
How to Design Dynamic Programming Algorithms Sans RecursionKirk PruhsComputer Science DepartmentUniversity of PittsburghPittsburgh, PA 15260kirk@cs.pitt.eduAbstract: We describe a method, which we callthe Pruning Method, for designing dynamic program-ming algorithms that does not require the algorithmdesigner to be comfortable with recursion.1 IntroductionIn teaching algorithms courses, dynamic program-ming is the topic that maximizes the ratio of mystudents' perceived di�culty of the topic to my per-ceived di�culty of the topic. Most of the standardtextbooks (e.g. [1, 2, 3, 5]) on algorithms o�er thefollowing strategy for designing a dynamic program-ming algorithm for an optimization problem P:1. Find a recursive algorithm/formula/propertythat computes/de�nes/characterizes the optimalsolution to an instance of P.2. Then determine how to compute an optimal so-lution in a bottom-up iterative manner.My students experience great di�culty with devisinga recursive algorithm when the inductive hypothesishas to be strengthened.As an example, consider the following Longest In-creasing Subsequence (LIS) Problem:INPUT: A sequence X = x1; : : : ; xn of integersOUTPUT: A longest increasing subsequence of XSo if X = 12; 13; 23; 24;16;17;18;14;15;19, the out-put would be 12; 13; 16; 17; 18;19.Let LIS(k) be a longest increasing subsequence ofx1; : : : ; xk. The most obvious way to design a re-cursive algorithm for the LIS problem would be toinductively compute LIS(k) from LIS(k � 1) andxk. However, it is not to di�cult to see that knowingLIS(k�1) and xk is insu�cient information to com-pute LIS(k). The standard �x is to strengthen theinductive hypothesis, that is, assume that the recur-sive call returns more information than LIS(k � 1).Eventually, one reaches the conclusion that one may

need to return up to k subsequences of x1; : : : ; xk�1 inorder to compute the longest increasing subsequenceof x1; : : : ; xk from this inductive information and xk.Essentially the idea is that shorter subsequences thatend in smaller numbers might be preferable, to longersubsequences that end in larger numbers, since theyare easier to extend. As shown in [3], it is su�cient toremember the subsequence of each length that endsin the smallest last number. Let LIS(k; `) be thesmallest last number of a subsequence of length ` ofx1; : : : ; xk. One can then compute LIS(k; `) recur-sively in the following manner:If LIS(k � 1; `� 1) < xkthen LIS(k; `) = min(LIS(k � 1; `); xk)else LIS(k; `) = LIS(k � 1; `)This leads to the following code:For k = 1 to n doFor ` = 1 to n doIf LIS(k � 1; `� 1) < xkthen LIS(k; `) = min(LIS(k � 1; `); xk)else LIS(k; `) = LIS(k � 1; `)As is standard, we will omit the code for initializ-ing the data structures, and for determining the ac-tual longest increasing subsequence from�nal �lled-indata structure.Many of my students are still quite uncomfortablewith recursion. For those that are comfortable withwith recursion, the most di�cult task seems to beidentifying the additional information that needs tobe added to the next attempt at an inductive hypoth-esis when the previous inductive hypothesis fails. Forexample, in the LIS problem it is a big leap from theinitial naive inductive hypothesis to realizing that oneshould remember a linear number of subsequences.We give a method, which we call the PruningMethod, for designing dynamic programming algo-rithms that does not require the algorithmdesigner to



be comfortable with recursion. The Pruning Methodis most obviously applicable if the underlying struc-ture of the feasible solutions are subsets, or subse-quences, including paths in a graph. Note that thisincludes well over half of the problems in the stan-dard introductory algorithms texts. We illustratethis method using the longest increasing subsequenceproblem, and the standard single source shortest pathproblem. We o�er the following general guidelines fordesigning a dynamic programming algorithm usingthe Pruning Method:1. State the problem as a optimization problem sothat the feasible solutions are subsets, subse-quences, or paths.2. Consider the standard enumeration tree wherethe collection of all feasible solutions are theleaves of this tree.3. Determine how to prune redundant/unnecessarynodes from this tree.4. Develop an iterative algorithm that generatesthe information in this tree level by level fromthe root to the leaves.2 The LIS ProblemWe now apply the Pruning Method to the LIS prob-lem. In this problem the feasible solutions are sub-sequences of the input sequence x1; : : : ; xn. The rootof the enumeration tree is labeled with the emptysequence. A node at depth k � 1 with label S hastwo children at depth k, one labeled S and one la-beled Sxk. Thus the 2k nodes in the kth level (nodesat depth k) are labeled with the 2k subsequences ofx1; : : : ; xk, and the leaves contain the 2n feasible solu-tions. Figure 1 shows the enumeration tree for n = 3.Let jSj denote the length of a sequence S, and let S(j)denote the jth element of S. One obvious pruningrule is:1. If any node � is labeled with a subsequence S�that is not increasing, then the subtree rootedat � can be pruned from the tree since the labelof every node in the subtree rooted at � is anonincreasing sequence.A less obvious pruning rule is:2. If two nodes � and � at the same depth are la-beled with subsequences S� and S� such that(a) jS�j = jS�j = `, and(b) S�(`) � S�(`), then

