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ABSTRACT The  s tar thng success o f  the Rabm-S t ra s sen -So lovay  p n m a h t y  algori thm,  together  wi th  the intr iguing 
foundat tonal  posstbthty that  axtoms of  randomness  may  constttute a useful fundamenta l  source o f  m a t h e m a u c a l  
truth independent of the standard axmmaUc structure of mathemaUcs, suggests a wgorous search for probabdisuc 
algonthms In dlustratmn of this observaUon, vanous fast probabdlsttc algonthms, with probability of correctness 
guaranteed a prion, are presented for testing polynomial ldentmes and propemes of systems of polynomials. 
Ancdlary fast algorithms for calculating resultants and Sturm sequences are given. Probabilistlc calculatton in 
real anthmetlc, prewously considered by Davis, is justified ngorously, but only in a special case. Theorems of 
elementary geometry can be proved much more efficiently by the techmques presented than by any known 
arttficml-mtelhgence approach 
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1. Integer  Probabilistic Calculations f o r  Mult ivariate  Polynomials  

The startling success of the Rabin-Strassen-Solovay algorithm (see Rabin [17]), together 
with the intriguing foundational possibility that axioms of randomness may constitute a 
useful fundamental source of mathematical truth independent of, but supplementary to, 
the standard axiomatic structure of mathematics (see Chaitin and Schwartz [3l), suggests 
that probabilistic algorithms ought to be sought vigorously. As an illustration of what may 
be possible, this paper presents probabilistic algorithms for testing asserted multivariable 
polynomial identities Q = R, as well as other asserted or conjectured relationships between 
sets of polynomials, e.g., the assertion that one polynomial Q belongs to the ideal generated 
by finitely many others. 

The technique that we use is essentially elementary. Given a purported polynomial 
identity, we can always write it as Q ffi 0. We do not suppose that the Q presented to us for 
testing is given in standard simplified polynomial form. For example, if we did not 
immediately recognize its truth, we might wish to test the identity (x  + y ) ( x  - y )  - x 2 + 
y2 = 0. Indeed, if we write Q for the standard simplified form of Q, what we want is 
precisely a test to determine whether all the coefficients of Q are zero. 

We allow our polynomials to have coefficients in any field or integral domain F. At 
some points in our argument the condition that F should be infinite will play an essential 
role. We write deg(Q) for the degree of Q and [ S[ for the cardinality of a set S. 

Note that it will generally be trivial to develop upper bounds for deg(Q) directly from 
the expression structure of Q. 
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LEMMA 1. Suppose that Q is a polynomial in the variables xl . . . . .  Xn and that Q is not 
identically zero. Let QI be the standard simplified form of  Q. Let dl be the degree o f  Q1 in xl 
and Q2 the coefficient o f  x l  a' in Q1. Then, inductively, let dj be the degree o f  Qj in xj and Qj+i 
the coefficient o f  xf~ in Q~. This defines dj and Qifor j ffi 1 . . . . .  n. For I _< j_< n, let Ij be any 
set o f  elements in the domain or field F of  coefficients o f  Q. Then in the set 11 × . . .  × In, Q 
has at most 

zeros. 

PROOF. The case n ffi 1 is obvious, since a nonzero polynomial  of  degree d can have at 
most d zeros, and we proceed by induction on n, supposing the asserted result to be true 
for Qz, which is a polynomial  in n - 1 variables. I f  (z2 . . . . .  Zn) is a zero o f  Qz, then 
Ql(xl, z2 . . . . .  zn) might be zero for all xl. Otherwise Ql(xl, z2 . . . . .  Zn) has at most dl zeros 
in I~. Thus the total number of  zeros o f  Qi in I~ x . . .  x In is bounded by 

ffi I l l  × " '"  x In[ + - . .  + . Q.E.D. 

COROLLARY 1. Let I = 11 . . . . .  In, and let }I I >_ c deg(Q). Then if Q is not identical 
to zero, the number o f  elements o f  I × . . .  × I which are zeros o f  Q zs at most c-l  l i t .  

PROOF. In this case ~ d,/[I[ _< deg(Q)/[I  I _< c -1. Q.E.D. 

We can therefore test a purported identity Q ~ 0 by the following probabilistic 
procedure. Choose I such that ]I[  _> C deg(Q) with C significantly greater than l, e.g., 
C = 2. Let N be such that C -N is small enough, e.g., <2  -4°°, and then select N elements 
y = (y l  . . . . .  yn) from I × - . -  x I at random. If  any one o f  these y is not a zero of  Q, then 
Q is not identically equal to zero. I f  all are zeros of  Q, then Q is very probably equal to 
zero identically. For  a rigorous discussion of  the term "very probably" which appears here, 
see Chaitin and Schwartz [3]. 

Polynomials with integer coefficients will interest us particularly. In dealing with such 
polynomials, we will want to avoid having to deal  with very large integers. To avoid this, 
we can adapt  the standard technique of  carrying out all calculations in modular  arithmetic. 
This suggests the following definition. 

Definition 1. Let Q -- Q(xl . . . . .  Xn) be an n-parameter  integer-coefficient polynomial.  
Then 

( a )  A modular zero of  Q is an (n  + l)-tuple (il . . . . .  in, p)  of  Integers, the last integer p 
being prime, such that Q(il . . . . .  in) ~ 0 (mod p). 

(b) We write maxv(Q, k) for the maximum absolute value which Q can assume on the 
rectangle IxjI _< k , j  ffi 1, . . . ,  n. 

Note that it will generally be easy to develop an upper bound for maxv(Q, k) directly 
from the expression structure of  Q. 

LEMMA 2. Let the hypotheses o f  Lemma 1 be satisfied. Suppose in addition that the 
coefficients of Q are integers, that l = I1 = 12 . . . . .  In -- { i [ - k  _< i _< k}, and that L = 
maxv(Q, k). Let J be any finite set o f  primes, and suppose that the product o f  any m + 1 o f  
the primes in J exceeds L. Then in the set 11 x . .  • x In x J, Q has at most 

I11 x ... x In x Jl dl + ... I/nl + (2) 

modular zeros. 
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PROOF. Let (i~ . . . . .  in) E 11 X - . .  X In. If  Q(i~ . . . . .  in) = O, then (6 . . . . .  in, p)  is a 
modular zero of  Q for every p E J. Otherwise I Q(i~, . . . ,  in) [ _< L, but is nonzero. In this 
case it is impossible for Q(i~ . . . . .  i,O to have more than m prime factors in J. Thus by 
Lemma I the total number of  modular zeros of  Q in I~ x . . .  x In x J is bounded by 

I J l ' l I ~  x . . .  x I . I  + - . .  + + mlI~ x . . .  x I .I  

ffi II1 x . . .  x In x JI + " '"  + ~-~  + • Q.E.D. 

COROLLARY 2. Let 2k + 1 _> c.deg(Q), and suppose that the product o f  the c-~lJI + 1 
smallest primes in J exceeds maxv(Q, k). Then if Q is not identically equal to zero, the number 
of  elements o f  I1 x . . .  × In x J which are modular zeros o f  Q is at most 2c- a I I I n [ J l" 

Corollary 2 allows us to carry out the probabilistic tests for Q ffi 0 in modular arithmetic. 
The computations necessary for each test can be carried out at almost full arithmetic speed 
on a b-bit computer by programming in the following style. Keep a table of  all the primes 
in J, and for each such prime record the value of  2bmodp. Then use the ordinary arithmetic 
operations as long as no overflow occurs, but whenever a quantity overflowing single 
precision is encountered, reduce modulo p. The set J and the quantity k of  Corollary 2 can 
be chosen to minimize the number of  computations needed to verify a given identity to 
within some prescribed probability, e.g., 10 -1°°. 

