
College Admissions and the
Stability of Marriage

D. Gale and L. S. Shapley

1. INTRODUCTION. The problem with which we shall be concerned relates to the
following typical situation: A college is considering a set of n applicants of which
it can admit a quota of only q . Having evaluated their qualifications, the admissions
office must decide which ones to admit. The procedure of offering admission only
to the q best-qualified applicants will not generally be satisfactory, for it cannot be
assumed that all who are offered admission will accept. Accordingly, in order for a
college to receive q acceptances, it will generally have to offer to admit more than q
applicants. The problem of determining how many and which ones to admit requires
some rather involved guesswork. It may not be known (a) whether a given applicant
has also applied elsewhere; if this is known it may not be known (b) how he ranks the
colleges to which he has applied; even if this is known it will not be known (c) which
of the other colleges will offer to admit him. A result of all this uncertainty is that
colleges can expect only that the entering class will come reasonably close in numbers
to the desired quota, and be reasonably close to the attainable optimum in quality.

The usual admissions procedure presents problems for the applicants as well as the
colleges. An applicant who is asked to list in his application all other colleges applied
for in order of preference may feel, perhaps not without reason, that by telling a college
it is, say, his third choice he will be hurting his chances of being admitted.

One elaboration is the introduction of the “waiting list,” whereby an applicant can
be informed that he is not admitted but may be admitted later if a vacancy occurs. This
introduces new problems. Suppose an applicant is accepted by one college and placed
on the waiting list of another that he prefers. Should he play safe by accepting the first
or take a chance that the second will admit him later? Is it ethical to accept the first
without informing the second and then withdraw his acceptance if the second later
admits him?

We contend that the difficulties here described can be avoided. We shall describe
a procedure for assigning applicants to colleges which should be satisfactory to both
groups, which removes all uncertainties and which, assuming there are enough appli-
cants, assigns to each college precisely its quota.

2. THE ASSIGNMENT CRITERIA. A set of n applicants is to be assigned among
m colleges, where qi is the quota of the i th college. Each applicant ranks the colleges
in the order of his preference, omitting only those colleges which he would never
accept under any circumstances. For convenience we assume there are no ties; thus,
if an applicant is indifferent between two or more colleges he is nevertheless required
to list them in some order. Each college similarly ranks the students who have applied
to it in order of preference, having first eliminated those applicants whom it would
not admit under any circumstances even if it meant not filling its quota. From these
data, consisting of the quotas of the colleges and the two sets of orderings, we wish
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to determine an assignment of applicants to colleges in accordance with some agreed-
upon criterion of fairness.

Stated in this way and looked at superficially, the solution may at first appear obvi-
ous. One merely makes the assignments “in accordance with” the given preferences.
A little reflection shows that complications may arise. An example is the simple case
of two colleges, A and B, and two applicants, α and β, in which α prefers A and β
prefers B, but A prefers β and B prefers α. Here, no assignment can satisfy all prefer-
ences. One must decide what to do about this sort of situation. On the philosophy that
the colleges exist for the students rather than the other way around, it would be fitting
to assign α to A and β to B. This suggests the following admittedly vague principle:
other things being equal, students should receive consideration over colleges. This re-
mark is of little help in itself, but we will return to it later after taking up another more
explicit matter.

The key idea in what follows is the assertion that—whatever assignment is finally
decided on—it is clearly desirable that the situation described in the following defini-
tion should not occur:

Definition. An assignment of applicants to colleges will be called unstable if there are
two applicants α and β who are assigned to colleges A and B, respectively, although
β prefers A to B and A prefers β to α.

Suppose the situation described above did occur. Applicant β could indicate to col-
lege A that he would like to transfer to it, and A could respond by admitting β, letting
α go to remain within its quota. Both A and β would consider the change an improve-
ment. The original assignment is therefore “unstable” in the sense that it can be upset
by a college and applicant acting together in a manner which benefits both.

Our first requirement on an assignment is that it not exhibit instability. This im-
mediately raises the mathematical question: will it always be possible to find such an
assignment? An affirmative answer to this question will be given in the next section,
and while the proof is not difficult, the result seems not entirely obvious, as some
examples will indicate.

Assuming for the moment that stable assignments do exist, we must still decide
which among possibly many stable solutions is to be preferred. We now return to the
philosophical principle mentioned earlier and give it a precise formulation.

Definition. A stable assignment is called optimal if every applicant is at least as well
off under it as under any other stable assignment.

Even granting the existence of stable assignments it is far from clear that there are
optimal assignments. However, one thing that is clear is that the optimal assignment,
if it exists, is unique. Indeed, if there were two such assignments, then, at least one
applicant (by our “no tie” rule) would be better off under one than under the other;
hence one of the assignments would not be optimal after all. Thus the principles of
stability and optimality will, when the existence questions are settled, lead us to a
unique “best” method of assignment.

