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NEW -aa-APPROXIMATION ALGORITHMS FOR THE MAXIMUM
SATISFIABILITY PROBLEM*

MICHEL X. GOEMANSt AND DAVID P. WILLIAMSON$

Abstract. Yannakakis recently presented the first -approximation algorithm for the Maximum
Satisfiability Problem (MAX SAT). His algorithm makes nontrivial use of solutions to maximum flow
problems. New, simple -3a-approximation algorithms that apply the probabilistic method/randomized
rounding to the solution to a linear programming relaxation of MAX SAT are presented. It is shown
that although standard randomized rounding does not give a good approximate result, the best
solution of the two given by randomized rounding and a well-known algorithm of Johnson is always
within -34 of the optimal solution. It is further shown that an unusual twist on randomized rounding
also yields -3a-approximation algorithms. As a by-product of the analysis, a tight worst-case analysis
of the relative duality gap of the linear programming relaxation is obtained.

Key words, approximation algorithm, maximum satisfiability, randomized rounding, proba-
bilistic method, performance guarantee, linear programming relaxations
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1. Introduction. An instance of the Maximum Satisfiability Problem (MAX
SAT) is defined by a collection of boolean clauses, where each clause is a disjunction
of literals drawn from a set of variables (xl, x2,..., xn}. A literal is either a variable
x or its negation 5. In addition, for each clause Cj E C, there is an associated
nonnegative weight wj. An optimal solution to a MAX SAT instance is an assignment
of truth values to variables x1,..., xn that maximizes the sum of the weight of the
satisfied clauses (i.e., clauses with at least one true literal). MAX SAT is known to be
NP-complete, even when each clause contains at most two literals (sometimes called
MAX 2SAT) [4]. Hence there is unlikely to be any polynomial-time algorithm that
can solve MAX SAT optimally.

Many people, however, have proposed c-approximation algorithms for MAX SAT.
An s-approximation algorithm for MAX SAT is a polynomial-time algorithm which,
for every instance, produces a truth assignment with weight at least c times the weight
of an optimal solution. Johnson [7] demonstrates a 1/2-approximation algorithm, which
is also an (1 )-approximation algorithm when each clause contains at least k lit-
erals. In particular, if k

_
2 the performance guarantee is at least -34. Lieberherr and

Specker [9] give a ..52--approximation algorithm (V2--1 --0.618...)when the clause
set does not contain both clauses xi and i for any i. Kohli and Krishnamurti [8]
present a randomized algorithm whose solution has expected weight at least ] of op-
timal. Yannakakis recently improved on these results by showing a -34-approximation
algorithm [13]. Yannakakis’ algorithm transforms a MAX SAT instance into an equiv-
alent instance (in terms of approximability) which does not contain any unit clauses
(i.e., clauses with only one literal). In conjunction with Johnson’s algorithm, this
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NEW --APPROXIMATION ALGORITHMS FOR MAX SAT 657

leads to the improved performance guarantee. The algorithm uses maximum flow
computations in an elegant way to transform MAX 2SAT instances. However, the
transformation becomes more complicated when general clauses are introduced.

The purpose of this article is to present new --approximation algorithms which
are conceptually simple for all MAX SAT instances. The algorithms presented here
apply the technique of randomized rounding (aaghavan and Thompson [11], [10]) to
the solution of a single linear program that is a linear programming relaxation of a
formulation for the MAX SAT problem. However, a straightforward application of the
technique does not yield a --approximation algorithm. We surmount this difficulty
in two ways: by combining randomized rounding with Johnson’s algorithm and by
using an interesting variation of the standard randomized rounding technique.

The article is structured as follows. In 2, Johnson’s algorithm is reviewed in
terms of the probabilistic method. In 3, we show that a straightforward application
of randomized rounding to a linear programming relaxation of MAX SAT leads to a

(1 )-approximation algorithm (1-1/e 0.632...). The algorithm that selects the
better of the two solutions given by randomized rounding and Johnson’s algorithm
is shown to be a --approximation algorithm in 4. In 5, we describe a class of -34-
approximation algorithms for MAX SAT based on a variant of randomized rounding.
We conclude with a few remarks in 6.