As an example, consider the problem of verifying Vandermonde's identity, 

1 x~  . . .  x ~  -~  

: : : = I I  ( . , , , -  x , ) ,  ( 3 )  
1 x n  . . .  x , ~ - I  ,<J 

for some fixed but substantial value of  n, say n ffi 100. The polynomials appearing in this 
case are of  total degree roughly 5000. (Thus simplification by direct expansion is hopeless, 
since roughly 25°°° terms would appear on the right.) Suppose that we choose the xj at 
random in the range Ixj [ _< 250,000, and let J be the set of  primes extending from the Mth 
to the 2Mth prime, where (M log M )  M/l°° _> maxv(Q, 250,000), Q being the difference 
between the left and right sides of  (3). Then by Corollary 2 a fractional part at most equal 
to 2 × 10 -2 of  the elements o f / 1  x . . .  x In x J are modular zeros of  Q if Q is not 
identically equal to zero. Thus, to guarantee the desired probabilistic accuracy 10 -l°°, 60 
random tests will be sufficient. Using Hadamard's determinant inequality (see Dunford 
and Schwartz [7, p. 1018]) to bound the left side of  the equation, an upper bound of  10 ~°°. 
(2.5 × 105) 5°°° _< 1027a°° can easily be set for Q. Thus the value M ffi 1/2 × 10 ~ is sufficient, 
and we make our selection of  a prime p at random from among all primes from Ps0o,00o to 
P~.0o0.o0o. The determinant in (3) can be calculated modulo p by Strassen's method; at any 
rate, 108 is a rough upper bound on the number of  arithmetic operations required. (For 
efficiency, these operations should be compiled and executed rather than interpreted.) On 
a reasonably fast computer these computations should take about 3 minutes. 

The polynomial identity verification technique that we have outlined extends immedi- 
ately to rational functions. Suppose that we are given a function R expressed in terms of  
the three operations of  multiplication, subtraction, and division, but not reduced to the 
standard quotient-of-polynomials form R = Q]/Q2. The degree of  the numerator and 
denominator of  this standard-form representation can be bounded easily by examination 
of  the structure of  R, and upper bounds for Q~, Q2 in any numerical range [ x,[ <_ k can 
easily be set. Hence we can proceed as in the polynomial case. Divisions modulo p will of  
course pose no problem. Denominators equal to zero should be noted, and any test in 
which such a denominator has occurred should be bypassed. The probability that a 
denominator not equal to zero ever appears as zero in a modular test can be kept low by 
choosing the k and J of  Lemma 2 appropriately, so that expressions R not involving 
excessively many divisions can be handled without difficulty. Any denominator which 
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appears as zero in too many tests is very probably equal to zero and calls the definition of 
the rational function R into question. 

Other properties of  polynomials and rational functions can be tested by much the same 
technique. To test for constancy, linearity, etc., we can form differences of Q and test to 
see if they are identically zero. To test a pair Q~, Q2 of polynomials for the relationship 
Q~ [ Q2 of divisibility we can proceed as follows. Substitute random values for the param- 
eters x2 . . . . .  xn of Q1, Q2; calculate modulo a random prime, and simplify both polynomials 
in the remaining parameter xl to Qi' ffi Cdlx~ ~ + . . .  + Co and Q f  = Cd2X~ 2 + . . .  + Co. 
Divide Qf  by Qi ~. I f  Q~'[ Q~', this must give a zero remainder. If  the remainder calculated 
in this way is zero for enough random choices, we will have verified that the remainder of 
Qi[Q2, calculated by regarding Q1 and Q2 as polynomials in x~ with coefficients in the 
field of  rational functions of x2 . . . . .  xn, is zero. But then we can write 

Rl(x2 . . .  xn)Q2(xl . . .  xn) ffi As(x1 . . . . .  xn)Ql(x l  . . . . .  Xn) (4) 

for some polynomials Ax and Rx. Proceeding in the same way for each of the other 
variables, we see that there exist polynomials Aj (x l  . . . . .  xn), Rj(x~ . . . . .  X~-l, X~+l . . . . .  xn) 
such that R~Q2 ffi A~Qi for allj. But then A~Rj ffi AjRx for allj. Any common prime factor 
of R~ and R2 must clearly be independent of both xx and x2, and from the preceding 
equation, any other factor of Rl must divide A1. Thus we can write A1 = A i F i ,  R1 ffi R1F1, 
where R1 is independent of both xl and x2. It follows that R~Q2 = A~ Q1. Replacing A~, R~ 
by A1, Ri and repeating this argument, we eventually fred that Qi [ Q2. 

The problem of determining whether Q~ [ Q~ for some integer k generalizes the polyno- 
mial divisibility problem in a significant way, since this is equivalent to the condition that 
the algebraic manifold V(Qi)  of zeros of Qt is a subset of the manifold V(Q2) of zeros of 
Q2. Moreover, Qi I Q~ if and only if every prime factor of Q1 is a prime factor of  Q2. To test 
this condition, we can use the following sequence of purely rational calculations. Put 
A~ = Qt, B~ = Q2, regarding these as polynomials in x~ with coefficients in the field of  
rational functions of x2, . . . ,  xn. Then successively define 

B~+~ ffi GCD(Aj, Bj), Aj+~ ffi Aj/B~+~. (5) 

Since the degrees of the polynomials Aj and Bj are falling, this sequence must eventually 
stabilize with some A~ and B®. I f  A® is not of degree zero in x~, then it is relatively prime 
to every prime factor of B~ = Q2. Thus the zeros of A® (in the field of algebraic functions 
ofx~ . . . . .  xn) are distinct from the zeros of Q2. Returning to the space of complex variables, 
this means that Q~ has zeros which are not zeros of Q2, so that Qt [ Q~ is false. On the other 
hand, if A® is of degree zero in xl, then we can write Ql ffi A®B2 . . .  B®, and clearly each 
Bj (if regarded as a polynomial in x~ with coefficients which are rational functions of 
x2 . . . . .  xn) is a factor of Q2. Thus Qi[ Q~ if Q~ and Q2 are regarded as polynomials in Xl. 
It follows that in the domain of polynomials in all n variables we have Q~[QoQ~ for some 
Qo which is independent of  Xl. Thus Q ~ / G C D ( Q b  Q~) is independent ofx~ for sufficiently 
large k. Proceeding in the same way for all the other variables, we can make probabilistic 
tests which verify that Q~/GCD(Q~,  Q~) is independent ofx~ for eachj  and all sufficiently 
large k. But then clearly Q~[ Qk2 for k sufficiently large. 

The z:quence of GCD calculations and divisions just described can be performed 
probabilistically by evaluating Qt and Q2 for randomly chosen x2 . . . . .  xn modulo random 
primes p and simplifying to write the results as polynomials of standard form in x~. 
Standard algorithms for polynomials in one variable can be used. Any computation leading 
to a polynomial of lower degree than those of the Q2 calculated for other values of  
x2 . . . . .  Xn can be dropped, since its leading coefficient has vanished "accidentally." The 
probability of this ever happening can be kept small by choosing places of  evaluation and 
primes from a sufficiently large range. 

