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We present a new algorithm for finding a maximum matching in a general graph. The special 
feature of our algorithm is that its only computationally non-trivial step is the inversion; of a 
single integer matrix. Since this step can be parallelized, we get a simple parallel (RNC ~) algorithm. 
At the heart of our algorithm lies a probabilistic lemma, the isolating lemma. We show other appli- 
cations of this lemma to paraUel computation and randomiz_ed reductions. 

1. Introduction 

We present a new algorithm for finding a maximum matching in a general 
graph. The special feature of our algorithm is that its only computationally non- 
trivial step is the inversion of  a single integer matrix. Since this step can be parallelized, 
we get a simple parallel (RNC")  algorithm. Because of  this simplicity, the sequential 
version of  our algorithm has some merits over the conventional matching algorithms 
as well. 

This algorithm was obtained while solving the matching problem from the 
viewpoint of  parallel computation. The main difficulty here is that the graph may 
contain exponentially many maxinmm matchings; how do we coordinate the pro- 
cessors so they seek the same matching in parallel'? The key to achieving this coordi- 
nation is a probabilistic lemma, the isolating lemma, which lies at the heart of  our 
algorithm; it helps to single out one matching in the graph. 

In this general form the isolating lemma applies to an arbitrary set system. 
This yields a relationship between the parallel complexity of an arbitrary search 
problem and the corresponding weighted decision problem. As an application, we 
give an R N C  2 algorithm for the Exact Matching problem in general graphs It is in- 
teresting to note that this problem is not known to be in P. The isolating lemma 
also yields a simple proof for the theorem in [19], showing the NP-hardness, under 
randomized reductions of instances of S A T  having mfique sohttions. 

Karp, Upfal and Wigderson first showed that matching is in Random 
NC(RNCa) .  Their algorithm also uses matrix operations, and in fact these are some 
of  the most powerful tools for obtaining fast parallel algorithms. Several problems 
are known to be N C  ~ reducible to computing the determinant of  an integer matrix. 
Cook [1] defines D E T  to be the class of  all such problems. DETC= N C  ~, and it is 
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not known whether this inclusion is proper. Cook also observes that all problems 
known to be in NC ~ are either in AC ~ or in DET. One important consequence 
of our algorithm is that it puts the matching problem in RDET.  

2. History 

The maximum matching problem is a natural and simply-stated problem 
and is used as a subroutine in several computational problems. More significantly, 
the study of this problem has led to conceptual breakthroughs in the field of algo- 
rithms. In Pact, the characterization of'tractable problems' as 'polynomial time solv- 
able problems' was first proposed by Edmonds [3] in the context of the general graph 
matching problem. Solving this problem from the viewpoint of parallel compu- 
tation has also been quite fruitful. 

Whereas sequential algorithms for the maximum matching problem are based 
on finding 'blossoms' and 'augmenting paths' in graphs (see [3]), the known parallel 
algorithms require a new approach; they use probabilistic and algebraic methods. In 
fact, the matching problem emerged from algebra around the turn of this century 
in the works of Petersen, Frobenius and K6nig (for a detailed history see [12]). A key 
ingredient in the new approach is a theorem proved by Tutte in 1947 [18], based on the 
work of Pfaff on skew-symmetric matrices. It states that a graph has a perfect match- 
ing iff a certain matrix of indeterminates, called the Tutte matrix, is non-singular. 
Motivated by an algorithmic use of this theorem, Edmonds [4] studied the complexity 
of computing determinants. He gave a modified Gaussian elimination procedure for 
computing the determinant of an integer matrix in a polynomial number of bit opera- 
tions, and stated the open problem of efficiently deciding whether a matrix of inde- 
terminates is non-singular. 

The first algorithm based on Tutte's theorem was given by Lovfisz [10]. Using 
the fundamental insight that polynomial identities can be efficiently tested by ran- 
domization (see [17]), Lovfisz reduced, the decision problem, 'Does the given graph 
have a perfect matching?' to testing ifa given integer matrix is non-singular. Since the 
latter problem is in NC '2 (see CsAnky [2]), this yields a (Monte Carlo) RNC z algorithm 
for the former problem. Rabin and Vazirani [16] extended this approach, using a 
theorem of Frobenius, to give a simple randomizing algorithm which finds a perfect 
matching by sequentially inverting I Vi/2 matrices. 