2. Johnson’s algorithm and the probabilistic method. Suppose we inde-
pendently and randomly set each variable xi to be true with probability pi. Then the
expected weight of clauses satisfied by this probabilistic assignment is

where I (resp., I-) denotes the set of variables appearing unnegated (resp., negated)
in Cj. The probabilistic method specifies that there must exist an assignment of
truth values to the variables whose weight is at least this expected value. In fact, the
method of conditional probabilities (see Alon and Spencer [1], p. 223) can be applied
to find such an assignment deterministically in polynomial time. In the method
of conditional probabilities, the value for the ith variable is determined in the ith
iteration: given the values of x,..., x_, calculate the expected weight of clauses
satisfied by the probabilistic assignment, given the current assignment to x,..., x_
and the assignment x 1. Then calculate the expected weight given the assignment
to x,...,x_ and xi 0. The variable x is assigned the value that maximizes
the conditional expectation. Since each conditional expectation can be calculated in
polynomial time, the overall algorithm takes p^olynomial time, and as asserted above,
the assignment produced has weight at least W.

As interpreted by Yannakakis [13], Johnson’s algorithm essentially sets p 1/2 for
all and uses the method of conditional probabilities. It is not hard to see that for
this choice of p,

(1)
Since the optimum assignment can have weight at most -]y wy, this proves that John-
son’s algorithm is a 1/2-approximation algorithm. Moreover, if all clauses have at least
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658 M.X. GOEMANS AND D. P. WILLIAMSON

k literals then

cec
implying that Johnson’s algorithm is a (1- )-approximation algorithm for this
restricted class of instances.

3. A (1- )-approximation algorithm. Consider the following integer pro-
gram:

(IP)

Max

subject to:

By associating Yi 1 with xi set true, y 0 with x set false, zj 1 with
clause Cj satisfied, and zj 0 with clause Cj not satisfied, the integer program (IP)
exactly corresponds to the MAX SAT problem, and its optimal value Zp is equal
to the optimal value of the MAX SAT problem. We can now consider the linear
programming relaxation of (IP) formed by replacing the y e {0, 1} constraints with
the constraints 0 _< y _< 1. Call this linear program (LP). Obviously the optimal
value of (LP) is an upper bound on the optimal value of (IP); that is, Zp >_ Zp.
Whenever there are no unit clauses, the solution yi 1/2 for all and zj 1 for all
j, which is of value "cjec wj, is optimal, independent of the weights wj. Hence, the
relaxation is vacuous in this case. However, when there are unit clauses (the bad case
for Johnson’s algorithm), we shall show in this and later sections that this relaxation
provides some useful information.

We now show that by using randomized rounding in a straightforward fashion we
obtain a (1- )-approximation algorithm for MAX SAT. This algorithm consists of
two simple steps. The first step is to solve the linear program (LP). Let (y*, z*) be an
optimal solution. The second step is to apply the method of conditional probabilities
with pi y for all to derive an assignment. By using Tardos’ algorithm [12] to solve
(LP), the algorithm runs in strongly polynomial time since the constraint matrix of
(LP) has all entries in {-1, O, 1}.

The proof of the performance guarantee of 1 - is similar to the approach de-

scribed in 2 although the expected weight I of a random truth assignment is not
compared to -cec wj but rather to Zp. Notice that if

for any feasible solution (y, z) to (LP) and for any clause Cj then
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implying that the resulting algorithm is an a-approximation algorithm.
LEMMA 3.1. For any feasible solution (y, z) to (LP) and for any clause Cj with

k literals, we have

( 1)
k

k=l- 1-

where

This and subsequent proofs use the following simple results. To show that a
concave function f(x) satisfies f(x) >_ ax + b over the interval [1, u], one only needs
to show it for the endpoints of the interval, namely f(l) >_ al + b and f(u) >_ au + b.
We shall also rely on the arithmetic/geometric mean inequality which states that

al + a2 +... + ak > /ala2 ...ak,
k

for any collection of nonnegative numbers al, a2,..., ak.