The general subject to which the preceding considerations belong, namely, the effective 
calculation of relationships between polynomials and between the sets of zeros of poly- 
nomials, has a very long history, which comes to a peak in Tarski [19]; see also Hermann 
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[11] and Seidenberg [18]. The classical approach to these questions is via the so-called 
elimination theory. See van der Waerden [20] for an account of  this theory and for various 
algebraic results which we shall use. The probabilistic technique suggested in the preceding 
pages serves to extend the practical reach of  these classical methods a bit beyond what 
would otherwise be their limits. We shall now illustrate this point with a series o f  examples. 

2. Application of Elimination Theory 

Given a set of  m polynomials Q~ . . . . .  Qm, we can form the algebraic manifold 
V(Q1 . . . . .  Qm) of  their common zeros. The problem of  determining the dimension of  this 
manifold is an obvious generalization of  the problem of  testing a single identity Q = 0. A 
systematic elimination-theoretic procedure for determining this dimension is described in 
van der Waerden [21]. This procedure is based on the calculation of  polynomial resultants. 

Let Q and Q be polynomials in a single variable x, having nominal degrees d, d, re- 
spectively. The resultant R(Q, Q) is the determinant of  the linear transformation T: f  + 
x ~  ~ Q f  + Q f  where f ,  f are arbitrary polynomials of  degree d, d, respectively, and 
where we regard T as a transformation in the (d + d)-dimensional linear space of poly- 
nomials of  degree d + 4 - I. A fundamental property of  this determinant is that it van- 
ishes if and only if Q, Q either have a factor in common or both have leading zeros. 
Let Q(x) = CdX d + . . .  Co and Q(x) = d,~x d + . . .  + do. Then R(Q, Q) is the 
(d + 4) .  (d + d)-dimensional determinant, 

Cd " ' "  C~ 

0 Cd " ' "  

0 0 . . -  
rid • . .  do 
o da . . .  
: : 

0 " ' '  

where d rows contain coefficients 
that 

Co 0 0 - . .  0 
C1 Co 0 - . .  0 

s .  

0 Cd " ' "  C1 Co (6) 
0 0 . . .  0 

do o o . . .  o 

2 
o o d j  . . .  Co 

Cj and d rows contain coefficients C1. It is clear from (6) 

Suppose that deg(Q) _> deg(Q) and that k ~ deg(Q) - deg(Q). Then by subtracting an 
appropriate upper row from each lower row m (6) we can see that R(Q, Q) = 
R(Q, Q - x kQ) .  Performing an appropriate expansion by minors, it follows that 

R(Q, Q) = (L(Q))deg~O)-deg~Q~R(Q, Q//Q),  (8) 

where L(Q) denotes the leading coefficient of  Q and Q/ /Q  denotes the remainder after 
division of Q by Q. By (7) and (8) we have 

R(Q, Q) -- (L(Q))deg~O~-d~'~O)(-1)deg~O~R(Q//Q, Q) (9) 

if deg(Q) _> deg(Q). For the special case deg(Q) = 0 we have 

R(Q, Q) ffi (L(Q)) d'g~O~ ff deg(Q) -- 0. (10) 

Collins [4] uses relationships (8) and (9) repeatedly to calculate the resultant o f  a pair o f  
polynomials, in this way  obtaining an n21og n algorithm for resultant calculation, where 
n ffi deg(Q) + deg(Q). In view of  the central role which the resultant plays in classical 
elimination theory, a more efficient technique for computing it is desirable, and we now 
show that the fast polynomial G C D  algorithm of  Moenck [14] (see also Aho et al. [1]) can 
be adapted to give an n log2n algorithm for resultant calculation. To this end, we make the 
following definition. 

Definition 2. Let a pair of  polynomials w = [Q2 Q] of  degreed,  4 with coefficients in 
a field or domain F be given, and let d = max(d, d). Write Q/ /Q  for the remainder of  Q 
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upon division by Q. Then the RQ-sequence RQ(w) is the sequence t,, i = d, d - 1 . . . . .  O, 
of  triples 

t, == [[Q,, Q,], a,, M,], (11) 

defined as follows: 

(1) Q,, Q, are Eolynomials, a, is a quantit), o fF ,  M, is a 2 × 2 matrix of  polynomials. 
(2) ta = [[Q, Q], 1, /] , .where I is the 2 × 2 identitymatrix.  
(3) max(deg(Q,), deg(Q,)) _> i _> min(deg(Q,), deg(Q,)) for i > 0. 
(4a) t,_~ = t, if  min(deg(Q,), deg(QJ) < i; 
(4b) otherwise, if deg(Q,) ffi i, then (dropping remainders in all polynomial divisions) we 

have 
t , - I  '~' [[Q,, Q, I I Q,], a,(L(Q,)) d~g(O')-d'g(O'), MM,], (12) 

where {, o} 
M = _ ~ , i Q ,  ; 

(,lc) otherwise deg(Q,) -- i, and then 

where 

t,-, = [[Q,//O. ~,], a,(--l)de'(0')L(Q,) d'g(¢')-d'g(0'), MM,], (13) 

.=[: 
LEMMA 3. Let w = [Q, Q], t,, etc., be as in the preceding definition. Then the sequence 

RQ(w) has the following properties: 

(i) [Q,, Q,] ffi M,[Q, Q]. 
(ii) deg(M~) _< d - max(deg(QO, deg(QO) -< d - i. 

(iii) R(Q, Q) -- a,R(Q,, Q,). 

PROOF. All this is clear for i = d. A step from t, to t,-1 via (4a) of  the preceding 
definition clearly preserves the validity of  (i)-(iii). Now suppose that rule (4b) applies to 
the step from t, to t,-1. Prol~rty (i) is clearly preserved. Moreover, 

deg(M,-1) _< deg(QJ - deg(Q,) + deg(M,) 
_< deg(Q,) - deg(Q0 + d - deg(Q,) 
= d - deg(Q,) = d - max(deg(Q,-0,  deg(Q,-0).  

Concerning (iii), it follows by (8) and (12) that 

R(Q, Q) = a,R(Q,, Q,) = a,(L(Q,))deg(O')-deg(O')R(Q,, O,IIQ,) 
= a,-iR(Q,-, ,  Q,-,). 

The case in which rule (4c) applies to the step from t, to t,-~ can be handled in much the 
same way. Q.E.D. 

LEMMA 4. Let w ffi [Q, Q], w* • [ Q * ,  Q*] be two pairs o f  polynomials. Suppose that 
max(deg(Q), deg(Q ), deg(Q*), deg(Q*)) ~ d, and suppose that the terms o f  order not less 
than d - 2i in Q, Q agree with the corresponding terms in Q*, Q*. Then the first i + 1 terms 
o f  the sequence RQ(w) = [td, ta-i . . . .  ] have precisely the same components a,, M, as the 
corresponding terms a~*, M~* o f  the sequence RQ(w*) -- [t~, t~-i . . . .  ]. 