3. STABLE ASSIGNMENTS AND A MARRIAGE PROBLEM. In trying to
settle the question of the existence of stable assignments we were led to look first at
a special case, in which there are the same number of applicants as colleges and all
quotas are unity. This situation is, of course, highly unnatural in the context of college
admissions, but there is another “story” into which it fits quite readily.
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A certain community consists of n men and n women. Each person ranks those of
the opposite sex in accordance with his or her preferences for a marriage partner. We
seek a satisfactory way of marrying off all members of the community. Imitating our
earlier definition, we call a set of marriages unstable (and here the suitability of the
term is quite clear) if under it there are a man and a woman who are not married to
each other but prefer each other to their actual mates.

Question. For any pattern of preferences is it possible to find a stable set of marriages?

Before giving the answer let us look at some examples.

Example 1. The following is the “ranking matrix” of three men, α, β, and γ , and
three women, A, B, and C .

A B C

α 1, 3 2, 2 3, 1
β 3, 1 1, 3 2, 2
γ 2, 2 3, 1 1, 3

The first number of each pair in the matrix gives the ranking of women by the men,
the second number is the ranking of the men by the women. Thus, α ranks A first, B
second, C third, while A ranks β first, γ second, and α third, etc.

There are six possible sets of marriages; of these, three are stable. One of these is
realized by giving each man his first choice, thus α marries A, β marries B, and γ
marries C . Note that although each woman gets her last choice, the arrangement is
nevertheless stable. Alternatively one may let the women have their first choices and
marry α to C , β to A, and γ to B. The third stable arrangement is to give everyone his
or her second choice and have α marry B, β marry C , and γ marry A. The reader will
easily verify that all other arrangements are unstable.

Example 2. The ranking matrix is the following.

A B C D

α 1, 3 2, 3 3, 2 4, 3
β 1, 4 4, 1 3, 3 2, 2
γ 2, 2 1, 4 3, 4 4, 1
δ 4, 1 2, 2 3, 1 1, 4

There is only the one stable set of marriages indicated by the circled entries in the
matrix. Note that in this situation no one can get his or her first choice if stability is to
be achieved.

Example 3. A problem similar to the marriage problem is the “problem of the room-
mates.” An even number of boys wish to divide up into pairs of roommates. A set of
pairings is called stable if under it there are no two boys who are not roommates and
who prefer each other to their actual roommates. An easy example shows that there
can be situations in which there exists no stable pairing. Namely, consider boys α, β,
γ and δ, where α ranks β first, β ranks γ first, γ ranks α first, and α, β and γ all rank
δ last. Then regardless of δ’s preferences there can be no stable pairing, for whoever
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has to room with δ will want to move out, and one of the other two will be willing to
take him in.

The above examples would indicate that the solution to the stability problem is not
immediately evident. Nevertheless,

Theorem 1. There always exists a stable set of marriages.

Proof. We shall prove existence by giving an iterative procedure for actually finding a
stable set of marriages.

To start, let each boy propose to his favorite girl. Each girl who receives more than
one proposal rejects all but her favorite from among those who have proposed to her.
However, she does not accept him yet, but keeps him on a string to allow for the
possibility that someone better may come along later.

We are now ready for the second stage. Those boys who were rejected now propose
to their second choices. Each girl receiving proposals chooses her favorite from the
group consisting of the new proposers and the boy on her string, if any. She rejects all
the rest and again keeps the favorite in suspense.

We proceed in the same manner. Those who are rejected at the second stage propose
to their next choices, and the girls again reject all but the best proposal they have had
so far.

Eventually (in fact, in at most n2
− 2n + 2 stages) every girl will have received a

proposal, for as long as any girl has not been proposed to there will be rejections and
new proposals, but since no boy can propose to the same girl more than once, every
girl is sure to get a proposal in due time. As soon as the last girl gets her proposal the
“courtship” is declared over, and each girl is now required to accept the boy on her
string.

We assert that this set of marriages is stable. Namely, suppose John and Mary are
not married to each other but John prefers Mary to his own wife. Then John must have
proposed to Mary at some stage and subsequently been rejected in favor of someone
that Mary liked better. It is now clear that Mary must prefer her husband to John and
there is no instability.

The reader may amuse himself by applying the procedure of the proof to solve the
problems of Examples 1 and 2, or the following example which requires ten iterations:

A B C D

α 1, 3 2, 2 3, 1 4, 3
β 1, 4 2, 3 3, 2 4, 4
γ 3, 1 1, 4 2, 3 4, 2
δ 2, 2 3, 1 1, 4 4, 1

The condition that there be the same number of boys and girls is not essential. If
there are b boys and g girls with b < g, then the procedure terminates as soon as b girls
have been proposed to. If b > g the procedure ends when every boy is either on some
girl’s string or has been rejected by all of the girls. In either case the set of marriages
that results is stable.

