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GREEDOIDS AND LINEAR OBJECTIVE FUNCTIONS*

BERNHARD KORTE" AND L/SZL( LOV/SZ:I:

Abstract. Greedoids were introduced by the authors as generalizations of matroids providing a

framework for the greedy algorithm. They can be characterized algorithmically via the optimality of the
greedy algorithm for a class of objective functions, which are in general not linear and do not include all
linear functions. It is therefore natural to ask the following questions: (1) What are those linear objective
functions which can be optimized over any greedoid by the greedy algorithm; (2) what are those greedoids
over which the linear objective function can be optimized by the greedy algorithm. This paper gives an
answer to both questions. Moreover, it gives slimming procedures for obtaining such greedoids from matroids
and it gives briefly some (negative) oracle results about greedoid optimization and greedoid recognition.

1. Introduction. In previous papers (Korte and Lovisz [1981] and [1982a]) we
have introduced greedoids as generalizations of matroids providing a framework for
the greedy algorithm. Matroids can be characterized axiomatically as those subclusive
set-systems for which the greedy solution is optimal for certain optimization problems
(e.g. linear objective functions, bottleneck functions). Greedoids can also be character-
ized algorithmically via the optimality of the greedy algorithm for a class of objective
functions, which are in general not linear and do not include all linear functions (cf.
Korte and Lovisz [1982a]). It is therefore natural to ask the following questions: (1)
What are those linear objective functions which can be optimized over any greedoid
by the greedy algorithm; (2) what are those greedoids over which any linear objective
function can be optimized by the greedy algorithm. This paper gives an answer to both
questions.

The algorithmic principle of greediness, i.e. of a locally myopic strategy, can be
defined in different ways. The most common greedy approach is that of best-in greedy:
starting with the empty set, the greedy solution will be built up recursively by adding
the best possible element to it at each step, while remaining feasible. Another approach
is that of worst-out greedy. Here we start with the complete ground set and eliminate
from it in each step the worst-possible element as long as the remaining set is spanning.
For matroids both approaches are equivalent, since the worst-out greedy is the best-in
greedy for the negative objective function over the dual matroid. In the case of
greedoids, it turns out that for general linear objective functions the worst-out greedy
is optimal for a broader class of greedoids than the best-in-approach.

In 2 we give some definitions and basic facts about greedoids, which will be
needed in the rest of the paper. However, the interested reader is referred to Korte
and Lovisz [1982a] and [1982b] for a more detailed study of structural aspects of
greedoids. Section 3 gives a compatibility characterization of linear objective functions
which is sufficient to optimize these functions over any greedoid by the greedy
algorithm. Section 4 characterizes those greedoids over which any linear objective
function can be optimized by the worst-out greedy algorithm. A proper subclass of

* Received by the editors July 6, 1983. This work was supported by the joint research project
"Algorithmic Aspects of Combinatorial Optimization" of the Hungarian Academy of Sciences (Magyar
Tudominyos Akad6mia) and the German Research Association (Deutsche Forschungsgemeinschaft, SFB
21). This work was presented at the SIAM Second Conference on the Applications of Discrete Mathematics,
held at Massachusetts Institute of Technology, Cambridge, Massachusetts, June 27-29, 1983.

" Institut fiir konometric und Operations Research, Rheinische Friedrich Wilhelms Universitit, Bonn,
West Germany.

t E6tv6s Lorind University, Department of Analysis I, Budapest, Hungary.

229

D
ow

nl
oa

de
d 

03
/2

3/
18

 to
 1

28
.1

05
.1

4.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



230 BERNHARD KORTE AND L/SZLO LOV/SZ

these greedoids has the property that the best-in greedy is optimal for any linear
objective function. Section 5 gives some construction principles to obtain those
greedoids by slimming a given matroid. Finally, in 6 we state some (negative) oracle
results about greedoids, among which it is noteworthy that the problem of optimizing
an arbitrary linear objective function over a general greedoid given by a feasibility
oracle is NP-hard. There is also no polynomial feasibility oracle algorithm to distinguish
a greedoid from a matroid.

2. Definitions and basic facts about greedoids. We assume that the reader is
familiar with the basic facts of matroid theory (cf. Welsh [1976]) and in general our
notation is in accordance with the standard matroid terminology.

