
CoMBrNATOR~CA 7 (I) (1987) 105--113

MATCHING IS AS EASY AS MATRIX INVERSION

KETAN M U L M U L E Y 1, UMESH V. V A Z I R A N F and V1JAY V. VAZ1RANI

Received 12 May 1986

Revised 30 July 1986

We present a new algorithm for finding a maximum matching in a general graph. The special
feature of our algorithm is that its only computationally non-trivial step is the inversion; of a
single integer matrix. Since this step can be parallelized, we get a simple parallel (RNC ~) algorithm.
At the heart of our algorithm lies a probabilistic lemma, the isolating lemma. We show other appli-
cations of this lemma to paraUel computation and randomiz_ed reductions.

1. Introduction

We present a new algorithm for finding a maximum matching in a general
graph. The special feature of our algorithm is that its only computationally non-
trivial step is the inversion of a single integer matrix. Since this step can be parallelized,
we get a simple parallel (RNC") algorithm. Because of this simplicity, the sequential
version of our algorithm has some merits over the conventional matching algorithms
as well.

This algorithm was obtained while solving the matching problem from the
viewpoint of parallel computation. The main difficulty here is that the graph may
contain exponentially many maxinmm matchings; how do we coordinate the pro-
cessors so they seek the same matching in parallel'? The key to achieving this coordi-
nation is a probabilistic lemma, the isolating lemma, which lies at the heart of our
algorithm; it helps to single out one matching in the graph.

In this general form the isolating lemma applies to an arbitrary set system.
This yields a relationship between the parallel complexity of an arbitrary search
problem and the corresponding weighted decision problem. As an application, we
give an R N C 2 algorithm for the Exact Matching problem in general graphs It is in-
teresting to note that this problem is not known to be in P. The isolating lemma
also yields a simple proof for the theorem in [19], showing the NP-hardness, under
randomized reductions of instances of S A T having mfique sohttions.

Karp, Upfal and Wigderson first showed that matching is in Random
NC(RNCa) . Their algorithm also uses matrix operations, and in fact these are some
of the most powerful tools for obtaining fast parallel algorithms. Several problems
are known to be N C ~ reducible to computing the determinant of an integer matrix.
Cook [1] defines D E T to be the class of all such problems. DETC= N C ~, and it is

x Miller Fellow, University of California, Berkeley.
2 Work done while visiting MSR1, Berkeley, in Fall 1985.
Supported by NSF Grant BCR 85--03611 and an IBM Faculty Development Award.
AMS subject classitication (1980): 68 E 10, 05 C 25

106 K. MULMULEY, U. V. VAZIRANI, V. V. VAZIRANI

not known whether this inclusion is proper. Cook also observes that all problems
known to be in NC ~ are either in AC ~ or in DET. One important consequence
of our algorithm is that it puts the matching problem in RDET.

2. History

The maximum matching problem is a natural and simply-stated problem
and is used as a subroutine in several computational problems. More significantly,
the study of this problem has led to conceptual breakthroughs in the field of algo-
rithms. In Pact, the characterization of'tractable problems' as 'polynomial time solv-
able problems' was first proposed by Edmonds [3] in the context of the general graph
matching problem. Solving this problem from the viewpoint of parallel compu-
tation has also been quite fruitful.

Whereas sequential algorithms for the maximum matching problem are based
on finding 'blossoms' and 'augmenting paths' in graphs (see [3]), the known parallel
algorithms require a new approach; they use probabilistic and algebraic methods. In
fact, the matching problem emerged from algebra around the turn of this century
in the works of Petersen, Frobenius and K6nig (for a detailed history see [12]). A key
ingredient in the new approach is a theorem proved by Tutte in 1947 [18], based on the
work of Pfaff on skew-symmetric matrices. It states that a graph has a perfect match-
ing iff a certain matrix of indeterminates, called the Tutte matrix, is non-singular.
Motivated by an algorithmic use of this theorem, Edmonds [4] studied the complexity
of computing determinants. He gave a modified Gaussian elimination procedure for
computing the determinant of an integer matrix in a polynomial number of bit opera-
tions, and stated the open problem of efficiently deciding whether a matrix of inde-
terminates is non-singular.

