How to Design Dynamic Programming Algorithms Sans Recursion

Kirk Pruhs
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260
kirk@cs.pitt.edu

Abstract: We describe a method, which we call
the Pruning Method, for designing dynamic program-
ming algorithms that does not require the algorithm
designer to be comfortable with recursion.

1 Introduction

In teaching algorithms courses, dynamic program-
ming is the topic that maximizes the ratio of my
students’ perceived difficulty of the topic to my per-
ceived difficulty of the topic. Most of the standard
textbooks (e.g. [l, 2, 3, 5]) on algorithms offer the
following strategy for designing a dynamic program-
ming algorithm for an optimization problem P:

1. Find a recursive algorithm/formula/property
that computes/defines/characterizes the optimal
solution to an instance of P.

2. Then determine how to compute an optimal so-
lution in a bottom-up iterative manner.

My students experience great difficulty with devising
a recursive algorithm when the inductive hypothesis
has to be strengthened.

As an example, consider the following Longest In-
creasing Subsequence (LIS) Problem:

INPUT: A sequence X = z1,...,x, of integers
OUTPUT: A longest increasing subsequence of X

Soif X = 12,13,23,24,16,17,18,14, 15,19, the out-
put would be 12,13,16,17,18,19.

Let LIS(k) be a longest increasing subsequence of
Ty The most obvious way to design a re-
cursive algorithm for the LIS problem would be to
inductively compute LIS(k) from LIS(k — 1) and
zg. However, it is not to difficult to see that knowing
LIS(k—1) and zj is insufficient information to com-
pute LIS(k). The standard fix is to strengthen the
inductive hypothesis, that is, assume that the recur-
sive call returns more information than LIS(k — 1).
Eventually, one reaches the conclusion that one may

ey Lk

need to return up to k subsequences of #1,...,25_1in
order to compute the longest increasing subsequence
of x1,...,x; from this inductive information and xj.
Essentially the idea is that shorter subsequences that
end in smaller numbers might be preferable, to longer
subsequences that end in larger numbers, since they
are easier to extend. Asshown in [3], it is sufficient to
remember the subsequence of each length that ends
in the smallest last number. Let LIS(k,{) be the
smallest last number of a subsequence of length ¢ of
Z1,...,25. One can then compute LIS(k, () recur-
sively in the following manner:

LISk —1,6—1) <z
then LIS(k,¢) = min(LIS(k — 1,£), zg)
else LIS(k,0) = LIS(k — 1,¢)

This leads to the following code:

For k=1 ton do
For / =1ton do
LISk —1,0—1) < xp
then LIS(k,¢) = min(LIS(k — 1,0), zy)
else LIS(k,¢) = LIS(k —1,¢)

As is standard, we will omit the code for initializ-
ing the data structures, and for determining the ac-
tual longest increasing subsequence from final filled-in
data structure.

Many of my students are still quite uncomfortable
with recursion. For those that are comfortable with
with recursion, the most difficult task seems to be
identifying the additional information that needs to
be added to the next attempt at an inductive hypoth-
esis when the previous inductive hypothesis fails. For
example, in the LIS problem it is a big leap from the
initial naive inductive hypothesis to realizing that one
should remember a linear number of subsequences.

We give a method, which we call the Pruning
Method, for designing dynamic programming algo-
rithms that does not require the algorithm designer to

be comfortable with recursion. The Pruning Method
is most obviously applicable if the underlying struc-
ture of the feasible solutions are subsets, or subse-
quences, including paths in a graph. Note that this
includes well over half of the problems in the stan-
dard introductory algorithms texts. We illustrate
this method using the longest increasing subsequence
problem, and the standard single source shortest path
problem. We offer the following general guidelines for
designing a dynamic programming algorithm using
the Pruning Method:

1. State the problem as a optimization problem so
that the feasible solutions are subsets, subse-
quences, or paths.

2. Consider the standard enumeration tree where
the collection of all feasible solutions are the
leaves of this tree.

3. Determine how to prune redundant/unnecessary
nodes from this tree.

4. Develop an iterative algorithm that generates
the information in this tree level by level from
the root to the leaves.