A set-system over a finite ground set E is a pair (E, ) with o% c__ 2. A set-system
is a matroid if the following axioms hold:

(M1) E;
(M2) X Y implies X ;
(M3) if X, Y and IXI > YI, then there exists a x Y-X such that

Yt_J{x} .
A set-system which satisfies only (M1) and (M2) has little structure, but very

different names. It is called independence system, simplicial complex, subclusive or
hereditary set-system. For an arbitrary set-system (E, o%) we define its hereditary closure
Y( as:

Y:={Xc__ Y: Y }.

Another but more structural way to relax matroids is to keep the exchange axiom
(M3) (and the trivial axiom (M1)) but to remove subclusiveness (M2); and this is
exactly one way to define greedoids. There is another equivalent and even more natural
way to define greedoids via extending the matroidal structure to languages, i.e. systems
of ordered sets or strings, but for the purpose of this paper it is sufficient to consider
only the unordered version of greedoid definition. Thus, we call a set-system (E, )
a greedoid if (M1) and (M3) holds. (M1) and (M3) imply a weak subclusiveness, which
we call accessibility:

(M2’) for all X ff there exists x X such that X-{x} o.
Analogously to hereditary set-systems we call a set system which satisfies (M1)

and (M2’) an accessible set-system. We define the accessible kernel Y{ of a set-system
(E, if) as

if/" :-- {X ,.7 X {Xl," xk} and {Xl," Xi} for all 1 -< -< k}.

(M1) and (M3) are equivalent to (M1), (M2’), and
(M3’) if X, Ye o% and Ixl-lY[/ 1, then there exists a x eX-Y such that

YU{x} .
In the case of matroids (M3) and (M3’) are equivalently used, but this is only possible
since (M2) holds. In analogy to matroid theory, we call sets which belong to feasible
or independent. Maximal independent sets are called bases. An element d E is called
dummy, if it does not occur in any feasible set. A greedoid is normal, if it has no
dummy elements; it is called full if .

For a greedoid we can define the (independence) rank of a set X
_
E as:

r(X) := max {IAI: A c_ X, A e }.D
ow
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GREEDOIDS AND LINEAR OBJECTIVE FUNCTIONS 231

This function has the following properties for X, Y c_ E and x, y E
(R1) r() O;
(R2) r(X) <= Ixl;
(R3) if X_ Y then r(X) <-_ r( Y);
(R4) if r(X) r(X U {x}) r(X U {y}) then r(X) r(X {x} U {y}).
Conversely, a function r:2E->7/ satisfying (R1), (R2). (R3) and (R4) defines

uniquely a greedoid (cf. Korte and Lovfisz [1982a]). These axioms are again direct
relaxations of the rank definition of matroids, which in addition have the unit increase
property:

r(X U {x}) - r(X) + l forXE,xE.

From (R1)-(R4) and the unit increase property one derives in matroid theory that
the rank function is submodular, i.e. r(X f3 Y) + r(X U Y) <- r(X) + r(Y). This fails to
hold for greedoids in general; but the property (R4), which we call local submodularity,
is often a reasonable substitute.

In contrast to matroids, the intersection of a set with a basis of a greedoid may
have larger cardinality than the rank of this set. Therefore we define the basis rank
ofasetXc_E as

fl(X) := max {IX f-1 BI: B e }.

Clearly, fl(X) >= r(X). A set X
_
E is called rank-feasible if fl(X) r(X). We denote

the family of all rank feasible sets by t(E, ). Clearly, c_c_ t and o t for a
full greedoid. In general (E, ) is not a greedoid and is not closed under union.

We recall here some facts about rank-feasibility (cf. Korte and Lovfisz [1982b]):
A greedoid is a matroid iff 2E. For A, B c_c_ E we have

fl(A U B) + r(A CI B) <= fl(A) + fl(B)

and consequently, if A, B e then

r(A U B) + r(A t3) <- r(A) + r(B),

i.e. r is submodular. This can be also derived from the fact that A iff r(A U X) <-

r(A) + IxI for all X
_
E A.

A fundamental concept in matroid theory is the closure operator. Therefore we
define analogously for greedoids the (rank) closure of a set X c_ E as

o’(X) := {x E: r(X k.J {x}) r(X)}.