PROOV. This is clear for i = 0, and we use the same notation as in the preced- 
ing definition and lemma and proceed by induction. For j ~ d - i we have 
[Qj+i, ~+1]  -- Mj+aw, and similarly for [Q~+i, Q j*+l], so that Q,+i, Qj+i agree with Q~+i, 
Q7+1 modulo terms of  order d - 2i + deg(M:+ 0 at most. By Lemma 3(ii) it follows that 

Q:+i modulo terms of  deg(Mj+ 0 .~ d - j  - 1 ffi i - 1, so that Q~÷i, Qt+I agree with QT+i, "* 
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order d - i - l -- j - l at most. Thus if (4a) o f  the preceding definition applies to the  step 
from [~+~, Q,+~] to [ ~ ,  Q,], it also applies to the corresponding step from [.Q~+~Q~+~], 
and in this case clearly [a~, M,] ffi [a~*, MT]. Similarly, if  (4b) applies to [Qj+i, Q,+l], it also 
applies to [Q~+t, Q~+t], and we have 

deg(Q,+~) ffi i + l ,  

a~ --  a j+  ~( L (  Q j  + t) ) deg~'~ ~+' ~-deg~Q'' ~, 

[ i 0] M~ f f i  MMj+i where M = -Qj+1/Qj+i ' 

and similarly for a*, M*, so that a~ -- a*, Mj = M*. The case in which (4c) of  the preceding 
definition applies is handled in exactly the same way. Q.E.D. 

Lemmas 3 and 4 justify the following resultant calculation algorithm. 

(1) Calculate ad-i and Md-I, which depend only on the two leading coefficients of  Q, Q_ 
(2) Next, assuming recursively that a procedure for calculating ad-,(Q, Q) and Md-,~Q, Q) ns available, calculate 

ad-2, and Md-2, (both are functions of Q and Q) as follows" 

(2a) Calculate ad-, and Md-,. 
(2b) Drop all but the first d - 31 terms from Q, Q to obtain polynomials, Q*, Q*, and then calculate 

[Q~_,, Q~_,] ffi Md-,[Q, Q] By Lemma 3(0 and (n), Qd-,, Qd-, agree with Q~_,, Q~_, to within terms of 
order d - 2i. 

(2c) Starting from the polynomials Q~_,, Q~_,, apply steps 2a and 2b recuvsively to calculate a~_, - 
ad-,(Q~_,, Q]-,) and M~_, ffi Ma-,(Q~_,, Q~_,). By Lemma 4, these are the same as aa-,(Qa-,, Qa-,) ~nd 
Md-,(Qd-,, Qd-,). 

(2d) We can now put 

Md-2,(Q, Q) = Md-,(Q .... Qd-JMd-,(Q, Q) (14) 

and 

ad-~(Q, Q) - ad-2,(Qd-,, Qd-jad-,(Q, Q). (15) 

(2e) Repeated use of the relations (14) and (15) wall glveMd-2,(Q, Q.) andad-2,(Q,Q). If dis  not a power of 
2, we multiply both Q and Q by a power x k o f x  to make max(deg(_Q), dog(Q)) a power 2' of 2. Then 
we calculate [Qo, Q0] - Mo(Q, Q)[Q, Q] It is then clear that R(Q, Q) ffi ad-2,(L(x-kQo)) ~-d~¢Q°' tf 
deg(Qo) > dog(Q0), etc. 

Multiplication and division of  polynomials of  order m can be accomplished in time 
Km log m, where K is a constant of  proportionality. In the process that we have just 
described, polynomials of  order at most 3 .2 '  are multiplied and divided at the ith step. 
Thus the total time T(m) required to calculate the resultant of  two polynomials o f  degree 
m satisfies T(2m) _< 2T(m) + Km log m and has the estimate T(m) <_ Km log2m. 

Tarski [19] notes that by making use of  Sturm's formula for the zeros of  a real 
polynomial, the results of  elimination theory can be carried over to the study of  the sets of  
zeros of  real algebraic polynomials. To do this efficiently, we need a fast algorithm for 
calculating the sequence of  coefficients which occur in Sturm's formula. For the con- 
venience of  the reader, we restate this beautiful formula (see Bieberbach and Bauer [2, 
pp. 173 ft.]). 

THEOREM 1 (STURM). Let R be a polynomial with real coefficients and suppose that R 
has no multiple zeros, so that R and R'  = dR/dx have no common factor. Put R1 ffi Ro, 
R2 = R', and then form the sequence of quotients Qj and remainders Rj defined by Qj+I/R~ 
with remainder -Rj+2, i.e., 

R, = R:+~ * Q.,+~ - R,+~, 

where dog(R:+2) < deg(Rj+l), until a nonzero constant Rk is reached. Then the number of 
zeros of R in an interval [a, b] (whose endpoints are not zeros) is the difference S(a) - S(b), 
where S(x) is the number of changes of sign in the sequence Rl(x) . . . . .  R~-l(x), Rk. 

COROLLARY. Let the hypotheses of the preceding theorem be satired, and let ST(R) be 
the sequence [rl, . . . ,  rk] of  leading coefficients of  the polynomials Rl . . . . .  Rk. (We will 
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sometimes call this sequence the Sturmian coefficient sequence of  R.) Then the number o f  
real zeros o f  R is the number o f  sign changes in [rl . . . . .  rk ] minus the number o f  sign changes 
in [ ( -  1)deg(a0rl . . . . .  (-- l)deg(R*)rk ]. 

PROOV. This follows from Sturm's theorem if we let b ~ oo and a ~ -oo in that 
theorem. Q.E.D. 

A fast algorithm for calculating ST(Q) for any real polynomial Q without multiple zeros 
can be developed in close analogy with the resultant algorithm that has been presented. 
We simply build up a sequence 

tr  = [[Q,, Q~], n,, M,] (16) 

for i -- d, d - 1 . . . . .  0, where d ffi deg(Q') and 

(1") Q,, Q, are polynomials, n, is an integer, and M, is a 2 x 2 matrix of  polynomials. 
(2*) t~ ffi [[Q, ~ ' ] ,  0, I] ,  where I is the 2 × 2 identitymatrix. 
(3*) max(deg(Q,), deg(Q,)) _> i _> m in(deg(Q,), deg(Q,)). 
(4a*) t**_~ = t** if min(deg(Q,), deg(Q,)) < i; 
(4b*) otherwise, if deg(Q,) = i, then 

t,*_~ ffi [[Q,, - Q,//Q,], n, + 6, MM,], (17) 

where 

[o:,o, o, 1 
and 

= ½ ((l - sign(L(Q,)/L(Q,))) 
+ (1 - ( - l )  deg(o~)-deg(od sign(L(Q,)/L(QO))); 

(4c*) otherwise deg(Q,) = i, and then 

t**-i ffi [ [ - Q , / / Q , ,  Q~], n) + 6, MM,], (18) 

where 

['0 g ~ , 

and where 8 is as above. 

Lemmas 3 and 4 obviously carry over to the sequence t~ I f  d ffi deg(Q') is not a power 
of  2, we multiply Q by a quamity x k + C to make it a power of  Q and then calculate t~ 
and, in particular, no and [Qo, Qo] ffi Mo[Q, Q']. Assuming that C is positive it is clear from 
Sturm's theorem that the number of  real zeros of  Q is no if k is even and no - 1 if k is odd. 
As previously, the time T(m) required for this calculation has the estimate T(m) _< 
Km log2m. 

We now return to considering the problem of  determining the dimension of  the manifold 
V(Q1 . . . . .  Qm) of  common zeros o f  a set of  polynomials with constant coefficients. The 
classical technique for handling this problem and for testing the condition V(Q) D 
V(Q1 . . . . .  Qm) is based on Kronecker's method of  elimination, (see van der Waerden 
[21, Ch. 9]). For the reader's convenience, we now summarize the main points of  this 
technique. 