O x x x x x x xx x x xx3 2 12 3 1 3 1 21 2 3

x x x

x

x2 1 1 2

1

O

O

O

Figure 1: Tree of all Subsequences of x1; x2; x3(c) we can prune the subtree rooted at �.We claim that pruning the subtree rooted at � leavesan optimal solution in the remaining tree. To see thisconsider an optimal sequence of the form S�T that isa label for a leaf in the subtree rooted at �. Then thesubsequence S�T is also optimal, and is a label for aleaf in the subtree rooted at �. Thus at each level weneed only remember one increasing subsequence ofeach possible length, namely the one that ends in thesmallest last number. Since the possible lengths of asubsequence lie in the range from 0 to n, and thereare n+1 levels in the tree, these pruning rules leave apruned tree with O(n2) nodes. To obtain O(n2) timecode, we let LIS(k; `) be the smallest last numberof an increasing subsequence of x1; : : : ; xk of length`. Updating LIS level by level leads to the followingcode, which is essentially the same as we obtainedwhen using recursion to design an algorithm:For k = 1 to n doFor ` = 1 to n doLIS(k; `) = min(LIS(k � 1; `); LIS(k; `))If LIS(k � 1; s� 1) < xk thenLIS(k; `) = min(xk; LIS(k; `))Note that we write this code in the way that seemsmost intuitive given our development of the algo-rithm. Further re
ection can often lead to cleaneror more e�cient code.One can see that an alternative second pruning rulecould have been:2. If two nodes � and � at the same depth are la-beled with subsequences S� and S� such that(a) S� and S� end in the same number xj, and(b) jS�j � jS�j, then



(c) we can prune the subtree rooted at �.Once again it is easy to see that pruning the subtreerooted at � leaves an optimal solution in the remain-ing tree. Thus at each level we need only remembera longest increasing subsequence ending at each xj ,1 � j � n. This leads us to de�ne an array LIS[k; j],1 � k � n and 1 � j � n, to be the length ofthe longest increasing subsequence of x1; : : : ; xk thatends in xj. Updating LIS level by level leads to thefollowing code:For k = 1 to n doFor j = 1 to k � 1 doLIS(k; j) = max(LIS(k � 1; j); LIS(k; j))If xj < xk thenLIS(k; k) = max(LIS(k; k); LIS(k � 1; j) + 1)Note that when designing the algorithm for theLIS problem using recursion, one starts with a mini-mal amount of information and adds information asneeded. Using the Pruning Method, we start with allthe possible information that we could possibly need,i.e. all the feasible solutions, and discard informationthat is unnecessary.3 Shortest Path ProblemThe standard single source shortest path problem canbe stated at follows:INPUT: A directed edge-weighted graph G with des-ignated vertex s.OUTPUT: For each vertex v, the shortest path froms to v.We assume that G is not allowed to have cycleswith negative aggregate weight so that shortest pathsare well de�ned. Here we let n denote the numberof vertices in G, jP j denote the length of a path P ,and d(u; v) denote the weight of the edge (u; v). Inthis problem the feasible solutions are directed pathsstarting from s containing at most n � 1 edges. Wecan generate these feasible solutions as the leaves ofan enumeration tree by having the kth level containnodes labeled with all paths starting from s with atmost k edges. Assume that we have a node � labeledwith a path P�, that ends at vertex v, in the kth levelof the tree. Further assume that in G the directededges leaving v are to the vertices w1; : : : ; wj. Thenthe j + 1 children of � in the enumeration tree willbe labeled P�; P�w1; P�w2; : : : ; P�wj. The �rst threelevels of the enumeration tree for the graph in �gure2 is shown in �gure 3.