Proof. We can assume without loss of generality that all variables in the clause
are unnegated. Indeed, if xi appears negated in clause Cj, one can replace xi by
its negation 5 in every clause and also replace y by 1- y without affecting the
feasibility of (LP) or the claim stated in the lemma. We thus assume that the clause
is xl V... V x with associated constraint y +... + Yk >_ zj. We need to prove that

Applying the arithmetic/geometric mean inequality to {1- y} and using the
constraint on zj, we obtain that

k

i= Yi1-II(1-y >_ 1- 1-
k

i=1

z>_ 1 (1 ---)
k

Since f(zj)= 1-(1- St) k
k is a concave function and since f(0) 0 and f(1) k,

we derive that

proving the desired result.
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660 M.X. GOEMANS AND D. P. WILLIAMSON

Since/k is decreasing with k, Lemma 3.1 and the discussion that precedes it show
that this simple algorithm is a/k-approximation algorithm for the class of MAX SAT
instances with at most k literals per clause. In particular, it is a --approximation
algorithm for MAX 2SAT and a (1- )-approximation algorithm for MAX SAT in

general, since limk_, (1- _)k .
In a certain sense, the analysis we have just performed cannot be improved.

Consider the MAX SAT instance consisting of the clauses Cj Vj xi for j 1,..., n
with weight n and the clauses Cn+j j for j 1,..., n with weight 1. One can show

for all 1 nthat the unique optimum solution to (LP) is given by y n-1
and

z={ 11 j<_n

n--1 j>n.

One can further show that

lim lim 1
n--o Z*Ip n--,c Zp

and thus the inequality Id >_ (1- )Zp is tight. However, applying the method
of conditional probabilities to this optimum (LP) solution yields the optimum truth
assignment.

4. A simple -3a-approximation algorithm. In 2, we have shown that John-
3-approximation algorithm when all clauses contain at least 2son’s algorithm is a

literals, while in the previous section, we have presented a --approximation algorithm
when all clauses contain at most 2 literals (i.e., for MAX 2SAT instances). In this sec-

tion, we show that a -approximation algorithm can be obtained by choosing the best
truth assignment between the two output by Johnson’s algorithm and the algorithm
of the previous section. More formally, we have the following result.

forTHEOREM 4.1. Let IYV1 denote the expected weight corresponding to pi -all and let IV2 denote the expected weight corresponding to pi y for all where
(y*, z*) is an optimum solution to the (LP) relaxation. Then

max(l, 2) _> ll+l)d2 >3
2 -ZLP"Proof. The first inequality is trivially satisfied. Let Ck denote the set of clauses

with exactly k literals. From 2, we know that

kkl CjEC kkl CjEC
OkWjZj

where ok (1- ). On the other hand, Lemma 3.1 implies that

k_ CjCk

where

(1)k=l- 1-
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NEW -34-APPROXIMATION ALGORITHMS FOR MAX SAT 661

As a result,

3 while for k > 3, ak +/k > + 1- > . Therefore,Clearly, al +/1 a2 -t-/2

kk1CEC

The previous theorem also demonstrates that the following algorithm is a 3_
4

approximation algorithm: with probability , set the vector p of probabilities to
be either p 1/2 for all or p y for all i, and apply the method of conditional
probabilities. In this scheme, x is set true with probability + 1/2y but this algorithm
does not fit in the framework described in 2 since the xi’s are not set independently.

5. A class of -approximation algorithms. The standard randomized round-
ing scheme of 3 can be modified to lead directly to -approximation algorithms. For
this purpose, instead of using pi y for all i, we let pi f(y) for some carefully
selected function f [0, 1] -- [0, 1] and, as before, apply the method of conditional
probabilities. Possible choices of f are discussed below. As far as we know, this is the
first application of randomized rounding in which the probabilities pi are not identical
to or scaled versions of the linear program solutions y’.