The first algorithm based on Tutte's theorem was given by Lovfisz [10]. Using
the fundamental insight that polynomial identities can be efficiently tested by ran-
domization (see [17]), Lovfisz reduced, the decision problem, 'Does the given graph
have a perfect matching?' to testing ifa given integer matrix is non-singular. Since the
latter problem is in NC '2 (see CsAnky [2]), this yields a (Monte Carlo) RNC z algorithm
for the former problem. Rabin and Vazirani [16] extended this approach, using a
theorem of Frobenius, to give a simple randomizing algorithm which finds a perfect
matching by sequentially inverting I Vi/2 matrices.

The search problem, i.e. actually finding a perfect matching in parallel, is
much harder. The first parallel (RNC a) algorithm for this long-standing open prob-
lem was given by Karp, Upfal and Wigderson [7]. They use the Tutte matrix to imple-
ment (in RNC 2) a 'rank' function. Using this, their algorithm probabilistically prunes
out edges from the graph in O (log [V[) stages; finally it is left with a perfect matching.
This algorithm is also Monte Carlo in that it may fail to give a perfect matching.
Using the Gallai--Edmonds Structure Theorem (see [11]) Karloff [6] gives a comple-
mentary Monte Carlo (RNC 2) algorithm for bounding the size of a maximum
matching from above, thus yielding a Las Vegas extension.

Our algorithm is conceptually different in that it directly finds a perfect match-
ing in the graph. It is somewhat faster (RNC 2) and requires O(na'Sm) processors.

MATCHING IS EASY 107

3. The isolating lemma

Definition. A set system (S, F) consists of a finite set S of elements, S = {xl, xz, ...
. . . ;x,}, and a family F o f s u b s e t s of S, i.e. F = { S I , Sz Sk}, S t ~ S , for 1<_-
_-<]<= k.

J Let us assign a weight wi to each element xiE S and let us define the weight
of the set S s to be ~ ' w~.

x,~s i

Lemma 1. Let (S, F) be a set system whose elements are assigned integer weights chosen
uniformb, and independently f rom [1, 2n]. Then,

1
Pr [There is a unique minimum weight set in F] >= - - .

2

Proof. Fix the weights of all elements except x~. Define the threshoM for element
x~, to be the real number e~ such that if w~<=~ then x~ is contained in some mini-
mum weight subset, S i, and if w~>~ then x~ is in no minimum weight subset.

Clearly, if w~-< eft, then the element x~ must be in every minimum weight subset.
Thus ambiguity about element x~ occurs iff w~=e~; since in this case there is a
mininmm weight subset that contains x~ and another which does not. In this case
we shall say that the element x~ is ambiguous.

We now make the crucial observation that the threshold, ~ , was defined
without reference to the weight, w~, of x~. It follows that ~ is independent of w~.
Since w~ is a uniformly distributed integer in [1, 2n],

1
Pr [Element xi is ambiguous, i.e. wi = cq] ~ -~n "

Since S contains n elements,

1 1
Pr [There exists an ambiguous element] -~ -j--~n × n = ~ .

Thus, with probability at least 1/2, no element is ambiguous. In this case each ele-
ment is either in every mininmm weight subset or in none. It follows that the mini-
mum weight subset is unique. II

Notice that by the same argument, the maximum weight set will be unique
with probability at least 1/2 as well.

4. The matching algorithm

We will first present a parallel algorithm for the following problem:

Input: Graph G(V, E), having a perfect matching.

Problem: Find a perfect matching in G.

We will view the edges in E and the set of perfect matchings in G as a set sys-
tem. Let us assign random integer weights to the edges of the graph, chosen uniformly
and independently from [I, 2m], where m= [E]. Now, by Lemma 1, the minimum

108 K. M U L M U L E Y , U. V. VAZIRANI , V. V. VAZIRANI

weight perfect matching in G will be unique with probability at least 1/2. Our parallel
algorithm will pick out this perfect matching. We will first introduce Tutte's Theorem.

Notation. We will represent the (i , j) th element of matrix A by (lower case) ao., the
minor obtained by removing the i t~ row and the ./th colmnn by A~j, the determinant
of A by [A[, and the adjoint of A by adj (A).

