and 1 's. It satisfies (41) for any A ~ E, since 
A n J is an independent  subset of  A and since the value of  the left side 
of (41) is IA n JI. 
(46) A vertex of  the solution-set (polyhedron) of a finite linear system 
L may be defined as the unique solution of  some linear system L' ob- 
tained from L by replacing certain ~<'s of  L by = 's. The x ° of  (45)is 
the unique solution of  the relations, x /=  0 for ] q~ J; and x/--- r({j}) for 
] c J,  which are obtained from certain relations of  [(40), (41)] by 
replacing inequality signs. 
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(47) Therefore, by (45) and (46), H '  c_ V. 
(48) The harder part of  (39) is to show that V c_ H'.  
(49) This would follow immediately by showing that every ver ~ex of  P 
is integer-valued. In view of  the easy ways known to prove, using the 
above definition of  vertex, that the vertices of  the polyhedron of  an 
integer transportation problem are integer valued, the technique we use 
to do (48) may seem backwards. Actually, however, I think the  techni- 
que is especially to the point  - the point  being the intimate relation- 
ship between having a good algorithm for the loco problems given by  a 
class of  H 's  and having a good description of  L's for these H's. 
(50) A ver tex  of  a convex polyhedron P (i.e. solution-set of  some finite 
linear system) can alternatively be defined as an x ° ~ P such that some 
linear function cx  is maximized over P by x ° and only  by x ° . 
(51) Using the greedy algorithm (a mild varient of  (7)), we will obtain, 
for any weighting c = [c]], j ~ E ,  the vector  x ° of  an independent  s e t J  
of  M. We will show, using the weak 1.p. duality principle, that x ° maxi- 
mizes cx  over all solutions of  [(40), (41)] ,  and thus also over all mem- 
bers of  H'.  In view of  (50), this will immediately imply V c_ H'.  It will 
also immediately imply, for any matroid M and for any weighting c, 
that the greedy algorithm always yields an x ° which maximizes cx  over 
g p" 

The varient of  the greedy algorithm spoken of  in (51) is: 
(52) Consider the set E = {j ~ E : c ]  _ 0} in any order, 1(1),](2), . . . , l (m),  

such that c1(1) >_ c](2) ~ ... >- C](m) >- O, For  each k = 1, 2, ...,0 m, l e t A k =  
{j(1) ..... j(k)). Let x u = [x ° ] , j  ~ E, be the vector  such that xj(1) = r(A 1 ), 
x~(k) = r ( A k ) - r ( A x _  1 ) for k = 2, ..., m, and x ° = 0 for every o the r ]  ~ E. 
(53) It is easy to verify, by  induction on k, and using the matroid- 
properties of  M, that x ° is the incidence vector  of  a set J c_ E which is 
an M-basis of  E' obtained by  application of  the greedy algorithm, 
(7), to E'. 
(54) The dual of  the 1.p., maximize cx  subject to [(40), (41)] ,  is 
(55) Minimize ry = A Z r ( A )  • y ( A ) ,  A C- E,  subject to 
(56) y ( A )  >_ 0 for every A c_ E; and 
(57) A ~ , y ( A )  >_ c j , j  ~ A ,  for every]  ~ E. 
(58) The weak 1.p. duality principle says that for every solution x of  
[(40), (41)] and for every so lu t iony  = [y(A)] ,A C-E, of  [(56), (57)] :  
(59) ry - cx  = j E x j  [A Z,y(A ) ~ cj] + A ~,y(A ) [r(A) - j Z x j ]  >_ O, where 

j , e A  C_E. 

(60) Let y0 = [y0(A)] ' A C_E, b e y ° ( A  k) = cj(k) - cj(k+l) for k = 1, ..., 
rn - 1 ; yO ( A  m ) = C](m ) ; and y0 (A) = 0 for every other A C- E. 
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(61) It is straight forward to verify that y0 satiafies [(56), (57)], and 
that ry ° = cx °. Thus, by (58)-(59),  y0 minimizes ry subject to [(56), 
(57)], and x ° maximizes cx subject to [(40), (41)]. 
(62) Since c was arbitrary and x ° ~ H', it follows immediately from 
(61) and (50)that VC_H '. 
(63) Since x ° ~ H' c__ p, it also follows immediately from (61) that, for 
the nh.1. problem, maximize cx over H', the greedy algorithm, (52), 
always works. 
(64) The P of (39), we call the polyhedron of matroid M. 
(65) I have extended the present material in several directions, some 
to appear under the titles "Matroid Intersections" and "Submodular 
functions, matroids, and certain polyhedra". One result is the following: 
(66) Let v(P) denote the set of vertices of a polyhedron P. Where M 1 
and M 2 are any two matroids on the same set E, and where P1 and P2 
are, respectively, their polyhedra, v(P 1 n P2) = v(P1 ) n v(P2). 
(67) In other words, v(P 1 n P2) consists entirely of the family HI n H i 
of incidence vectors of sets J __c E which are both M 1-independent and 
M2-independent. In other words, where L 1 and L 2 are linear systems 
which, respectively, determine P1 and P2, the "2-matroid" loco prob- 
lem, maximize cx over x ~ H~ n Hi ,  is the 1.p. problem, maximize cx 
by a vertex of the solution-set ofL 1 u L 2. 
(68) There is a short proof of (66). Even better, there is a long proof 
of (66) which is at the same time a very good algorithm, considerably 
more complicated but not much less efficient than the greedy algorithm, 
for the 2-matroid loco problem. Like the greedy algorithm, its efficiency 
is of course modulo the efficiency of being able to recognize for the 