2 The LIS Problem

We now apply the Pruning Method to the LIS prob-
lem. In this problem the feasible solutions are sub-
sequences of the input sequence x1y,...,x,. The root
of the enumeration tree is labeled with the empty
sequence. A node at depth & — 1 with label S has
two children at depth %, one labeled S and one la-
beled Szy. Thus the 2% nodes in the kth level (nodes
at depth k) are labeled with the 2% subsequences of
X1,...,%k, and the leaves contain the 2" feasible solu-
tions. Figure 1 shows the enumeration tree for n = 3.
Let |S| denote the length of a sequence S, and let S(j)
denote the jth element of S. One obvious pruning
rule is:

1. If any node « is labeled with a subsequence S,
that is not increasing, then the subtree rooted
at a can be pruned from the tree since the label
of every node in the subtree rooted at a is a
nonincreasing sequence.

A less obvious pruning rule is:

2. If two nodes o and 3 at the same depth are la-
beled with subsequences S, and Ss such that

(a) |Sa| =185 = ¢, and
(b) S.(f) > Ss (¢), then

(0] X3 Xo XoXg X| XqXg XqXo XqXo X3
Figure 1: Tree of all Subsequences of x1, 3, 3

(c) we can prune the subtree rooted at a.

We claim that pruning the subtree rooted at o leaves
an optimal solution in the remaining tree. To see this
consider an optimal sequence of the form 5,7 that is
a label for a leaf in the subtree rooted at a. Then the
subsequence SgT' is also optimal, and is a label for a
leaf in the subtree rooted at 3. Thus at each level we
need only remember one increasing subsequence of
each possible length, namely the one that ends in the
smallest last number. Since the possible lengths of a
subsequence lie in the range from 0 to n, and there
are n+ 1 levels in the tree, these pruning rules leave a
pruned tree with O(n?) nodes. To obtain O(n?) time
code, we let LIS(k,¢) be the smallest last number
of an increasing subsequence of z1,...,z; of length
£. Updating LIS level by level leads to the following
code, which is essentially the same as we obtained
when using recursion to design an algorithm:

For k=1 ton do
For / =1ton do
LIS(k,¢) = min(LIS(k — 1,¢), LIS(k, £))
If LIS(k —1,s— 1) < then
LIS(k,¢) = min(xy, LIS(k, 1))

Note that we write this code in the way that seems
most intuitive given our development of the algo-
rithm. Further reflection can often lead to cleaner
or more efficient code.

One can see that an alternative second pruning rule
could have been:

2. If two nodes & and 8 at the same depth are la-
beled with subsequences S, and Ss such that

(a) Sy and Ss end in the same number z;, and

(b) |Soc| < |Sﬁ|7 then

(c) we can prune the subtree rooted at .

Once again it is easy to see that pruning the subtree
rooted at « leaves an optimal solution in the remain-
ing tree. Thus at each level we need only remember
a longest increasing subsequence ending at each z;,
1 < j < n. This leads us to define an array LIS[k, j],
1 <k <nand 1 < j < n, to be the length of
the longest increasing subsequence of z1, ..., z; that
ends in z;. Updating LIS level by level leads to the
following code:

For k=1 ton do
For j=1tok —1do
LIS(k,j) = max(LIS(k — 1,7), LIS(k, j))
If ; < xj, then
LIS(k, k) = max(LIS(k, k), LIS(k — 1,5) + 1)

Note that when designing the algorithm for the
LIS problem using recursion, one starts with a mini-
mal amount of information and adds information as
needed. Using the Pruning Method, we start with all
the possible information that we could possibly need,
i.e. all the feasible solutions, and discard information
that is unnecessary.

3 Shortest Path Problem

The standard single source shortest path problem can
be stated at follows:

INPUT: A directed edge-weighted graph G' with des-
ignated vertex s.

OUTPUT: For each vertex v, the shortest path from
s to v.

We assume that ' is not allowed to have cycles
with negative aggregate weight so that shortest paths
are well defined. Here we let n denote the number
of vertices in G, |P| denote the length of a path P,
and d(u,v) denote the weight of the edge (u,v). In
this problem the feasible solutions are directed paths
starting from s containing at most n — 1 edges. We
can generate these feasible solutions as the leaves of
an enumeration tree by having the kth level contain
nodes labeled with all paths starting from s with at
most k edges. Assume that we have a node « labeled
with a path P,, that ends at vertex v, in the kth level
of the tree. Further assume that in G the directed
edges leaving v are to the vertices wi,...,w;. Then
the j 4+ 1 children of « in the enumeration tree will
be labeled P,, Powi, Paws, ..., Pow;. The first three
levels of the enumeration tree for the graph in figure
2 is shown in figure 3.