(a) Let the degrees of  the polynomials Q1 . . . . .  Qm be d~ . . . . .  din; suppose for the 
moment that only one variable x is involved, and that the leading coefficient o f  Q~ is 
nonzero. Then we can introduce a formal auxiliary variable u and form the resultant 

R(Qb Q2 + Q3u + . . .  + Qmum-2). (19) 

I f  regarded as an element in the field F of  rational functions of  u, this expression vanishes 
(which is to say, vanishes identically in u) if and only if Ql and Q2 + Q3u + . . .  + Q, nu m-2 
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(regarded as polynomials with elements in this field) have a common factor. But this is the 
case if and only if  Ql . . . . .  Qn have a common factor, i.e., a common root in the algebraic 
closure ACF of  the field generated by their coefficients. Thus, i f  we decompose (19) into 
separate powers of  u, we will get a collection of  expressions pJm~(Ql . . . . .  Qm), each a 
polynomial in the coefficients of  Qi . . . . .  Qm, such that 

p~m~(Q1 . . . . .  Q,~) = o for all j (20) 

if and only if  Q1 . . . . .  Qm have a common root in ACF. The collection of  expressions 
p JinX(Q1 . . . . .  Qm) is called the resultant system of  Qi . . . . .  Qm. 

(b) Next let Q1 . . . . .  Qm be polynomials in n variables xl . . . . .  xn. We can regard 
Q~ . . . . .  Qm as polynomials in xl with coefficients in the ring R(x2 . . . . .  Xn) of  polynomials 
in the remaining coefficients and form the resultant system (20) of  these polynomials. I f  
we assume that the x~ term of  highest degree in Q~ has a constant coefficient, then 
x 2 , . . . ,  xn satisfy the equations of  the resultant system (20) if  and only i f  the equations 

Q~(z, x2 . . . . .  x~), j -- 1 . . . . .  m, (21) 

have a solution z (in the algebraic closure ACF of  the field generated by all the coefficients 
of  Q1 . . . . .  Qm). We can now pass iteratively from the system (21) to its resultant system 
(20), then to the resultant system of  all the p~m~, etc. At each stage, one of  the original 
variables x~ . . . . .  x~ is eliminated. Eventually we will either come to a set of  polynomials 
{g(Xk . . . . .  X~)} whose resultant system is identically zero, or all variables will be 
eliminated and we will be left with a nonzero constant. In the latter case, the manifold 
V(Q~ . . . . .  Qm) is empty; in the former case, the dimension of  this manifold is n - m. 

(c) In a space o f n  > m variables, the dimension of  the manifold V(Qi . . . . .  Qm) cannot 
be less than n - m without the manifold being empty. (See van der Waerden 
[21, Sec. 29, 34]). Thus, if  in forming successive resultant systems from Ql . . . . .  Qm more 
than m variables are ever eliminated, we can be sure that the process o f  elimination will 
eventually produce a nonzero constant. This remark is useful for a number  of  purposes. In 
particular, Q vamshes on V(Q1 . . . . .  Qm) if  and only if  the system 

Qj = O, j ffi 1 . . . . .  m, uQ - 1 - - 0  (22) 

of  equations has no common solution, where u is an auxiliary variable. Thus i f  m < n, the 
condition V(Q) D V(Qi . . . . .  Qm) is equivalent to dim(V(Q1 . . . . .  Qm, uQ - 1)) < n - m. 

(d) Each time we eliminate a variable xj we require a polynomial  whose xj term of  
highest degree has a constant coefficient. To ensure that such polynomials occur, we can 
pass from the set of  polynomials Qj(X), where X = (xl . . . . .  x~), to the set 
Qj((I - S)X) ,  where S is a subdiagonal matrix with indeterminate coefficients. Unless 
the kth resultant system of  this set of  polynomials vanishes identically in X and S, 
V(QI . . . . .  Qm) has dimension less than n - k. For  purposes of  probabilistic testing, it is 
most convenient to form 

Pi(X, S, ul) = R~(Q~((I + S)X) ,  Q2((I + S)X)  + Qa((I + S)X)u  + . . . ) ,  (23) 

where Us is an indeterminate, and then successively 

P,+~(X, S, u~ . . . . .  u2,) ffi R,+,(P,(X, S, u~ . . . . .  u2,-,), P,(X, S, u2t-l+l, . ,  o , u2,)), (24) 

where R, designates the resolvent formed with respect to the variable x,. The first 
polynomial Pk which vanishes identically determines the dimension n - k o f  
V(Qi . . . . .  Qm). To test the condition P, --- O, the probabilistic techniques described 
previously can be used. I f  d and D are the smallest and the largest degree, respectively, of  
any polynomial Q~, then Pi will be of  degree d~ = 2dD in the variables x2 . . . . .  xn, and 
then successively Pj will be of  degree dj = 2d~_~ in xj+~ . . . . .  xn. Since this sequence 
increases quite rapidly, and since calculation of  the resultant of  two polynomials of  degree 
dj requires time Kdfiog2dl, calculation of  values of  P: will become impractical after 
approximately d:_a = 105. If, for example, we begin with a system of  polynomials 
Q~ . . . . .  Q,n of  degree 4 in n variables, the test dim(V(Ql . . . . .  Qm)) < n - 3 will generally 
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be feasible (even though the degree of  P3 might be as high as 8 x 106), but it will be 
infeasible to test the condition dim(V(Q~ . . . . .  Qm)) < n - 4 by the techniques that we 
have described. By the remark made in connection with (22), this means that these 
techniques suffice to test the condition V(Q) ~ V(Qx, Q2) for polynomials of  fairly small 
degree, but not to test the condition V(Q) D V(Q~, Q2, Q3). 

Tarski [19] gave an effective technique based on Sturm's theorem for testing compati- 
bility of  sets of  polynomial equalities and inequalities in the real domain. We now describe 
the way in which probabilistic testing can be used to extend the reach of  his methods 
somewhat. We consider the problem of  determining whether a set of  polynomial equalities 
and inequalities in n real variables X = (x~ . . . . .  xn) of  the form 

f , ( X )  = O, g , (X)  _> O, h,(X) > 0, (25) 

is satisfiable. Since g, >_ 0 can be written as g, - y2 m O, and h, > 0 can be written as 
yZh, = 1, it is sufficient for theoretical purposes to consider systems consisting of  equalities 
only. (However, for practical purposes we will often wish to avoid introducing additional 
variables l ikey if we can.) Sincefl •f2 . . . . .  f m =  0 if and only iff~ 2 + . . .  +fern = 0, it 
is sufficient to consider the existence of  a solution of  a single real polynomial equation 
f ( X )  = 0. To handle this question, we adapt the technique introduced by Seidenberg 
[18]. Suppose t h a t f ( X )  = 0. Then for any Y = (y~ . . . . .  y n ) , f  = 0 has a real solution Z 
nearest to Y, and if X # Y, then every one of  the variational equations (x, -y , ) f x ,  - 
(xj - yj)fx, = 0 will also be satisfied by Z. This leads us to consider the system 

f = O, (x, - y , ) f x ,  - (x, -y~)fx ,  = O, i = 2 . . . . .  n, (26) 

of  n polynomial equations in the variables xl . . . . .  xn. 
Multiple factors m f c a n  be detected and eliminated by forming GCD(f l ,  fx,) for various 

i and then dividing by any common divisors of  degree greater than zero which appear. 
Thus we can suppose that nofxj is identically zero on the set V ( f ) .  Hence V ( f )  has 
nonsingular points in the neighborhood of  which it is a smooth surface of  dimension 
n - 1 with a well-defined tangent hyperplane. Considered in the complex domain, the 
system (26) defines an algebraic correspondence A between points X = (x~ . . . . .  xn) and 
Y = (yl . . . . .  yn). A generic point X of  V ( f )  is nonsingular, and for each such X the set o f  
corresponding Y is one dimensional. It follows by the principle o f  enumeration of  variables 
(see [21, Sec. 139]) that the algebraic correspondence A is n-dimensional, and hence that 
for generic Y the set of  complex solutions X of  the system (26) is zero-dimensional, which 
is to say finite. Moreover, i f f  is of  degree d, then so is every one o f  the equations of  (26), 
and it follows by Bezout's theorem (see [21, Sec. 41]) that for each Y = (y~ . . . . .  yn) for 
which (26) has finitely many solutions the number of  these solutions is bounded by dn. 