This operator is not monotone, but it has the following properties:
(C1) X c_ r(X) for all X

_
E;

(C2) if X c_ y c_ r(X) then r(X) r( Y);
(C3) if Xc_E and xeE-X such that for all zeXUx, zr(XUx-z), and

x o’(X U y), then y r(X U x).
It was shown in Korte and Lovfisz [1982a] that a mapping r" 2e - 2 satisfying

(C1), (C2), and (C3) uniquely defines a greedoid.
The closure axioms for greedoids are again relaxations of the closure for matroids.

(C1) is trivial, (C2) follows from monotonicity and idempotence, and (C3) is a
weakening of the Steinitz-McLane axiom for matroids. It can be shown that (C2)
implies idempotence, but of course not monotonicity.D
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232 BERNHARD KORTE AND LfiSZLO LOVSZ

A set X
_
E is called closed if X r(X). An easy construction leads to a monotone

closure operator, namely

(X) := f’l { Y: X Y and Y closed).

/x does not determine the greedoid uniquely. In fact, for a full greedoid we have/z id.
We call a set closure-feasible if X c__r(A) implies X c__(A), ormwhich is

equivalentmif X c_ tr(A) implies X c_. tr(B) for A_ B c_c_ E. The family of all closure
feasible sets will be denoted by (E, ). The family is closed under union and
we have c__ . Further, with inclusion as a partial order forms a lattice with the
operation A v B := A U B and A ^ B := U {C : C c_ A f’) B}. The rank function r is
submodular on this lattice. (E, ) is not a greedoid in general, but the accessible kernel
Y{ Y’() of c defines trivially a greedoid. The rank function does not have the unit
increase property on % But since Y(c__ is also a lattice, the rank function is also
submodular on

A very substantial subclass of greedoids are interval greedoids. We call a greedoid
(E, ) an interval greedoid if for all A, B, C with A c_c_ B c_ C and x E C such
that A U x and C U x , it follows that B U x . In Korte and Lovisz [1982b]
it was shown that a greedoid is an interval greedoid iff and iff

___
t. Generally,

no inclusion relation holds between and . Furthermore, if (E, if) is an interval
greedoid, then already (E, ) is a greedoid. We call a normal greedoid a shelling
structure if the interval property mentioned above holds without upper bounds, i.e. if
for all A

___
B and x E B such that A U x o it follows B U x o. Shelling structures

are studied in greater detail in Korte and Lovisz [1983a].

3. Special linear objective functions and general greedoids. An optimization
problem over a greedoid (E, o) can be described by introducing a linear objective
function w E R as a weighting of the elements of the ground set. This function can
be extended to a modular function w 2E R by w(X) := xx w(x) for all X c_ E. For
reasons of simplicity we will consider in the following only maximization problems, i.e.

max {w(F): F o}.

We call a basis X of (E, ) an optimal basis for which w(X) is maximal among
all bases.

The principle of the greedy algorithm (or more precisely: the best-in greedy
algorithm) can be briefly described by the greedy bases, which are obtained with this
algorithm. We call a basis {Xl,""" Xrl of a greedoid (E, ) a (best-in) basis for w if
it is obtained by the following recurrence: Xi+l is the element with the largest weight
in E-{Xl,’", xi} such that {xl,""", xi, Xi+l} o.

In the next section we refer to a worst-out greedy algorithm which in contrast
starts with the ground set E and eliminates elements with the smallest possible weight
as long as the remaining set is spanning, i.e. contains a basis. The worst-out greedy
basis for w is then a basis Y E- {x1,"’’, Xk} which is obtained by the recurrence:
x+l is the element with smallest weight in E-{Xl,’’’,xi} such that E-
{Xl,"" ", x, x/} is spanning. It is an easy observation that for matroids the best-in
greedy basis and the worst-out greedy basis are identical.