Definition. Given a graph G(V, E), the adjacency matr ixof G is an nXn symmetric
matrix D such that cl~i= 1 if (t'~, vflCE, and 0 otherwise. The Tutte matrix of G
is an nXn skew-symmetric matrix A, obtained as follows from D: if dii=dii= 1,
replace them by indeterminates x~i and -x~j , so that the entries above the diagonal
are positive, and leave the 0 entries of D unchanged.

Theorem (Tutte [18]). Let G(V, E) be a graph and let A be its Tutte matrix. Then
IAI # 0 i f f there is a perfect matching in G.

We will obtain an integer matrix B fi'om the Tutte matrix by substituting for
the indeterminates x~ the integers 2"% where w~ is the weight assigned to the
edge (ri, v j).

Lemma 2. Let G(V, E) be a graph with weights assigned to its edges, and let B be the
matrix described abm'e. Suppose the minimum weight pelJkct matching in G is unique,
and its weight is w. Then tBI ¢ 0 ; moreover, the highest power of 2 which divides IB I is
22W

ProoL The proof is an extension of the proof of Tutte's Theorem. For each per-
mutation ~ on {1, 2, ..., n}, define

*1

value (e,) = f[bi,,(o.
i = 1

Thus value(a) ¢ 0 iff (v;, ro(0)CE, for 1 ~ i ~ n. In this case say that rr is non-vanishing.

By definition, IB[= ~ sign(a)×value(a)

where sign(a) is + 1 if a is an even permutation, and - 1 otherwise.
Define the trail of a non-vanishing permutation er to be the subgraph of G

consisting only of the edges (v~, v~{i~), for l -~iNn. Clearly, each vertex will have
two such edges (may be with repetition) incident at it, and the subgraph will in general
consist of disjoint cycles and single edges traversed twice. Corresponding to each
perfect matching M in G there is a non-vanishing permutation whose trail is M
itself. For every permutation a containing an odd cycle, there is a corresponding
permutation a' which differs from a only in that this odd cycle is traversed in the re-
verse direction. Clearly, value(a)=-value(a') and sign(~)=sign(~r'). Therefore,
the permutations containing odd cycles cancel each other out, and do not contrib-
ute to IBI.

Let M be the minimum weight perfect matching, and let w be its weight.]-he
value of the permutation whose trail is M is (- I)"/~2 ~w. We want to argue that the
value of any other non-vanishing permutation which does not contain an odd
cycle must be a higher power of 2. Certainly this is true if the trail of the permutation
is a perfect matching. On the other hand, the edges of an even cycle can be partitioned

M A T C H I N G IS EASY 109

into two matchings. Therefore, if the trail of a pernmtation contains even cycles, we
can demonstrate two perfect matchings M~ and M2 whose union is the trail of a.
Clearly [value(a)l= 2w(~h)+w(U~)> 2 2w. II

Thus by evaluating [BI, we can determine the weight of the minimum weight
matching. The next lemma will enable us to obtain the matching itself.

Lemma 3. Let M be the unique minimum weight matchh~g in G, and let w be its weight.
The edge (v i, v j) belongs to M i f f

IBijl2~'s is odd.
22w

Proof. First notice that

IBiil 2w,J = ~__, sign(a)×value(cr).
a : a (i) = j

Since n is even, if a non-vanishing permutation contains an odd-cycle in its trail,
then it contains at least two such cycles. Now by the argument in Lemma 2, such
permutations cancel each other out and do not contribute to IB~j[2w,J.

If (v~, vj)6M, the permutation whose trail is M has value ± 2 z'', and the
value of every other permutation is a higher power of 2. On the other hand, if
(v~, v~)¢M, all permutations have values which are higher power of 2. The lemma
follows. 1

The algorithm to find M is now straightforward:
Step 1 : Compute IBI, and obtain w.
Step 2: Compute adj(B); its (j, i) ~h entry will be the minor [Bot.
Step 3: For each edge (vl, v i) do in parallel:

IBij] 2w,~
Compute 22 w ;

If this quantity is odd, include (vi, v~) in the matching.
end;

Notice that the only non-trivial computational effort is involved in evaluating
the determinant and adjoint of B. We will use Pan's [14] randomized matrix-inversion
algorithm, which computes IB] and adj(B) in order to compute B -1. It requires
O(log 2 n) time and O(t?'Sm) processors for inverting an n×n matrix whose entries
are m-bit integers. In comparison, there is a processor-efficient RNC 3 implementation
of the algorithm of [7] which requires O(n a'~) processors [5].