! t vector x of any given J c_ E whether or not x ~ H I n H 2 . 
(69) There is no known constructively good representation for general 
matroids. They are not all representable by linear independence in ma- 
trices. Though, the systems L by which we have here described matroids 
are very redundant, the irredundant subsystems are generally expo- 
nentially large relative to IEI. 
(70) So-called transversal matroids are a combinatorially interesting 
class. In [4] I show that M is transversal matroid if and only if its inde- 
pendent sets are the linearly independent sets of columns in a matrix A 
whose entries are all zeroes and distinct algebraic indeterminates. A 
point made in the paper is that though there does exist a good well- 
known combinatorial algorithm which will recognise when a set of 
columns of such an A is independent, and thus which when combined 
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with the greedy algorithm will provide a good algorithm for an m.1. 
problem (which is, in fact, an opt imum assignment problem, where man 
] is worth efther nothing or cj on each job), Gauss elimination is a finite 
but  very bad algorithm for recognizing when a set of  co lumns  of  such 
an A is independent.  Where, for example, A is any matrix whose entries 
are all zeroes and not-necessarily-distinct algebraic indeterminates, there 
is no good algorithm known for recognizing when a set of  the columns 
is linearly independent.  
(7 l )  An instance of  the 2-matroid loco problem is presented in [3]. 
Let G be any connected directed graph having n + 1 nodes. L e t E  be the 
edge-set of  G. Let a set J c_ E be M 1-independent if it is the edge-set of  
a forest in G. Let J ~ E be M2-independent if brl -< n and, for each node 
v, at most one member  of  J is directed toward v. M 1 and M 2 are ma- 
troids. A set is a basis of  b o t h M  1 and M 2 if and only if it is the edge-set 
of  a "directed spanning tree" of  G. The resulting 2-matroid Ioco'prob- 
lem (by adding a large constant to each edge-weight) is to find an op- 
t imum edge-weight directed spanning tree of  G. This problem does not  
seem to be reducible to any previously solved problems. An algorithm 
is given for it in [3] which is considerably simpler than the general 2- 
matroid loco algorithm. 
(72) Let J c__ E be M 3-independent if brl <_ n and, for each node v, at 
most one member  of  J is directed away from v. A set is a basis of  M1, 
M 2 , and M3, if and only if it is the edge-set of  an open traveling-salesman 
tour (Hamiltonian path) of  G. 
(73) If we knew how to well-solve "3-matroid" loco problems we 
could well-solve the traveling salesman problem. One might say the 
latter is "two-thirds solved". 
(74) Unfortunately,  usually 

v(P 1 n P  2 f-/P3) ~- v(P1) f3 v(P2) A v(P 3) 

where P1, P2, and P3 are the polyhedra of  three matroids on E. 
(75) Another  useful result about the 1.p. of  (67) is that: l f c  is integer- 
valued then there is an op t imum solution to the dual o f  this 1.p. which 
is integer-valued. 
(76) Thus, for instance, taking c to be all ones, and applying the 1.p. 
duality theorem, and sub-additivity of  each of  the rank-functions, r~ (A) 
fo rM 1 , and r2(A)  for M2, we have that: 
(77) For any two matroids M 1 = (E, F 1) and M 2 = (E, F2) , max L/I, 
J E F 1 n F2, equals min [r 1 ($1) + r 2 (S 2)], S 1 u S 2 = E. 
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(78) This result, and a good algorithm for finding a maximum cardi- 
nality J E  F 1 n F2, also follow from results in [2].  
(79) Whitney [8] showed that if M = (E, F) is a matroid with rank 
function r(A), then where F* = (jc_ E: r (E-J )  = r(E)}, M* = (E, F*)  is 
a matroid, called the dual of  M. The bases of  M* are the complements  
in E of  the bases of  M. Clearly, any good method for recognizing M, 
independent  sets will provide a good method for recognizing M*-inde- 
pendent  sets. 
(80) In [2] there is an algorithm which, for any two matroids M 1 = 
(E, F 1 ) and M~ = (E, F~2 ).; will produce a set J1 E F 1 and a set J~' ~ F~ 
such that br I U J~l is maximum. It is a good one modulo methods for 
recognizingM 1 -independence and M z-independence. Having obtained J1 
and J~, extend J~ to a basis B~ ofM~.  Clearly, J~ c_ B~ c_ J1 u J{, since 
otherwise brl u B~I > J1 U J~[. Thus, J = (J1 u J{) - B ~ '  c_ J1 is 
(M 1 and M2)-independent,  i.e., J ~ F 1 n F 2. Furthermore,  there is no 
larger J'  E F 1 n F2, for if there were, E - J '  would contain a basis B' of  
M~, and we would have IJ' to B'[ > lJ u B~I = [J1 U J~l. 
(81) Another  instance of the 2-matroid loco problem is the opt imum 
assignment problem. Let c = [Chk] be real-valued, [ah] and [btc] be 
integer-valued and such that F_,a h = ~,b k. Let E be the set o f  ordered 
pairs (h, k). Let J c_c_ E be M 1 -independent when, for every h, at most  a h 
members of  J contain h in the first component.  Let J-C E be M 2-inde- 
pendent when, for every k, at most b k members of  J contain k in the 
second component.  Clearly, M 1 and M 2 are matroids. They are expe- 
cially simple matroids and for them the linear systems we have des- 
cribed here are especially redundant.  
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