In general, an arbitrary linear objective function cannot be optimized over a
greedoid with the greedy algorithm. Therefore, we need the following compatibility
definition: Let 5

___
2E, and let w E N. We say that w is 6e-compatible if {x e E: w(x) >-

c}e 5 for all c e N, i.e. all level sets of w are in 5. As usual, we call a function
w: E - {0, 1 } the characteristic function of a set X c_c_ E iff w(x) 1 for all x e X.
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GREEDOIDS AND LINEAR OBJECTIVE FUNCTIONS 233

Then the definition of rank-feasibility implies immediately the following:
LEMMA 3.1. If W is the characteristic function of a rank-feasible set, then all greedy

bases are optimal
Our aim is to prove the following theorem:
THEOREM 3.2. Let E, ) be a greedoid and w E - R be an G-compatible weight-

ing. Then all greedy basis for w are optimal.
Proof. We can write w in the form

W 1iWi,
i=1

where Wl--< we--<... =< wt are characteristic functions of rank-feasible sets, and
A1, ",At > 0. In fact, let Cl > c2 >" > ct be the different values assumed by w over
2, and let Xi be the level set Xi {x: w(x)>-ci}. Then we can choose w to be the
characteristic function of X and

Let X be a greedy basis for w. Then X is, clearly, a greedy basis for each w. So
by Lemma 3.1, X is an optimal basis for each w. But then, clearly, X is an optimal
basis for w. [3

Remark. Faigle [1979] considers certain accessible set-systems called generating
systems and proves that the best-in greedy algorithm optimizes certain linear objective
functions over them. While his systems are not necessarily greedoids, those feasible
subsets of his "generating systems" which come up in a greedy basis do form a greedoid.
Based on this, it is easy to derive Faigle’s result from Theorem 3.2. For a more detailed
discussion of the relationship between greedoids and Faigle’s structures, see Korte and
Lovisz 1983b].

4. Special greedoids and general linear objective functions. We now invert the
question of the last section and ask how much we have to restrict greedoids such that
a greedy basis for any arbitrary linear objective function is optimal. The next theorem
gives necessary and sufficient conditions for the worst-out greedy.

THEOREM 4.1. For a greedoid (E, ) the following statements are equivalent:
(1) Let B1, Be be bases of (E, ); for every x

such that B2 (.J x- y e
(2) The hereditary closure of is a matroid (E, ).
(3) fl is submodular.
(4) For every linear objective function w a worst-out greedy basis is optimal.
Proof. (1) <=> (2) is known from matroid theory.
(2)=>(3): It suffices to show that/3 is the rank function of (E, ). Let X

_
E; then

13(X)’-max {lBXl: Be }=max{lUl: ux, U},

since is the hereditary closure.
(2):=>(4): The spanning sets for and are the same, and so the worst-out

greedy basis for ff and A/ are the same. We know from matroid theory that the
worst-out greedy bases are optimal for

(3)=>(2): Trivially,/3 has the unit increase property. Hence/3 is a matroid rank
function. But X e iff fl(X)=IXI. So (E, ) is the matroid determined by/3.

(4)=>(2): Let M*:={X_E: there exists a basis B with Bf)X=}. Then a
worst-out greedy bases for is optimal iff a best-in greedy basis for M* is optimal.
But this is the case itt (E, M*) is a matroid which is equivalent to the fact that (E,
is a matroid.

D
ow

nl
oa

de
d 

03
/2

3/
18

 to
 1

28
.1

05
.1

4.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



234 BERNHARD KORTE AND LSZL0 LOVSZ

Remarks. 1. Condition (1) is not enough to guarantee the optimality of the best-in
greedy: Let E ={a, b, c} and ={, {a}, {b}, {a, b}, {b, c}}. The greedoid (E, ) satis-
fies (1). However, with w(a)= 1, w(b) =0, w(c)=M >> 1, the best-in greedy basis is
{a, b} with weight 1, while the optimal basis is {b, c} with weight M.

2. Let r denote the matroid closure; then we have for greedoids with condition
(1) that tr (A) =/z (A) for A . In fact, y /z (A) iff y A or A

_
B, B implies

y B which is equivalent to y tr (A).
The following theorem gives optimality conditions for the best-in greedy, which

are of the same kind, but more restrictive.
THEOREM 4.2. For a greedoid (E, ) the following statements are equivalent:
(1) Let A , B

_
A, be a basis of (E, ) and let x E B and A tA {x} . Then

there exists a y B A with A tAy such that B x y (strong exchange
property).

(2) The hereditary closure t of is a matroid (E, ) and every set which is closed
in (-closed) is also closed in (t-closed).