Theorem. There is an RNC ~ parallel algorithm which finds a perfect matchh~g in the
given graph. It uses O(n~Sm) processors.

Although the sequential version of our algorithm is less efficient than conven-
tional matching algorithms (the most efficient of these takes O(m t/n)steps [13]),it
has the advantage of being easy to program, especially if a subroutine for matrix
inversion is available. Rabin and Vazirani [16] had previously obtained a simple
matching algorithm to address the issue of ease of programming. It would be inform-
ative to compare these two algorithms.

110 K. MULMULEY, U. V. VAZIRAN1, V. V. VAZIRANI

5. Parallel algorithms for related problems

A parallel algorithm for the perfect matching problem easily yields parallel
algorithms for the following related problems. RNC a algorithms for these problems
are given in [7]. Here we give RNC ~" algorithms.

a) We first address the problem of finding a minimum weight perfect matching
in a graph G(V, E), given edge-weights w(e) for each edge eEE in unary. First notice
that if the weight of each edge is scaled up by a factor of ran, the minimum weight
perfect matchings will be lighter than the rest by at least ran. We can now use the
isolating lemma to isolate one of these minimum weight matchings: to edge
eEE assign the weight mnw(e)-Fre, where r~ is chosen uniformly and independently
from [1, 2m]. The proof of Lemma 1 works in this setting as well. As such this algo-
rithm will require O(na~mW) processors, where W is the weight of the heaviest
edge. Hence if the edge-weights are in unary, this problem is in RNC 2. The parallel
complexity of this problem when the edge-weights are given in binary is as yet
unresolved.

b) The problem of finding a maximum matching in a graph can now be reduced
to minimum weight perfect matching as follows: extend G into a complete graph by
throwing in new edges. Assign weight 0 to each edge of G, and 1 to each of the new
edges, and find a minimum weight perfect matching (for an alternative method see [16]).

c) The vertex-weighted matching problen~ is the following:

hTput: Graph G(V, E), and a positive weight for each vertex vEV.

Problem." Find a matching in G whose vertex-weight is maximum. The vertex-
weight of a matching is defined to be the stun of the weights of the vertices covered
by the matching.

First notice that the desired matching will be a maximum matching. ~his is so
because any non-maximum matching can be augmented into a maxinmm matching
without unmatching any vertex in the process. Define V'C= V to be a matchi~Tg set
if V' is the set of vertices covered by a maximum matching in G. The solution now
consists of finding the heaviest matching set, and a perfect matching in the subgraph
induced by these vertices. Sort the vertices of G by decreasing weight. Two matching
sets can be compared lexicographically in this sorted order.

Lemma 4. The lexicographically largest matching set is the heaviest matching set.

Proof. Let L and H be maximum matchings which give the lexicographically largest
and the heaviest matching sets respectively. Suppose these matching sets are different.
Let u be the first vertex in the sorted order where the two sets differ. The vertex u will
be matched L but not in H. Consider the symmetric difference of L and H. This will
have an alternating even length path from u to a vertex v, say. The symmetric differ-
ence of this path and H will yield a matching heavier than H, since ~, is lighter than
u. The contradiction proves the 1emma. |

We now use the RNC 2 algorithm of Vazirani and Vazirani [20] for obtaining
the lexicographically largest matching set. Their algorithm is based on a generaliza-
tion of Tutte's Theorem.

MATCHING IS EASY 1 11

6. Other applications of the isolating lemma

a) Parallel complexity of search "vs. decision problems.

For the case of sequential computation, search problems are reducible to the
corresponding decision problems via self-reducibility. Can such a reduction be
parallelized? Notice that the self-reduction process yields the lexicographically first
solution. For several problems, such as maximal independent set and depth first
search, finding such a solution is P-hard, even though efficient parallel algorithms
exist for the unrestricted search problem (the parallel complexity of finding the
lexicographically first perfect matching is as yet unresolved). ~[his issue was first studied
by Karp, Upfal and Wigderson [8]. Motivated from matroid theory; they give an
RNC 2 procedure for the search problem, using an oracle for the 'rank' function.