The search problem, i.e. actually finding a perfect matching in parallel, is 
much harder. The first parallel (RNC a) algorithm for this long-standing open prob- 
lem was given by Karp, Upfal and Wigderson [7]. They use the Tutte matrix to imple- 
ment (in RNC 2) a 'rank' function. Using this, their algorithm probabilistically prunes 
out edges from the graph in O (log [V[) stages; finally it is left with a perfect matching. 
This algorithm is also Monte Carlo in that it may fail to give a perfect matching. 
Using the Gallai--Edmonds Structure Theorem (see [11]) Karloff [6] gives a comple- 
mentary Monte Carlo (RNC 2) algorithm for bounding the size of a maximum 
matching from above, thus yielding a Las Vegas extension. 

Our algorithm is conceptually different in that it directly finds a perfect match- 
ing in the graph. It is somewhat faster (RNC 2) and requires O(na'Sm) processors. 
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3. The isolating lemma 

Definition. A set system (S, F) consists of  a finite set S of elements, S =  {xl, xz, ... 
. . . ;x,}, and a family F o f s u b s e t s  of  S, i.e. F = { S I ,  Sz . . . .  Sk}, S t ~ S ,  for 1<_- 
_-<]<= k. 

J Let us assign a weight wi to each element xiE S and let us define the weight 
of  the set S s to be ~ '  w~. 

x,~s i 

Lemma 1. Let (S, F) be a set system whose elements are assigned integer weights chosen 
uniformb, and independently f rom [1, 2n]. Then, 

1 
Pr [There is a unique minimum weight set in F] >= - - .  

2 

Proof. Fix the weights of  all elements except x~. Define the threshoM for element 
x~, to be the real number e~ such that if w~<=~ then x~ is contained in some mini- 
mum weight subset, S i, and if w~>~ then x~ is in no minimum weight subset. 

Clearly, if  w~-< eft, then the element x~ must be in every minimum weight subset. 
Thus ambiguity about element x~ occurs iff w~=e~; since in this case there is a 
mininmm weight subset that contains x~ and another which does not. In this case 
we shall say that the element x~ is ambiguous. 

We now make the crucial observation that the threshold, ~ ,  was defined 
without reference to the weight, w~, of  x~. It follows that ~ is independent of  w~. 
Since w~ is a uniformly distributed integer in [1, 2n], 

1 
Pr [Element xi is ambiguous, i.e. wi = cq] ~ -~n " 

Since S contains n elements, 

1 1 
Pr [There exists an ambiguous element] -~ -j--~n × n = ~ .  

Thus, with probability at least 1/2, no element is ambiguous. In this case each ele- 
ment is either in every mininmm weight subset or in none. It follows that the mini- 
mum weight subset is unique. II 

Notice that by the same argument, the maximum weight set will be unique 
with probability at least 1/2 as well. 

4. The matching algorithm 

We will first present a parallel algorithm for the following problem: 

Input: Graph G(V, E), having a perfect matching. 

Problem: Find a perfect matching in G. 

We will view the edges in E and the set of  perfect matchings in G as a set sys- 
tem. Let us assign random integer weights to the edges of the graph, chosen uniformly 
and independently from [I, 2m], where m=  [E]. Now, by Lemma 1, the minimum 
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weight perfect matching in G will be unique with probability at least 1/2. Our parallel 
algorithm will pick out this perfect matching. We will first introduce Tutte's Theorem. 

Notation. We will represent the (i , j )  th element of  matrix A by (lower case) ao., the 
minor obtained by removing the i t~ row and the ./th colmnn by A~j, the determinant 
of  A by [A[, and the adjoint of  A by adj (A). 

Definition. Given a graph G(V, E), the adjacency matr ixof  G is an nXn symmetric 
matrix D such that cl~i= 1 if (t'~, vflCE, and 0 otherwise. The Tutte matrix of  G 
is an nXn skew-symmetric matrix A, obtained as follows from D: if dii=dii= 1, 
replace them by indeterminates x~i and -x~j ,  so that the entries above the diagonal 
are positive, and leave the 0 entries of D unchanged. 

Theorem (Tutte [18]). Let G(V, E) be a graph and let A be its Tutte matrix. Then 
IAI # 0  i f f  there is a perfect matching in G. 