(3) For every linear objective function w a (best-in) greedy basis is optimal.
Proof. (1) ::> (3). Let w E --> be any objective function, B an optimum basis,

and a l, a,. ., ar a best-in greedy basis, chosen in this order. Let a1," , ak B, but
ak+l B and choose B so that k is maximal. Let A := {a,. , ak}. By (1), there exists
a yeB-A such that AU ye and BI,.Jak+l--y . By greediness, w(y) < W(ak+l)
and so w(B U ak+l- y) -->-- w(B). Since B is optimal, we have w(B U ak+l- Y) w(B)
and so B U ak+1-y is also optimal, which contradicts the maximality of k.

(3):=>(2). Let X, YeAr, [XI<[Y[. Let 0<t<l and define w(x)=l if xeX,
w(x) if X Y-X, and w(x) 0 otherwise. The set of greedy bases is independent
of the value of t. If 0, then every optimal basis must contain X. Hence every greedy
basis must contain X. But if t> IX- Y[/I Y-XI then there is a basis containing Y,
and hence the maximal objective value is greater or equal to t] Y-X[ +[Y f’l X
So a greedy basis must contain some element y e Y-X (besides X). Then X U y

Thus, we know that (E, At) is a matroid. It remains to show that every o-closed
set is also -closed. Let U be any -closed set, A an -basis of U, and extend A
to an At-basis A’ of U. Let v e E-U. Consider the objective function w(x)= 1 if
x e A’ and w(x)=0 otherwise. Then there exists a basis containing A’, and so every
optimal basis contains A’. Of course, every best-in greedy basis also contains A’. But
there must be also a greedy basis B starting with A t.J v, and so (A U v) U A’ A’ U v

___
B. Thus A’ U v e and so v r(A’), (-closure of A’). This holds for all v e E U,
so tr(A’)c_ U. But A’ is an -basis of U, so tr(A’)- U and so U is -closed.

(2) => (1). Consider try(A), (-closure of A); by hypothesis r(A) is also eg-
closed. B U x has a unique (fundamental) -circuit C. We have x C-r(A), but
since r(A) is -closed, it follows that [C- tr(A)l _-> 2. Let y e C- o-(A)- x. Then
AU ye o and BU x-ye , but BU x-y is a basis of At, and so a basis of

Remark. Condition (1) of Theorem 4.2 was independently observed by Goetschel
[1983].

5. Slimmed matroids. It is a natural question to ask what greedoids satisfy the
conditions of Theorems 4.2 and 4.1. Of course, matroids and trivially also all full
greedoids do so. A nontrivial class are undirected branching greedoids. In Korte and
Lovisz [1982a] we have described a search or directed branching greedoid (E, ) by
a directed graph G and a root r V(G). Let E E(G) and let be the set of arc-sets
of all arborescences in G rooted at r. The bases of (E, ) are maximal branchings in
G. In contrast, the undirected branching greedoid contains as feasible sets all cycle-free
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GREEDOIDS AND LINEAR OBJECTIVE FUNCTIONS 235

connected subgraphs of G which contain r. It is easy to see that this greedoid satisfies
condition (2) of Theorem 4.2. (The directed branching greedoid does not.)

On the other hand the conditions of Theorem 4.1 give rise to general constructions
of greedoids from a given matroid, whose set of bases is the same, but the feasible set
is slimmed. In the following we will introduce some construction principles of slimming
a matroid.

Given a matroid (E, At) we call a greedoid (E, ) a slimming of the matroid
(E, At) if ff At and all bases of At remain bases of . The undirected branching
greedoid is a slimming of the graphic matroid, actually an intersection of the graphic
matroid with the line search greedoid, which is a shelling structure defined on the same
graph G where is the collection of all edge-sets which are connected and contain r
(cf. Korte and Lowisz [1982a]).

The next theorem describes the first slimming procedure.
THEOREM 5.1. Let (E, At) be a matroid with rank function rt and r(E)= k. Let

A
_
A2 _" "_ A-I

_
E such that rt(E-A) <- k- i. Define
:= {X At: IX f’) A,I >= for 1 <= <-_ [XI}.

Then E, o%) is a greedoid and a slimming of (E, At).
Proof. We first show that (E, ) is a greedoid. To prove (M3’) we take X, Y 5

with IxI- YI / 1. Then there exists an x X- Y such that Y t.J x At. But Y fq Ail >=
and hence 1( Y t.J x) f’) Ai[->- for 1 <- --<IYI as Y . Further, IX f-) AIYI+I] >--IYI / 1
IXI since X ff and so X c_ AiYl+l, in particular x AiYl+ 1. Hence

I(YU x)f3AIyI+I>= I +IYfqAIyI+I>- I +IYt’qAIyII>= I +IYI
So YUx..