Via the isolating lemma, we reduce a general search problem to the
weighted decision problem, where the weights are polynomially bounded. The general
search problem is 'Given a set system (S, F) find a set in F'. We will give an RNC ~
procedure for solving this problem, given an oracle fox': 'Given a set system (S, F)
with polynomially bounded positive integral weights for the elements of S and an
integer k, is there a set in F whose total weight is less than or equal to k?' The pro-
cedure is similar to the perfect matching algorithm of Section 3. "1 he weight of the
minimum weight set is determined by binary search on k, using O(log n) calls to the
weighted decision procedure. Its elements are identified in parallel by the following
obserwltion : an element x~ is in the minimum weight set iff upon increasing its weight
by 1, the weight of the nainimum weight set increases. Hence we can determine the
elements of the minimum weight set in parallel.

Using this procedure we obtain an RNC"- algorithm for the following problem
posed by Papadimitriou and Yannakakis [15]. Interestingly enough, it is not known
if this problem can be solved in (deterministic) polynomial time.

Exact Matching:

Input." A graph G(V, E), a subset E'C=E of red edges, and a positive integer k.

Output." Find a perfect matching involving exactly k red edges.

In this case, the set system will consist of all perfect matchings which have
exactly k red edges. Assume that polynomially bounded weights w~ are given to the
edges eEE of G, and there is a unique minimum weight perfect matching with k
red edges. The following NC 2 procedure, suggested by Lovfisz, will find the weight
of this perfect matching: in the Tutte matrix of G, substitute 2"~ for a variable x~
if e E E - E " and 2~oy if eEE', where y is an indeterminate. Let B be the resulting
(skew-symmetric) matrix. Now, IBI=(pf(B)) 2 where pf(B) is the Pfaffian of B.
Compute pf(B) by computing the square-root of [BI using the parallel determinant
algorithm [21] followed by interpolation. ~/he power of 2 in the coefficient o f y k will
be the weight of the minimum weight perfect matching involving exactly k red edges.

b) Randomized Reductions.

We now turn to another application of the main lemma. Valiant and Vazirani
[19] studied the complexity of finding solutions to instances of SAT having unique
solutions. They show that this problem is NP-hard under randomized reductions.

112 K. MULMULEY, U. V. VAZIRANI, V. V. VAZIRANI

Their proof is based on the hash-function property of GF[2] inner products, the
isolating lemma yields a simpler proof.

For simplicity, we consider the C L I Q U E problem, which is parsimoniously
interreducible with SAT. The core of the proof is illustrated by showing a randomized
reduction from CLIQUE to UNIQUE CLIQUE. The CLIQUE problem is 'Given
a graph G(V, E) and an integer k, is there a clique of size k in the graph'?' On the
other hand, UNIQUE C L I Q U E asks if there is exactly one clique of size k.

The reduction is as follows. First assign a random and independent weight
w(v) to each vertex vEV, chosen from [1, 2n], where n = IVI, By the isolating lemma,
with probability at least 1/2, the maximum weight clique will be unique in this
graph. The transformed graph G" is now obtained as follows : corresponding to vertex
vE V, G' will have 2nk+ w(v) vertices, with a clique on them. Corresponding to each
edge (u, v) in G, each copy o fu is joined to each copy ofv in G'. Next choose a random
integer r in [1, 2n], and let k '=2nk2+kr . The transformed problem is (G', k').

The following hold by Lemma 1:

(1) (G, k) ¢ C L I Q U E ~. (G', k')¢ U N I Q U E CLIQUE.

(2) (G, k)ECLIQUE ~ Pr [(G', k')C UN IQ UE CLIQUE] ~ l/4n.

7, Discussion

Ill applying the main lemma to the case of perfect matchings, it seems that
substituting random integers from [1, 2n] should suffice where [Vl=n. 3his will
improve the processor-efficiency of the parallel algorithm and the running time of
the sequential Las Vegas algorithm.

An important open problem remaining is whether the maxilnum matching
problem is in (deterministic) NC. Currently, incomparability graphs is the largest
class of graphs for which this problem is known to be in NC [9]. It may be easier to
solve the decision problem, 'Does the given graph have a perfect matching?', before
tackling the general search problem. The following modified decision problem is
known to be in NC, 'Does the given bipartite graph have a unique perfect match-
ing?' [9].

Acknowledgements. We are thankful to David Aldous, Jack Edmonds, Lfiszl6 Lovfisz,
Eva Tardos, and Les Valiant for valuable discussions.