We will obtain an integer matrix B fi'om the Tutte matrix by substituting for 
the indeterminates x~ the integers 2"% where w~ is the weight assigned to the 
edge (ri, v j). 

Lemma 2. Let G(V, E) be a graph with weights assigned to its edges, and let B be the 
matrix described abm'e. Suppose the minimum weight pelJkct matching in G is unique, 
and its weight is w. Then tBI ¢ 0 ;  moreover, the highest power of  2 which divides IB I is 
22W 

ProoL The proof  is an extension of the proof  of Tutte's Theorem. For each per- 
mutation ~ on {1, 2, ..., n}, define 

*1 

value (e,) = f[  bi,,(o. 
i = 1  

Thus value(a) ¢ 0 iff (v;, ro(0)CE, for 1 ~ i ~ n. In this case say that rr is non-vanishing. 

By definition, IB[ = ~ sign(a)×value(a) 

where sign(a) is + 1 if a is an even permutation, and - 1  otherwise. 
Define the trail of  a non-vanishing permutation er to be the subgraph of  G 

consisting only of the edges (v~, v~{i~), for l -~iNn.  Clearly, each vertex will have 
two such edges (may be with repetition) incident at it, and the subgraph will in general 
consist of  disjoint cycles and single edges traversed twice. Corresponding to each 
perfect matching M in G there is a non-vanishing permutation whose trail is M 
itself. For every permutation a containing an odd cycle, there is a corresponding 
permutation a' which differs from a only in that this odd cycle is traversed in the re- 
verse direction. Clearly, value(a)=-value(a')  and sign(~)=sign(~r'). Therefore, 
the permutations containing odd cycles cancel each other out, and do not contrib- 
ute to IBI. 

Let M be the minimum weight perfect matching, and let w be its weight. ]-he 
value of  the permutation whose trail is M is ( -  I)"/~2 ~w. We want to argue that the 
value of any other non-vanishing permutation which does not contain an odd 
cycle must be a higher power of  2. Certainly this is true if the trail of  the permutation 
is a perfect matching. On the other hand, the edges of  an even cycle can be partitioned 
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into two matchings. Therefore, if the trail of a pernmtation contains even cycles, we 
can demonstrate two perfect matchings M~ and M2 whose union is the trail of a. 
Clearly [value(a)l= 2w(~h)+w(U~)> 2 2w. II 

Thus by evaluating [BI, we can determine the weight of  the minimum weight 
matching. The next lemma will enable us to obtain the matching itself. 

Lemma 3. Let M be the unique minimum weight matchh~g in G, and let w be its weight. 
The edge (v i, v j) belongs to M i f f  

IBijl2~'s is odd. 
22w 

Proof. First notice that 

IBiil 2w,J = ~__, sign(a)×value(cr). 
a :  a ( i ) = j  

Since n is even, if  a non-vanishing permutation contains an odd-cycle in its trail, 
then it contains at least two such cycles. Now by the argument in Lemma 2, such 
permutations cancel each other out and do not contribute to IB~j[2w,J. 

If  (v~, vj)6M, the permutation whose trail is M has value ± 2  z'', and the 
value of every other permutation is a higher power of 2. On the other hand, if  
(v~, v~)¢M, all permutations have values which are higher power of 2. The lemma 
follows. 1 

The algorithm to find M is now straightforward: 
Step 1 : Compute IBI, and obtain w. 
Step 2: Compute adj(B); its (j, i) ~h entry will be the minor [Bot. 
Step 3: For each edge (vl, v i) do in parallel: 

IBij] 2w,~ 
Compute 22 w ; 

If this quantity is odd, include (vi, v~) in the matching. 
end; 

Notice that the only non-trivial computational effort is involved in evaluating 
the determinant and adjoint of B. We will use Pan's [14] randomized matrix-inversion 
algorithm, which computes IB] and adj(B) in order to compute B -1. It requires 
O(log 2 n) time and O(t?'Sm) processors for inverting an n×n matrix whose entries 
are m-bit integers. In comparison, there is a processor-efficient RNC 3 implementation 
of  the algorithm of  [7] which requires O(n a'~) processors [5]. 

Theorem. There is an RNC ~ parallel algorithm which finds a perfect matchh~g in the 
given graph. It uses O(n~Sm) processors. 