Further, ff is accessible. For, let X , and let be the least index such that
X
_

Ai. Since X , we have _-< IxI. Let x X (A-A-I). Then X- x At and
](X- x) f’) Aj] IX- x] => j if j-> and ](X- z) f3 AI IX A,]->_ [Xi > IX- x[ if j < i.
Hence X- x .

It remains to prove that contains all bases of At. Let B be a basis of At; then
]BfqAI= k-IBfq(E-A)I>=k-r(E-Ai)>=i. [3

Remarks. 1. The rank function r of o% can be obtained by the following formula:

r(X) := max {i: r(XfqAj)>=jfor l<=j<=i}.

2. It can be easily verified that the family

o {X c_. E: IX Ail >= for 1 <- =< IXI}
defines a shelling structure. Hence := At fq o%0 is the intersection of a matroid with
a shelling structure, and therefore an interval greedoid.

Another slimming procedure is given by
THEOREM 5.2. Let (E, At) be a matroid, (E, o) a greedoid and suppose that the

following hold:
(1) For X, YAt such that try(X) try(Y), we have X iff Y .
(2) All (or equivalently at least one) bases of At are in ;.

Then E, At f) ) is a greedoid which is a slimming of At.
Proof. We show (M3). Suppose X, Y At f’l Y, IX[ >IYI. Extend try(Y) (’1X to

an At-basis X1 of try(Y). Then tr(X1) try(Y) andso by (1), X1 e . Since Ix l <lxl,
there exists a xX-X1 such that XIU x ft. But x try(Y)= try(X1) since X
try(Y) c_ X1, but x X1. Hence X1 x At and so X1U x At f-I :. But tr (X1 t3 x)
r(YUx) andso YtAxAtfqby (1). [3

D
ow

nl
oa

de
d 

03
/2

3/
18

 to
 1

28
.1

05
.1

4.
23

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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The next theorem gives a further slimming construction.
THEOREM 5.3. (a) Let (E, ) be a matroid, J an accessible family of flats in ,

closed under union in the geometric lattice of (E, ). Let

0 := {X : (r(X) }

and let be the accessible kernel of o. Then (E, ) is a greedoid.
(b) Moreover, (E, ) is a slimming of (E, ) iff the following holds: for every

F and F1,’", Ft: J such that F1,’",Ft cover F in the lattice, we have that
F1 Ft is nonspanning in E, ll ).

Proof. (a) We show (M3): Let X, Y, IxI>IYI. By accessibility, X=
{Xl,’’’,Xm} such that {Xl,’",xi} for all l<=i<=m. Let be the first index
with xitr(Y). Then YUx. Furthermore
(r(xl, , xi)) J. Hence Y t_J x .

(b) I. By accessibility of , there exists a sequence of flats Bo
such that Bi J and r(B) i. Let b Bi-Bi_I; then {bl," , b,} ft. If F1U. t_J F,
is spanning, we can extend {bl," , bin} to a basis A of (E, ). Let a A-{b1," , b,}
such that {bl,’",bm, a}. Then aFv for some l=<v=<t, and so
(r({b,..., b,,, a}) =Fv. But {bl,""", bm, a} implies (r({bl,""’, bin, a}) J, a
contradiction.

II. Let b be any basis of . Consider a maximal subset A
_
B with A ft. We

claim that A B. Suppose not, and let F cry(A), B-A {bl,""", b,} and let F
(r(A t_) b). Then t_)F is spanning in (E, ), because B t_)F. Thus, there exists an

Fi J. But then A t_) b , contradiction.
Remark. If (E, ) is the free matroid, then the construction of Theorem 5.3 gives

every shelling structure (E, 1) by letting J 1.
6. Oracle results. In this final section we mention briefly some negative results

about greedoid optimization and greedoid recognition obtained by an oracle approach.
We do not go into details of oracle techniques here. The reader is referred to similar
approaches for independence systems and matroids in earlier papers (cf. Hausmann
and Korte [1981] and Jensen and Korte [1982]). As in the case of matroids we assume
that the greedoid (E, ) is given by a feasibility oracle, i.e. a mapping O:2e --) {Yes, No}
which is defined for X E as O(X) Yes if X , O(X) No otherwise.