Write the system (26) in the form F(X, Y) = 0, where X = (x~ . . . . .  xn), Y = 
(y~ . . . . .  yn) as above, and where F is a vector-valued polynomial whose individual 
components are the various polynomials appearing in (26). Then consider the system 

F(( I  + S)X,  (I  + S)Y) = 0, (27) 

where S is subdiagonal. We can pass from this system to its resultant system formed with 
respect to the variable Xl, and then to successive resultants with respect to the variables 
x2 . . . . .  x~_~, thus obtaining a set of  polynomials in the remaining variable xn. Finally, we 
can form the (3CD of all these polynomials, thus obtaining a real polynomial ~(x~, S, Y) 
in xn, with coefficients which are polynomial in the components of  S and Y. By collecting 
the coefficients C of  the terms xjd'C(xj+~ . . . . .  x~, S, Y)  of  highest xj-degree which appear 
dunng the process of  resultant formation which leads to ~(xn, S, Y), and by adjoining to 
these any one of  the nonvanishmg coefficients of  ~, we obtain a set o f  n polynomials 
qj(S, Y). These have the property that if qj(S, Y )  # 0 for a l l j  and O(xn, S, Y) = 0, then 
there exist (possibly complex) xl . . . . .  xn-~ such that X = (xl . . . . .  x~_~, x~) satisfies the 
system (27), and such that (27) has at most d n solutions. Moreover, the polynomial qj is o f  
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degree at most 2-1(2d) v- ' ,  so that the product q(S, Y)  of  all the polynomials qj is of  degree 
at most 4-~(2d) 2~. For each (S, Y) such that q(S, Y)  # 0 let X°~, j ffi 1 . . . . .  v _< d ~, be 
all the solutions of  the system of  equations 

F(X, Y) -- 0. (28) 

Then the solutions xn of  (27) are (I  + S)-~X ~ .  If  any of  the vectors X ~ is real, then the 
system (28), hence the system (26), and hence the equation f ffi 0, has a real solution. 
Suppose on the other hand that none of  the vectors X tJ~ is real. Write Im(z) for the 
imaginary part of  the complex number z, and let the vector e~ be such that the inner 
product (en, X) is the nth component xn of  the vector X. Then each polynomial 
Im(en, (I  + S)-~X ~ )  is of  degree n - 1 in S and is not identically zero for real S. Multiply 
q(S, Y)  by the product of  all these polynomials to obtain a polynomial ~($, Y) o f  degree 
at most D = 2-2(2d) 2n + (n - l)d n with the property that if ~(S, Y) # 0, then O(x~, S, Y) 
has no real zero unlessf(X) = 0 has a real solution. Hence if we assume tha t f (X)  = 0 has 
no real solution and choose the components of  S and Y at random from the range 
- C D  _< i _< CD, it follows from Corollary 1 that the number o f  pairs (S, Y) for which 
• (x~, S, Y) has real solution amounts to at most (2C) -~ of  the total o f  all (S, Y) which can 
be formed with components satisfying - C D  _< i _< CD. Hence if we form N different pairs 
(S, Y) at random (but with components subject to this condition), compute ~(xn, S, Y) for 
each of  them, and fred in each case that ~(Xn, S, Y)  has a real root x~, then it follows with 
probability (2C) -N tha t f (X)  = 0 has a real solution. We can use Sturm's theorem to test 

for the existence of  a real solution xn; the number of  such solutions can be calculated 
rapidly by the method defined by formulas (16)-(18). 

We can estimate in much the same way as previously that the technique just outlined 
will be practical in the three-variable case for a system S of  polynomials f o r  small degree 
but will probably not suffice to do much for the four-variable case. In particular, we cannot 
expect to handle more than one inequality g > 0 or g >_ 0 by replacing it by an equality uZg 
= 1 or g - u 2 = O. If  the system of  equations and inequalities we need to process contains 
just one inequality g > 0 or g _> O, we can handle it without introducing any additional 
variables by testing the equation g = c or g = -¢,  where ¢ is a formal infinitesimal constant, 
for compatibility with the other equations of  S. If  S contains two inequalities, we can 
handle one of  them by this technique and the other by replacing it by an equality involving 
an additional variable. Thus the approach we have outlined will allow a two-variable 
system S involving two nonlinear inequalities, and a three-variable system S involving just 
one such inequality, to be tested for compatibility without undue expenditure o f  time. 

3. Verification of  Theorems of  Elementary Plane Geometry 

Following Tarski [19] (and of  course Descartes), P.J. Davis [6] notes the fact that the 
theorems of  elementary plane geometry can be expressed as algebraic identities. Generally 
speaking, these are identities which involve expressions of  the field generated from the 
rational functions of  n variables by repeated square root and rational operations; normally, 
no nonrational operations other than square roots will occur. It is worth displaying the 
identities to which a few common geometric theorems reduce, in order to make the depth 
of  these identities and the technique for reduction of  geometric theorems to identities 
explicit. It is convenient to use a complex notation, writing a point as z = x + iy. Then a 
line is represented (nonuniquely) as a pair (u, w) with u # 0, and the point z lies on the line 
if u(z - ~ )  = ~(z - w). (Here ~ denotes the complex conjugate of  z, i.e., x - iy.) Every 
primitive geometric notion has of  course a straightforward algebraic expression, and for 
explicitness we catalog a few of  them here. 

(a) (u, w) and (ul, w0 are parallel iff ut21 = ultZ 
(b) (u, w) and (ul, w 0 are perpendicular iff ut71 = -ultZ 
(c) The line through z and zl is (z - zl, zl). 
(d) The square of  the distance from z to z~ is (z - z0 (Y '= '~  ). 
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(e) The intersection of  (u, w) and (ul, wl) is 

((wi~i - ~lu~)u - (w~- ~u)ul)(U~l - ~uD. -I 

(f) The double angle between (u, w) and (Ul, wD is # ffi ut71/(tTuD. 
(g) The sum of two angles 01, 02 is 0102. 
(h) The difference of two angles 01, 02 is 01/02. 
(i) The line parallel to (u, w) through z is (u, z). 
(j) The line perpendicular to (u, w) through z is (iu, z). 
(k) The right angle is i. 
(I) The straight angle is -I. 

A circle is represented by a pair (R, z) with R > 0. The most familiar circle-related 
constructions and their algebraic expressions are 

(m) The tangent to (R, z) through one of its points w is (i(z - w), w). 
(n) The points of intersection of the circle (R, z) and the line (u, w) are 

z + (2~)-t((w - z)~ - u(~-='~) _+ (((w - z)~ - u(~-='~)) 2 +. 4R2utT)I/2). 

(o) The chord of intersection of the circles (Ri, zl) and (R2, z2) is 

(i(z2 -- Zl), Zl '4" (2(Z2~Zl))-l(R21 -- R2 2 + (z2 -- Z1)(Z~)). 