Although the sequential version of our algorithm is less efficient than conven- 
tional matching algorithms (the most efficient of  these takes O(m t/n)steps [13]),it 
has the advantage of  being easy to program, especially if a subroutine for matrix 
inversion is available. Rabin and Vazirani [16] had previously obtained a simple 
matching algorithm to address the issue of  ease of programming. It would be inform- 
ative to compare these two algorithms. 
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5. Parallel algorithms for related problems 

A parallel algorithm for the perfect matching problem easily yields parallel 
algorithms for the following related problems. RNC a algorithms for these problems 
are given in [7]. Here we give RNC ~" algorithms. 

a) We first address the problem of  finding a minimum weight perfect matching 
in a graph G(V, E), given edge-weights w(e) for each edge eEE in unary. First notice 
that if the weight of  each edge is scaled up by a factor of  ran, the minimum weight 
perfect matchings will be lighter than the rest by at least ran. We can now use the 
isolating lemma to isolate one of  these minimum weight matchings: to edge 
eEE assign the weight mnw(e)-Fre, where r~ is chosen uniformly and independently 
from [1, 2m]. The proof  of  Lemma 1 works in this setting as well. As such this algo- 
rithm will require O(na~mW) processors, where W is the weight of  the heaviest 
edge. Hence if the edge-weights are in unary, this problem is in RNC 2. The parallel 
complexity of  this problem when the edge-weights are given in binary is as yet 
unresolved. 

b) The problem of  finding a maximum matching in a graph can now be reduced 
to minimum weight perfect matching as follows: extend G into a complete graph by 
throwing in new edges. Assign weight 0 to each edge of  G, and 1 to each of the new 
edges, and find a minimum weight perfect matching (for an alternative method see [16]). 

c) The vertex-weighted matching problen~ is the following: 

hTput: Graph G(V, E), and a positive weight for each vertex vEV. 

Problem." Find a matching in G whose vertex-weight is maximum. The vertex- 
weight of  a matching is defined to be the stun of  the weights of  the vertices covered 
by the matching. 

First notice that the desired matching will be a maximum matching. ~his is so 
because any non-maximum matching can be augmented into a maxinmm matching 
without unmatching any vertex in the process. Define V'C= V to be a matchi~Tg set 
if V'  is the set of vertices covered by a maximum matching in G. The solution now 
consists of  finding the heaviest matching set, and a perfect matching in the subgraph 
induced by these vertices. Sort the vertices of  G by decreasing weight. Two matching 
sets can be compared lexicographically in this sorted order. 

Lemma 4. The lexicographically largest matching set is the heaviest matching set. 

Proof. Let L and H be maximum matchings which give the lexicographically largest 
and the heaviest matching sets respectively. Suppose these matching sets are different. 
Let u be the first vertex in the sorted order where the two sets differ. The vertex u will 
be matched L but not in H. Consider the symmetric difference of L and H. This will 
have an alternating even length path from u to a vertex v, say. The symmetric differ- 
ence of  this path and H will yield a matching heavier than H, since ~, is lighter than 
u. The contradiction proves the 1emma. | 

We now use the RNC 2 algorithm of  Vazirani and Vazirani [20] for obtaining 
the lexicographically largest matching set. Their algorithm is based on a generaliza- 
tion of  Tutte's Theorem. 
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6. Other applications of the isolating lemma 

a) Parallel complexity of  search "vs. decision problems. 

For the case of sequential computation, search problems are reducible to the 
corresponding decision problems via self-reducibility. Can such a reduction be 
parallelized? Notice that the self-reduction process yields the lexicographically first 
solution. For several problems, such as maximal independent set and depth first 
search, finding such a solution is P-hard, even though efficient parallel algorithms 
exist for the unrestricted search problem (the parallel complexity of finding the 
lexicographically first perfect matching is as yet unresolved). ~[his issue was first studied 
by Karp, Upfal and Wigderson [8]. Motivated from matroid theory; they give an 
RNC 2 procedure for the search problem, using an oracle for the 'rank' function. 