As in 3, if we can show that

(1)
3

1- H (1- f(yi)) H f(Yi) >- -zj

for any feasible solution (y,z) to (LP) and for any clause Cj, then the resulting
algorithm is a -34-approximation algorithm. Inequality (1) together with the constraints
on zj motivates the following definition.

DEFINITION 5.1. A function f’[0, 1]--. [0, 1] has property if

k
3 (1 II(1 f(yi)) II f(Yi) >- - min

i=1 i=/+1
I’EYi+ E (1-yi)

i=1 i--/+1

for any k, with k >_ and any yl,..., Yk E [0, 1].
3 induces a 3-approximationBy the discussion of 3, any function f with property

algorithm. The following theorems show that not only do there exist functions with
property - but also that there is some flexibility in choosing such a function.

THEOREM 5.2. Any function f satisfying

1- 4-y <_ f(y) <_ 4

for all y [0, 1] has property .
THEOREM 5.3. The linear function f (y) a + (1 2a)y, where

3 1

2-- <a<-
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662 M.X. GOEMANS AND D. P. WILLIAMSON

3has property (2 - .11).
THEOREM 5.4. The function

f(y)
ifO<_y<_2
1 2if-_y_-

3has property .
The possible choices for f following from Theorems 5.2-5.4 are depicted in Fig. 1.

Before proving these theorems, we would like to make a few remarks regarding the
functions with property given in these theorems.
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F,G. 1. Functions with property from Theorems (a) 5.2, (b) 5.3, and (c) 5.4.

1. There exist functions satisfying the conditions of Theorem 5.2 since, by the

arithmetic/geometric mean inequality, (4-+4-1) > 1/2 i.e. 1- 4-y < 4y-1
3 for which f(1) 12. By Theorem 5.2, there exist functions f with property

and f(0) 0. This is the case, for example, for

4y-1 ify >_
f(Y)

1-4-y ify<.
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NEW --APPROXIMATION ALGORITHMS FOR MAX SAT 663

The property f(1) 1 and f(0) 0 implies that the randomized rounding sets the
value of a variable xi deterministically according to y when y E {0, 1}.

3. For k and Yl Yk , notice that any function f with property
must satisfy

for all integers k >_ 1. This partially explains the choice of the lower bound in Theorem
5.2. The upper bound can be similarly obtained by considering 0..

4. Although f(y) y is not a function with property -34, there exist linear
functions with property as demonstrated in Theorem 5.3.

5. The linear function fl/4(Y) of Theorem 5.3 corresponds to setting xi to be
true with probability + yi. However, the resulting algorithm differs from the one
mentioned after Theorem 4.1 since in the latter the xi’s are not set independently of
each other.

6. The function described in Theorem 5.4 is the "closest" to Johnson’s scheme
in the sense that, for any y e [0, 1], the function f of Theorem 5.4 minimizes If(y)- 1/2]
over all functions with property -. Indeed, by considering the case k 1, 0 or 1,
one derives that any function f with property satisfies

3 3 1< f() < +
for any y G [0, 1].

Our proofs of Theorems 5.2-5.4 use similar ideas, but the proof of Theorem 5.4 is
more tedious than the others since we have to differentiate between several cases. For
this reason, we have omitted its proof, but the reader can find it in an earlier version
of this paper [6]. To prove the theorems, we use the following lemma to restrict our
attention to the case k (corresponding to a clause with no negated variable).

LEMMA 5.5. Let g: [0, 1] -- [0, 1] be a function satisfying

(2) 1 H(1 g(yi)) >_ - min 1, y’ y{

i--1

for all k and all yl,y2,...,yk [0, 1].
satisfying

Consider any function f [0, 1] --+ [0, 1]