It is clear that a feasibility oracle uniquely determines the greedoid. Moreover,
several questions concerning greedoids can be decided in polynomial time using the
feasibility oracle: e.g. computing the rank or closure of a set, as well as the problems
discussed in previous chapters. However, some other important questions cannot be
decided by good algorithms. To formulate these negative results, we need the following
definition.

A problem concerning greedoids given by a feasibility oracle is called NP-hard,
if there is a special class of greedoids, with some "name" (encoding) for each member,
such that the oracle can be realized by a polynomial-time algorithm for members of
this class (polynomial in the length of the "name") and the problem is NP-hard already
for members of this class.

THEOREM 6.1. The problem of optimizing a linear objective function over the bases
of an arbitrary greedoid given by a feasibility oracle is NP-hard.

Proof. We consider the k-truncation of the directed or undirected branching
greedoid (E, ), i.e. the greedoid (E, o(k)) with 7(k) :-- {X E: X and [XI-<- k}.
The problem of finding a maximum weighted branching of size less or equal to k
includes the Steiner problem, which is known to be NP-hard.
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Remark. The problem of optimizing an arbitrary linear objective function over
the feasible sets of a greedoid remains NP-hard even for shelling structures. In fact,
this optimization problem for line search greedoids also contains the Steiner problem.

THEOREM 6.2. There is no polynomial-time algorithm to decide whether a greedoid
given by a feasibility oracle is a matroid.

Proof. Consider the uniform matroid (E, M) of rank r=lE]/2 and the greedoid
(E, ) with ;:= M-{X} where IXI r-1. With the usual argument (cf. Hausmann
and Korte [1981]) one can show that any feasibility oracle algorithm can not distinguish
between (E, M) and (E, ) using only polynomially many calls on the feasibility
oracle. [3

COROLLARY 6.3. There is no polynomial algorithm to recognize a closure feasible
set for a greedoid given by a feasibility oracle, i.e. to decide membership in c.

Proof. It is an easy observation that a greedoid (E, ) is a matroid if[ {x} for
all x E. (To prove this one needs that ’ is closed under union.) Then apply Theorem
6.2. [3

THEOREM 6.4. There is no polynomial-time algorithm to decide whether a greedoid
given by a feasibility oracle is normal.

Proof. Let (E, ) be a uniform matroid of rank r IEI/2. Let d E and consider
the greedoid (E (.J {d}, ). Let X

_
E, IXI r- 1 and ’ {X {d}}. Then it is

easy to check that (E t_J {d}, if’) is also a greedoid. By the usual argument again, no
feasibility oracle algorithm can distinguish between (E (.J {d}, ) and (E U {d}, ’) in
polynomial time. [3

COROLLARY 6.5. There is no polynomial-time algorithm to decide whether a given
element is a dummy.

COROLLARY 6.6. There is no polynomial-time algorithm to recognize a rank-
feasible set in a greedoid given by a feasibility oracle.

Proof. Observe that d E is a dummy if[ {d} -.
THEOREM 6.7. It is NP-hard to recognize for a greedoid a rank-feasible (or

closure-feasible) set, i.e. to decide membership in (or in C).
Proof. Let G be a digraph, E E(G), V(G)= {Vl,""", vn}. We call an arc e a

shortcut in G if there exists a dipath in G-e from the tail of the head of e. Let

:= { el," ek: ei is not a shortcut in G {el,. ei-1}}.

Then (E, ) is a shelling structure, which we call the digraph shortcut greedoid. This
greedoid was first observed by A. Bj6rner [1983]. It can be also represented as a
convex shelling structure (cf. Korte and Lovfisz [1983a]) in R" of the following set of
points {0, eij} where 0 is the 0-vector and eij is a 0, +1 incidence vector of the arc
e (vi, v) which has a -1 at the ith component, a + 1 at the jth component and O’s
elsewhere. Then {0} if[ G is acyclic. We take the k-truncation of this greedoid.
Then {0} if[ the feedback number of G is =< k- 1, but this is a well-known NP-hard
problem. [3

This shortcut greedoid is an interval greedoid, and thus c. So the assertion
concerning closure feasibility follows in the same way.

Remark. The test for membership in is of course a special case of optimizing
a linear objective function over (E, ).
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