Via the isolating lemma, we reduce a general search problem to the 
weighted decision problem, where the weights are polynomially bounded. The general 
search problem is 'Given a set system (S, F) find a set in F'. We will give an RNC ~ 
procedure for solving this problem, given an oracle fox': 'Given a set system (S, F) 
with polynomially bounded positive integral weights for the elements of S and an 
integer k, is there a set in F whose total weight is less than or equal to k?' The pro- 
cedure is similar to the perfect matching algorithm of Section 3. "1 he weight of the 
minimum weight set is determined by binary search on k, using O(log n) calls to the 
weighted decision procedure. Its elements are identified in parallel by the following 
obserwltion : an element x~ is in the minimum weight set iff upon increasing its weight 
by 1, the weight of the nainimum weight set increases. Hence we can determine the 
elements of the minimum weight set in parallel. 

Using this procedure we obtain an RNC"- algorithm for the following problem 
posed by Papadimitriou and Yannakakis [15]. Interestingly enough, it is not known 
if this problem can be solved in (deterministic) polynomial time. 

Exact Matching: 

Input." A graph G(V, E), a subset E'C=E of red edges, and a positive integer k. 

Output." Find a perfect matching involving exactly k red edges. 

In this case, the set system will consist of all perfect matchings which have 
exactly k red edges. Assume that polynomially bounded weights w~ are given to the 
edges eEE of G, and there is a unique minimum weight perfect matching with k 
red edges. The following NC 2 procedure, suggested by Lovfisz, will find the weight 
of this perfect matching: in the Tutte matrix of G, substitute 2"~ for a variable x~ 
if e E E - E "  and 2~oy if eEE', where y is an indeterminate. Let B be the resulting 
(skew-symmetric) matrix. Now, IBI=(pf(B)) 2 where pf(B) is the Pfaffian of B. 
Compute pf(B) by computing the square-root of [BI using the parallel determinant 
algorithm [21] followed by interpolation. ~/he power of 2 in the coefficient o f y  k will 
be the weight of the minimum weight perfect matching involving exactly k red edges. 

b) Randomized Reductions. 

We now turn to another application of the main lemma. Valiant and Vazirani 
[19] studied the complexity of finding solutions to instances of SAT having unique 
solutions. They show that this problem is NP-hard under randomized reductions. 
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Their proof  is based on the hash-function property of  GF[2] inner products, the 
isolating lemma yields a simpler proof. 

For simplicity, we consider the C L I Q U E  problem, which is parsimoniously 
interreducible with SAT. The core of  the proof  is illustrated by showing a randomized 
reduction from CLIQUE to UNIQUE CLIQUE.  The CLIQUE problem is 'Given 
a graph G(V, E)  and an integer k, is there a clique of  size k in the graph'?' On the 
other hand, UNIQUE C L I Q U E  asks if there is exactly one clique of  size k. 

The reduction is as follows. First assign a random and independent weight 
w(v) to each vertex vEV, chosen from [1, 2n], where n =  IVI, By the isolating lemma, 
with probability at least 1/2, the maximum weight clique will be unique in this 
graph. The transformed graph G" is now obtained as follows : corresponding to vertex 
vE V, G' will have 2nk+ w(v) vertices, with a clique on them. Corresponding to each 
edge (u, v) in G, each copy o fu  is joined to each copy ofv  in G'. Next choose a random 
integer r in [1, 2n], and let k '=2nk2+kr .  The transformed problem is (G', k'). 

The following hold by Lemma 1: 

(1) (G, k ) ¢ C L I Q U E  ~. (G', k')¢ U N I Q U E  CLIQUE. 

(2) (G, k )ECLIQUE ~ Pr [(G', k')C UN IQ UE CLIQUE] ~ l/4n. 

7, Discussion 

Ill applying the main lemma to the case of perfect matchings, it seems that 
substituting random integers from [1, 2n] should suffice where [Vl=n. 3his will 
improve the processor-efficiency of  the parallel algorithm and the running time of  
the sequential Las Vegas algorithm. 

An important open problem remaining is whether the maxilnum matching 
problem is in (deterministic) NC. Currently, incomparability graphs is the largest 
class of  graphs for which this problem is known to be in NC [9]. It may be easier to 
solve the decision problem, 'Does the given graph have a perfect matching?', before 
tackling the general search problem. The following modified decision problem is 
known to be in NC, 'Does the given bipartite graph have a unique perfect match- 
ing?' [9]. 

Acknowledgements. We are thankful to David Aldous, Jack Edmonds, Lfiszl6 Lovfisz, 
Eva Tardos, and Les Valiant for valuable discussions. 
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