A few useful but somewhat more compound constructions have the following expressions: 

(p) Any point on the line (u, w) has the form u(v + v-') + w. 
(q) Any point on the circle (R, z )  has the form R v / ~  + z. 
(r) The line equidistant between Zl and z2 has the form (i(z2 - zl), ½(zl + z2)). 
(s) The bisector of  the angle between (ul, w) and (u2, w) is ((ul u2) 1/~, w). 

Algebraic constants a other than -4-1, +i  appear in certain geometric constructions and 
are therefore useful; for example, rotation by 60 degrees (respectively, 45 degrees) is 
multiplication by the root a of  a2 _ a + 1 •- 0 (respectively, a 2 + i ffi 0). I f  the irreducible 
equation satisfied by such an a is of  degree k,  then a rational expression R involving a can 
be written as R ffi Ro + R l a  + . . .  + R k - l a  k-l ,  and then the identity R - 0 simply 
abbreviates R0 - . . .  ffi Rk -- 0. Of  course, plane areas also have rational expressions; e.g., 

(t) The area o f  the triangle with corners zx, z2, z3 is 

areaf f i~de t  z2 ~'2 • 
Z3 Z'3 

The familiar elementary relationships cataloged above allow a wide variety of  elementary 
geometric statements to be compiled automatically into algebraic identities, or if necessary 
into implications (Q1 ffi 0 & Q2 ffi 0 & . . .  & Q, •ffi 0) ~ (Q ffi 0) between algebraic 
identities, and thus to be verified automatically. As we have seen, verification of  an 
implication of  this kind by the technique outlined in the preceding pages will be easy when 
n _< 2 but will start to become infeasible when n ffi 3. Thus, in attempting to verify a 
geometric theorem it is important to formulate it in a manner which holds the number of  
premises Q~ ffi 0 which appear in its compiled form to a minimum. Any one of  the points 
appearing in a geometric theorem can be identified with the origin; this simplifies the 
expression of  the theorem as a rational function. 

To illustrate all this, we consider a few familiar theorems of  elementary plane geometry 
and the manner in which a geometric theorem verifier based on the rational relationships 
listed above would handle them. As a first example we take the ports asinorum: "Base 
angles of  an isosceles triangle are equal." For easy verification this should be put: " I f  wl 
and w2 are both points o f  the circle (R, z) with z the origin, then the angles ZWl W 2 and 
zw2wl are equal." This latter statement compiles into the identity 

(Ru/6)(Rul/~ - Ru/~) _ (Rul/t~i)(Ru/~- Rul/~1) 
(29) 

(Rul/61 - Ru/~)(Rul/~D (Ru/6- Rul/tTD(Ru/t~)' 
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which is trivially verified, even by simplification. Next consider "the sum of  the angles of  
a triangle is a straight angle," which we can put as "if  w~, w2 and the origin z are three 
points, then the sum of  the doubled angles w2w~z, wlzw2, zw2wl is twice a straight angle." 
This last statement compiles into the obvious identity 

( w ~ / ~ l ) ( ~ ' = ' ~ )  = I. (30) 
(w2 - wO(~ /wO(wl /~O(~-=-~) / (w2  - wO(w~/~) 

As a third example, consider that "the angle between two chords o f  a circle is measured by 
half  the difference of  the subtended angles." For  our purposes this is most appropriately 
put as follows: "Let pl, p2, p3, p4 be four points on the circle (R, z) with z the origin. Then 
twice the doubled angle between the line through pl, p2 and the line through pa, p4 is equal 
to the difference between the anglespazpl andp2zp4." This compiles into the easily verified 
identity 

p~:3/:ip3 ~ (pl/:~ - p2/:~)(:~/?3 - :4/p4) (31) 

A fourth example is: "If the diagonals of a parallelogram are orthogonal, then the 
parallelogram is a rhombus." This can be stated as the following implication: 

(zl + z2) (~ '= -~)  = -(~-=g'~)(z2 - z0 implies z1~1 -- z~2, (32) 

which follows easily either by simplification or by the general techniques described in the 
preceding pages. As final example we consider the theorem of  N. Buonaparte mentioned 
in Davis [6]: " I f  equilateral triangles are erected on the sides of  any triangle T, the three 
centroids of  these triangles themselves form an equilateral triangle." Here it is convenient 
to make use of  the root e -'~'/3 of  the irreducible equation ct 2 - a + 1 ffi 0, in terms of  which 
the centroid of  the equilateral triangle erected on the segment from Zl to Ze is 
~((2 - tt)z~ + (1 + ct)z2). Thus Buonaparte 's theorem compiles into the identity 

((2 - a)zl + (2e~ - l)z2 - (1 + ~)z3)((2 - a)zl + (2¢ - l)z2 - (1 + a)z3) (33) 

= ((2 - a)z2 + (2a - l)z3 - (1 + a)z,)((2 - a)z2 + (2a - l)z3 - (1 + a)zl),  

which is easily verified by writing it as a a  + b = 0 and verifying a = 0 and b ffi 0 separately. 
It is amusing to note that since c~ and & are algebraically indistinguishable, the equilateral 
triangles in this theorem can either all be erected on the outside, or all erected on the 
inside, of  T. 

4. Probabilistic Computations in Real Arithmetic 

Rather than using integer or modular  arithmetic to test polynomial  identities in the manner  
just outlined, it is possible to make use of  real arithmetic, provided that computations can 
be carried out with a sufficient, and guaranteed, precision. (For  this, arithmetic procedures, 
or hardware, which guarantee computational significance, or at least randomness o f  error, 
may be appropriate.) Probabilistic use of  real arithmetic seems considerably harder  to 
justify than probabilistic use of  integer or modular  arithmetic, but at least in the one- 
variable case we are able to give formal justification by use of  theorems of  Tschebychefff, 
Kakeya [12], and Okada [15]. 

THEOREM 2 (KAKI~YA-OKADA). Let Q be a polynomial in one variable x with integer 
coefficzents, and suppose that I Q(x)l < 1 for  all x m an open interval I o f  length at least 4. 
Then Q is identically equal to zero) 

PROOF. We reproduce Okada's  reasoning for the convenience o f  the reader. We can 
assume without loss of  generality that I is - 2  < x < 2. Consider any irreducible monic 

Thanks are extended to Peter Lax for putting the author on the track of this and the following theorem The 
suggestion that real arithmetic be used is found in Davis [6l, but no formal probabfllstic argument is advanced in 
support of thts suggestion. 
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polynomial 4, with integer coefficients, all o f  whose roots xl . . . . .  xn lie in L 
[H?=I Q(x,)I < 1, but this product is symmetric in the roots x,, hence expressible in 
terms of  the elementary symmetric functions of  those roots, which is to say the coefficients 
of  ¢~, hence an integer, and hence zero. Thus Q(x,) ffi 0 for at least one root of,/,. Since 
is irreducible, it follows that Q(x,) = 0 for every root o f  ~. Since any monic polynomial 
factors into monic irreducibles, this holds even if we drop the assumption that 4, is 
irreducible. Now let 4(x) - sin(n arc cos(x/2))/sin(arc cos(x/2)). Then 4(2 cos x) ~ffi 
sin nx/s in  x, from which it is easily seen that ~ is monic and that the roots of  ¢, are 
2 cos(ki t /n) ,  k = 1 . . . . .  n - 1. Hence Q vanishes at all these points, and therefore iden- 
tically. Q.E.D. 