(3) < <

Proof. Consider any k, with k >_ and any Yl,..., Yk [0, 1]. Then

k k

i--1 i=/+1 i--1 i---l+1
k

1 H(I
i=1

> min 1, y
4

i=l

_amin 1,i+ (1-i)
4

i=1 i=/+1

D
ow

nl
oa

de
d 

04
/2

5/
18

 to
 1

28
.1

05
.1

4.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



664 M.X. GOEMANS AND D. P. WILLIAMSON

where y yi for i 1,...,l and y 1 yi for + 1,...,k.
Proof of Theorem 5.2. By Lemma 5.5, we only need to show that g(y) 1 -4

satisfies (2). We have

k k

1 H(1 g(Yi)) 1 H
i=l i=l

I 4-Y g(Y)

kwhere Y =1 Y" Since g(Y) is increasing with Y, in order to prove (2) we only
need to show that g(Y) >_ }Y for any Y E [0, 1]. This follows from the concavity of

3g(Y) and the facts that g(0)= 0 and g(1)= . cl
3 < a < 1/4 Since f(y)=a+(1-2a)yProof of Theorem 5.3. Suppose 2- -satisfies 1 f(1 y) f(y), we only need to show that fa(y) satisfies (2) in order

to use Lemma 5.5. We have

k k

1 H(1 fa(yi)) 1 H (1 c (1 2c)yi)
i--1 i--1

by the arithmetic/geometric mean inequality. Letting y (Eik=l yi)/k, we need to
show that

(4)
3
min(1 ky),1 (1-a- (1 2a)y)k >_

for any y E [0, 1]. Since the left-hand side is increasing with y, we can restrict our
attention to y e [0, }]. Furthermore, since it is concave in y, we can just check (4) for
y 0 (for which it is trivially satisfied) and for y }. For this latter value, we need
to prove that

(5/

while (5) always holds forfor any integer k >_ 1. For k 1, (5) reduces to a <_
k 2. For k >_ 3, (5) is equivalent to

(6) a >_ k- 1 k4-/k

One can show that h(x) (x- 1 x4-/x)/(x 2) is decreasing in x for x > 2 and,
3thus, (6) holds provided that c _> h(3)= 2- -. D

6. Concluding remarks. The existence of functions with property } proves a
worst-case bound on the relative duality gap associated with (LP), namely that
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NEW -3a-APPROXIMATION ALGORITHMS FOR MAX SAT 665

Moreover, this worst-case analysis is tight, as can be seen from the MAX 2SAT in-
stance

x Vx2
Xl /2

/x2
/2

with unit weights. As we observed previously, the LP solution Yi 1/2 for all i and
zj 1 for all j is optimal for any instance without unit clauses and has value -j wj.
In this case, Zp 4, while Zip 3.

The performance guarantee of - for our algorithms is also tight. For any instance
without unit clauses, all of our algorithms reduce to Johnson’s algorithm, since yi 5for all i is an optimal solution to (LP) and all the functions given above have f(1/2) 3"
Johnson’s algorithm is a -approximation algorithm on this class of instances, and
he gives instances of this type that are tight for his algorithm [7]. Furthermore, any
function f with property -3

a must satisfy f(1/2) 1/2. This follows from the definition
Therefore, withoutof property for the values k 2, 0 or 2, and yl Y2 3"

changing our analysis or strengthening the linear programming relaxation, one cannot
expect to beat the performance guarantee of -.

Results of Arora et al. [2] imply that there exist constants within which MAX
2SAT and MAX 3SAT (every clause has at most 3 literals) cannot be approximated
unless P NP. As of the writing of this paper, the best known constant for MAX
3SAT is 112/113 [3]. There is much room for improvement between this hardness
result and the approximation algorithms presented here and by Yannakakis [13].

Thus it is an interesting open question as to whether the linear programming re-
laxation can be strengthened so that a better performance guarantee is possible using
these techniques. Recent work of the authors [5] has shown that using a form of ran-
domized rounding on a nonlinear programming relaxation gives a .878-approximation
algorithm for the MAX 2SAT problem. It is not yet clear whether this result can be
extended to MAX SAT in general. Another interesting open question is that of com-
pletely characterizing the functions with property . Finally, we would like to know
if the technique used here of randomized rounding with a function other than the
identity function can be applied to other problems with natural linear programming
relaxations.

Acknowledgments. We would like to thank Rick Vohra for suggesting the search
for simple functions with property .
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