S

A

B

C

1 7

4

5 -4Figure 2: The Graph G
S

SA SAB

S SA SB

SB SBCSACSBSASFigure 3: The First Three Levels of the EnumerationTreeThe natural pruning rule is to remember only theshortest path to a particular vertex. This can bestated more formally as:1. If there are two nodes � and �, labeled withpaths P� and P�, on the same level of the enu-meration tree such that(a) P� and P� end at the same vertex v, and(b) jP�j � jP�j,(c) then you can prune the subtree rooted at�.We claim that pruning the subtree rooted at � leavesan optimal solution in the remaining tree. To see thisconsider an optimal path of the form P�T that is alabel for a leaf in the subtree rooted at �. Then the



path P�T is also optimal, and is a label for a leaf inthe subtree rooted at �. Since there are n possiblelast vertices and the tree is of height n, this pruningrule leaves a tree with O(n2) nodes. To obtain analgorithm we let D[k; v] be the shortest path from sto v with k or less edges. Updating D level by levelwe get the following code:For k = 1 to n� 1 doFor v = 1 to n doD[k; v] = D[k � 1; v]For each edge e = (v; w) doD[w] = min(D[w]; D[v] + d(v; w))Note that this is the Bellman-Ford algorithm, andruns in time �(nm), where m is the number of edges.4 ConclusionsI generally teach both the standard recursive method,and the Pruning Method, for designing dynamic pro-gramming algorithms. At least some students �ndthe Pruning Method easier to master. One reasonis that it seems to be easier to identify unnecessaryinformation then it is to identify the new informa-tion that is required to make the inductive argumentwork. Another reason is that if in a new problem itis the case that the collection of feasible solutions hasa known form (say subsets of a �xed set for exam-ple), then a student can determine how to constructthe enumeration tree for that type of feasible solutionby look-up. Thus, the �rst creative step required ofthe student is to determine how to prune the tree.Another more subtle reason is that when using thePruning Method the designer needs to answer thequestion, \Which entries in row k of the array aree�ected by a particular entry in row k � 1?". Thisquestion is often conceptually easier than the equiv-alent question that arises when developing the algo-rithm using recursion, which is, \Which entries in rowk� 1 of the array does one need to know to computea particular entry in row k?"Still, many students fail to master either method.In my opinion, the most common error that studentsmake, when using either method, is to immediatelyattempt to develop the iterative table/array-basedcode (the last step), without �rst doing the prelim-inary steps where the intuition is developed. Thefollowing variant of the standard Subset Sum Prob-lem is a good exercise that forces a student to thinkabout the preliminary steps since the data structureused in the �nal algorithm can not be an array:Assume that you are given a collection B1; : : : ; Bnof boxes. You are told that the weight in kilograms of

each box is an integer between 1 and some constantL, inclusive. However, you do not know the speci�cweight of any box, and you do not know the speci�cvalue of L. You are also given a pan balance. A panbalance functions in the following manner. You cangive the pan balance any two disjoint subcollections,say S1 and S2, of the boxes. Let jS1j and jS2j bethe cumulative weight of the boxes in S1 and S2, re-spectively. The pan balance then determines whetherjS1j < jS2j, jS1j = jS2j, or jS1j > jS2j. You havenothing else at your disposal other than these n boxesand the pan balance. The problem is to determine ifone can partition the boxes into two disjoint subcol-lections of equal weight. Give an algorithm for thisproblem that makes at most O(n2 L) uses of the panbalance.Recursion and strengthening the inductive hypoth-esis are important concepts useful for purposes otherthan designing dynamic programming algorithms.Hence, one disadvantage of teaching the PruningMethod is that it can rob students of an opportu-nity to improve their recursive thinking skills. Formore information on developing algorithms using re-cursion, I highly recommend [4], and more generally[3].Acknowledgments: I would like to thank Marty Wolf,and Udi Manber for helpful comments.References[1] Gilles Brassard and Paul Bratley, Fundamentalsof Algorithmics, Prentice Hall, 1996.[2] Thomas Cormen, Charles Leiserson, and RonaldRivest, Introduction to Algorithms, McGraw-Hill, 1990.[3] Udi Manber, Introduction to Algorithms: A Cre-ative Approach, Addison-Wesley, 1989.[4] Udi Manber, \Using induction to design algo-rithms,",Communications of the ACM, 31, 1300{ 1313, November 1988.[5] Richard Neapolitan and Kumarss Naimipour,Foundations of Algorithms, D. C. Heath, 1996.