References

[1] S. A. COOK, A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control,
64 (1985), 2--22.

[2] L. CSANKY, Fast Parallel Matrix Inversion Algorithms. SIAM J. Computuing, 5 (1976), 618--
623.

[3] J. EDMONDS, Paths, Trees and Flowers, Canad. J. Math., 17 (1965), 449--467.
[4] J. EDMONDS, Systems of Distinct Representatives and Linear Algebra, J. Res. Nat. Bureau of

Standards, 71B, 4 (1967), 241--245.
[5] Z. GAUL and V. PAN, Improved Processor Bounds for Algebraic and Combinatorial Problems

in RNC, Twenty Sixth Annual IEEE Symp. on the Foundations of Computer Science. (1985),
490--495.

MATCHING IS EASY 113

[6] H. KARLOFF, A Randomized Parallel Algorithm for the Odd Set Cover Problem, Combhtatorica
6 (1986), 387--391.

[7] R. M. KARP, E. UPFAL and A. WmDERSON, Finding a Maximum Matching is in Random NC,
Seventeenth Annual Syrup. on Theory of Computing. (1985), 22--32.

[8] R. M. KARP, E. UPFAL and A. WIGDEaSON, Are Search and Decision Problems Computationally
Equivalent? Seventeenth Annual Syrnp. on Theory of Computing. (1985).

[9] D. KOZZN, U. V. VAZmANI and V. V. V.~Zm:,NI, NC Algorithms for Comparability Graphs,
lnterval graphs, and Testing for Unique Perfect Matching, Fifth Annual Foundations o f
Software Technology and Theoretical Computer Science Conference (1985), invited paper in
Theoretical Computer Science.

[I0] L. Lov/,sz, On Determinants, Matchings and Random Algorithms, Fundamentals of Computing
Theory, edited by L. Budach, Akademia-Verlag, Berlin, (1979).

[11] L. Lov/,sz, Combinatorial Problems and E.rercises. Akademiai Kiad6, Budapest. and North-
Holland, Amsterdam, (1979).

[12] L. Lov3,sz and M. PLUMMER, ?/Iatching Theory, Academic Press, Budapest, Hungary, (1986).
[13] S. MICALI and V. V. VAZmAba, An O(] / l~ IEI) Algorithm for Finding Maximum Matching in

General Graphs, Twenty First Annual IEEE Syrup. on the Foundations of Computer Science
(1980), 17--27.

[14] V. PAN, Fast and Efficient Algorithms for the Exact Inversion of Integer Matrices, Fifth Annual
Foundations of Software Technology and Theoretical Computer Science Conference (1985).

[15] C. H. PAPADIM1TRIOU and M. YANNAKAKIS, The Complexity of Restricted Spalming Tree Prob-
lems, Journal of the ACM, 29 (1982), 285--309.

[16] M. O. RABIN and V. V. VAZIRANI, Maximum Matching in General Gaphs Through Randomiza-
tion, submitted.

[17] J. T. SCHWARTZ, Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
of ACM, 27 (1980), 701--717.

[18] W. T. Tua-rE, The Factorization of Linear Graphs, J. London Math. Sot., 22 (1947), 107--111.
[19] L. G. VALIANT and V. V. VAZIRANI, NP is as Easy as Detecting Unique Solutions, Seventeenth

Annual Syrup. on Theory of Computing. (1985), to appear in Tf,eoretieal Computer Science.
[20] U. V. VAZmANI and V. V. VAZmANI, The Two-Processor Scheduling Problem is in Random

NC, Seventeenth Annual Syrup. on Theory o./'Computhlg (1985), 11--21, submitted.
[21] A. BORODIN, S. A. COOK and N. PIPPINGER, Parallel Computation for Well-endowed Rings and

Space Bounded Probabilistic Machines, h~)rmation and Control, 58 (1983) 113--136.

K e t a n M u l m u l e y

Comp. Sci. Dept.
University of California
Berkeley, CA 94720
U.S .A .

U m e s h V. V a z i r a n i Vi jay V. Vaz i r an i

MSRI, Berkeley Comp. Sci. Dept.
CA 94720 Cornell UniversiO,
U.S.A. Ithaca, N Y 14853

U.S .A .

5"