Figure 2: The Graph G

S

S SA SB

/TN /N

S SA SB SA SAB SAC SB SBC

Figure 3: The First Three Levels of the Enumeration
Tree

The natural pruning rule is to remember only the
shortest path to a particular vertex. This can be
stated more formally as:

1. If there are two nodes a and 3, labeled with
paths P, and Pj3, on the same level of the enu-
meration tree such that

(a) P, and Pg end at the same vertex v, and

(b) Pal > [Psl,
(c) then you can prune the subtree rooted at
a.

We claim that pruning the subtree rooted at o leaves
an optimal solution in the remaining tree. To see this
consider an optimal path of the form P,T that is a
label for a leaf in the subtree rooted at «. Then the

path PsT is also optimal, and is a label for a leaf in
the subtree rooted at 3. Since there are n possible
last vertices and the tree is of height n, this pruning
rule leaves a tree with O(n?) nodes. To obtain an
algorithm we let D[k, v] be the shortest path from s
to v with k or less edges. Updating D level by level
we get the following code:

For k=1ton—1do
For v =1 to n do
Dlk,v] = D[k — 1, 9]
For each edge e = (v, w) do
D[w] = min(D[w], D[v] + d(v, w))

Note that this is the Bellman-Ford algorithm, and
runs in time ©(nm), where m is the number of edges.

4 Conclusions

I generally teach both the standard recursive method,
and the Pruning Method, for designing dynamic pro-
gramming algorithms. At least some students find
the Pruning Method easier to master. One reason
is that it seems to be easier to identify unnecessary
information then it is to identify the new informa-
tion that is required to make the inductive argument
work. Another reason is that if in a new problem it
is the case that the collection of feasible solutions has
a known form (say subsets of a fixed set for exam-
ple), then a student can determine how to construct
the enumeration tree for that type of feasible solution
by look-up. Thus, the first creative step required of
the student is to determine how to prune the tree.
Another more subtle reason is that when using the
Pruning Method the designer needs to answer the
question, “Which entries in row k of the array are
effected by a particular entry in row & — 17”. This
question is often conceptually easier than the equiv-
alent question that arises when developing the algo-
rithm using recursion, which is, “Which entries in row
k — 1 of the array does one need to know to compute
a particular entry in row k7”7

Still, many students fail to master either method.
In my opinion, the most common error that students
make, when using either method, is to immediately
attempt to develop the iterative table/array-based
code (the last step), without first doing the prelim-
inary steps where the intuition is developed. The
following variant of the standard Subset Sum Prob-
lem is a good exercise that forces a student to think
about the preliminary steps since the data structure
used in the final algorithm can not be an array:

Assume that you are given a collection By, ..., B,
of boxes. You are told that the weight in kilograms of

each box is an integer between 1 and some constant
L, inclusive. However, you do not know the specific
weight of any box, and you do not know the specific
value of L. You are also given a pan balance. A pan
balance functions in the following manner. You can
give the pan balance any two disjoint subcollections,
say S1 and S, of the boxes. Let [Si| and |S2| be
the cumulative weight of the boxes in S7 and S5, re-
spectively. The pan balance then determines whether
|S1] < |S2], |S1] = |S2], or |S1] > |S2|. You have
nothing else at your disposal other than these n boxes
and the pan balance. The problem is to determine if
one can partition the boxes into two disjoint subcol-
lections of equal weight. Give an algorithm for this
problem that makes at most O(n? L) uses of the pan
balance.

Recursion and strengthening the inductive hypoth-
esis are important concepts useful for purposes other
than designing dynamic programming algorithms.
Hence, one disadvantage of teaching the Pruning
Method is that it can rob students of an opportu-
nity to improve their recursive thinking skills. For
more information on developing algorithms using re-
cursion, I highly recommend [4], and more generally

[3].

Acknowledgments: I would like to thank Marty Wolf,
and Udi Manber for helpful comments.

References

[1] Gilles Brassard and Paul Bratley, Fundamentals
of Algorithmics, Prentice Hall, 1996.

[2] Thomas Cormen, Charles Leiserson, and Ronald
Rivest, Introduction to Algorithms, McGraw-
Hill, 1990.

[3] Udi Manber, Introduction to Algorithms: A Cre-
ative Approach, Addison-Wesley, 1989.

[4] Udi Manber, “Using induction to design algo-
rithms,”, Communications of the ACM, 31, 1300
— 1313, November 1988.

[5] Richard Neapolitan and Kumarss Naimipour,
Foundations of Algorithms, D. C. Heath, 1996.