It is clear that there is an entirely symmetrical procedure, with girls proposing to
boys, which must also lead to a stable set of marriages. The two solutions are not
generally the same as shown by Example 1; indeed, we shall see in a moment that
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when the boys propose, the result is optimal for the boys, and when the girls propose
it is optimal for the girls. The solutions by the two procedures will be the same only
when there is a unique stable set of marriages.

4. STABLE ASSIGNMENTS AND THE ADMISSIONS PROBLEM. The exten-
sion of our “deferred-acceptance” procedure to the problem of college admissions is
straight-forward. For convenience we will assume that if a college is not willing to
accept a student under any circumstances, as described in Section 2, then that student
will not even be permitted to apply to the college. With this understanding the proce-
dure follows: First, all students apply to the college of their first choice. A college with
a quota of q then places on its waiting list the q applicants who rank highest, or all
applicants if there are fewer than q, and rejects the rest. Rejected applicants then apply
to their second choice and again each college selects the top q from among the new
applicants and those on its waiting list, puts these on its new waiting list, and rejects
the rest. The procedure terminates when every applicant is either on a waiting list or
has been rejected by every college to which he is willing and permitted to apply. At
this point each college admits everyone on its waiting list and the stable assignment
has been achieved. The proof that the assignment is stable is entirely analogous to the
proof given for the marriage problem and is left to the reader.

5. OPTIMALITY. We now show that the “deferred acceptance” procedure just de-
scribed yields not only a stable but an optimal assignment of applicants. That is,

Theorem 2. Every applicant is at least as well off under the assignment given by the
deferred acceptance procedure as he would be under any other stable assignment.

Proof. Let us call a college “possible” for a particular applicant if there is a stable
assignment that sends him there. The proof is by induction. Assume that up to a given
point in the procedure no applicant has yet been turned away from a college that is
possible for him. At this point suppose that college A, having received applications
from a full quota of better-qualified applicants β1, . . . , βq , rejects applicant α. We
must show that A is impossible for α. We know that each βi prefers college A to all the
others, except for those that have previously rejected him, and hence (by assumption)
are impossible for him. Consider a hypothetical assignment that sends α to A and
everyone else to colleges that are possible for them. At least one of the βi will have
to go to a less desirable place than A. But this arrangement is unstable, since βi and
A could upset it to the benefit of both. Hence the hypothetical assignment is unstable
and A is impossible for α. The conclusion is that our procedure only rejects applicants
from colleges which they could not possibly be admitted to in any stable assignment.
The resulting assignment is therefore optimal.

Parenthetically we may remark that even though we no longer have the symmetry
of the marriage problem, we can still invert our admissions procedure to obtain the
unique “college optimal” assignment. The inverted method bears some resemblance to
a fraternity “rush week”; it starts with each college making bids to those applicants it
considers most desirable, up to its quota limit, and then the bid-for students reject all
but the most attractive offer, and so on.

6. CONCLUDING REMARKS. The reader who has followed us this far has doubt-
less noticed a certain trend in our discussion. In making the special assumptions needed
in order to analyze our problem mathematically, we necessarily moved further away
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from the original college admission question, and eventually in discussing the mar-
riage problem, we abandoned reality altogether and entered the world of mathematical
make-believe. The practical-minded reader may rightfully ask whether any contribu-
tion has been made toward an actual solution of the original problem. Even a rough
answer to this question would require going into matters which are nonmathemati-
cal, and such discussion would be out of place in a journal of mathematics. It is our
opinion, however, that some of the ideas introduced here might usefully be applied to
certain phases of the admissions problem.

Finally, we call attention to one additional aspect of the preceding analysis which
may be of interest to teachers of mathematics. This is the fact that our result provides
a handy counterexample to some of the stereotypes which nonmathematicians believe
mathematics to be concerned with.

Most mathematicians at one time or another have probably found themselves in the
position of trying to refute the notion that they are people with “a head for figures,”
or that they “know a lot of formulas.” At such times it may be convenient to have
an illustration at hand to show that mathematics need not be concerned with figures,
either numerical or geometrical. For this purpose we recommend the statement and
proof of our Theorem 1. The argument is carried out not in mathematical symbols but
in ordinary English; there are no obscure or technical terms. Knowledge of calculus is
not presupposed. In fact, one hardly needs to know how to count. Yet any mathemati-
cian will immediately recognize the argument as mathematical, while people without
mathematical training will probably find difficulty in following the argument, though
not because of unfamiliarity with the subject matter.

What, then, to raise the old question once more, is mathematics? The answer, it ap-
pears, is that any argument which is carried out with sufficient precision is mathemat-
ical, and the reason that your friends and ours cannot understand mathematics is not
because they have no head for figures, but because they are unable to achieve the de-
gree of concentration required to follow a moderately involved sequence of inferences.
This observation will hardly be news to those engaged in the teaching of mathematics,
but it may not be so readily accepted by people outside of the profession. For them the
foregoing may serve as a useful illustration.
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