COROLLARY 3 (FEKETE-SzEoo). Let Q be a polynomial in one variable x with integer 
coefficients, and suppose that [Q(x)[ < I for  all x in a point set I o f  the complex plane. 
Suppose that infinitely many irreducible monic polynomiais ~ with integer coefficients have all 
their roots in L Then Q is identically equal to zero. 

PROOF. This follows immediately by the argument o f  Okada given just above. Q.E.D. 

To exploit this corollary, we want to find sets I in which infmitely many irreducible 
monic polynomials have all their roots. For this purpose we can use a theorem of  Fekete 
and Szeg6 [9], phrased by them in terms of  the notion o f  transfinite diameter of  a point set, 
as introduced by Fekete [8]. This notion has the following definition: 

Definition 3. Let I be a subset of  the complex plane. For each n, let Mn(I) be the 
maximum of  

II Iz, - zA, (34) 

taken over Zl . . . . .  zn varying independently in I. Then the sequence (Mn(I)) 2/n°~-t~ is 
monotone decreasing, and its limit M( / )  is called the transfinite diameter of  L 

It is clear from this definition that M ( I )  _< M ( J )  if I _C J, and that M ( c I )  = cM( I )  for 
each positive constant c (here cI designates the set {cx :x ~ I}). 

THEOREM 3 (FEKETE-SzEGO [9]). Let I be a closed bounded subset o f  the real axis whose 
transfinite diameter exceeds 1, and let S be a set o f  points in the complex plane whose interior 
includes I. Then there exist infinitely many monic irreducible polynomials with integer 
coefficients whose zeros lie in S. 

THEOREM 4 (FEKETE [8]). Let I be a closed bounded subset o f  the real axis whose 
transfinite diameter is less than 1. Then there exist only finitely many monic irreducible 
polynomials with integer coefficients whose zeros lie in L 

THEOREM 5 (KAKEYA; SEE OKADA [15]). For any a < 2, there exists a polynomial Q with 
integer coefficients such that [ Q(x) [ < I everywhere in -ct  _< x _< c~. 

Since the monic polynomials sin(n arc cos(x/2))/sin(x/2) have all their zeros in 
- 2  _< x _< 2, it follows from Theorem 4 that the transfinite diameter of  this set is at 
least 1. By Theorem 3 and Corollary 3, M ( { x : - a  _< x _< a}) < 1 for a < 2. Thus 
M ( { x : - 2  _< x <_ 2}) = 1, and hence M ( { x : - a  <_ x <_ a}) = a/2. From this we can easily 
derive the following lemma. 

LEMMA 5. Let I be the union o f  fimtely many disjoint intervals o f  the real axis, and 
suppose that the measure o f  l (i.e., the total length of  all these intervals) exceeds 4. Then the 
transfinite diameter M (1) exceeds 1. 

PROOF. Put 

f ( x )  = ~' t~,(y) dy, (35) 
J-® 
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where #~ is the characteristic function of  L Thenf(oo) is the measure o f  I and hence exceeds 
4. For each 0 _< y ~ f(oo), let g(y)  be the leflmost point in I such t h a t y  =f(x) .  Then g 
maps 0 _< y _<f(oo) into I, and clearly Ig(yl)  - g(YD[ -> [Y~ -Y21, since j '~ r e ( y ) @  -< 
y2 - yl. It follows from this and from Definition 3 that M(I)  _> M ( { y : 0  _<y _<f(~o)}), so 
that M(I)_>f(oo)/4 > 1. Q.E.D. 

COROLLARY 4. Let Q be a polynomial in one variable x with integer coefficients, and 
suppose that ] Q(x) ] < I for all x in a portion I of the real axis having measure greater than 
4. Then Q vanishes identically. 

PROOF. Consider the set S = {x:Q(x) < 1}. This set is open, and its intersection 
S N R with the real axis R is a finite union of  subintervals with measure greater than 4. 
Hence S N R contains a finite union I of  closed subintervals with total measure greater 
than 4. By Lemma 5, M(I)  > l, and hence our assertion follows by Theorem 3 and 
Corollary 3. Q.E.D. 

Corollary 4 dearly justifies real arithmetic probabilistic testing of  polynomial identities 
in one variable. Purported identities of  this kind can be tested by choosing a real number 
at random in an interval of  length L > 4; the probability that P should have a value less 
than 1 without being identically zero is then no more than 4/L. 

It would of  course be desirable to extend the preceding discussion to polynomials and 
polynomial identities in more than one variable, but the present author has thus far been 
unable to do so. 

5. Functions Other Than Polynomials 

The identity-testing technique that we have outlined rests on a very crude counting 
principle and hence can be applied to any class of  functions whose nonzero members can 
only have some suitably limited number of  zeros in a region known in advance. We shall 
see that this includes a class of  functions formed using polynomial functions and exponen- 
tiation. It must be noted, however, that the family of  identities which such functions satisfy 
is less rich than the class of  polynomial identities. The following result (see Polya and 
Szego [16, p. 46] gives an easy but basic fact concerning the class of  functions we wish to 
consider. 

LEMMA 6. For j -- 1 . . . . .  m, let P~ and Qj be polynomials in the variable x of degree dj 
and 8~, respectively. Let 8 -- maxl_<~_~m 6j. The function 

E(x)- -  ~ P,(x)e O,(x) (36) 
1--1 

has at most ~7~.1 (cj + 1) real roots, where c, is defined inductively as follows: 

cl -- d~; c,+a = d,+~ + 6 ~ (cj + 1) for 1 < i ~ m. (37) 
J - -1  

PROOF. By Rolle's theorem, a function can have at most one more root than its 
derivative. Thus E(x) can have at most ca + 1 more roots than 

~x)  e-O'(X)E(x) = ,-2~ P,(x)e (O'~x)-O'~x)). (38) 

After differentiation, the exponentials appearing on the right-hand side o f  08 )  will have 
polynomial coefficients of  degree a~ + 6(dl + 1) at most. Hence we can repeat our argument 
and conclude that E(x) has at most (cl + 1) + (c2 + 1) more roots than an expression of  
the form 

m A 

E PJ(x) e~O'~x}-O2~x}), (39) 
J - - 3  
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where / ; j  is o f  degree at most dj + 8(cl + 1) + 6(c2 + 1). Arguing inductively in this way, 
we prove our assertion. Q.E.D. 

COROLLARY 5. For j = 1 . . . . .  m, let P~ and Q, be polynomiais in the variables Xl . . . . .  x ,  
o f  total degree dj and 8j, respectively. Let  8 = maxl<j~m 8j and d = maxl~j_<m d~. Let  I be any 

f inite set o f  real points. Then i f  t he function 

E(x t  . . . . .  x , )  = ~ t~(xl . . . . .  x , ) e  O'~x' . . . .  ) (40) 
J--1 

has more than I I  × . . .  x I[(n/ l I]) (8-1((6 + l)  m - l ) (d  + l) zeros m the n-fold Cartesian 
product set I × . . .  × I, it is identically zero. 

PROOF. For  n = 1 our assertion follows at once from Lemma 6, and we proceed by 
induction on n. Suppose that E is not identically zero. Then there exist £1 . . . . .  ~ - 1  for 
which E(£1 . . . . .  ~,-1, x , )  is not identically zero in x, .  Put K = 8-1((6 + 1) m - l )(d + l). By 
Lemma 6, E(~i  . . . . .  ~ , - t ,  x , )  has at most K zeros. I f  £ ,  is one o f  these zeros, then 
E ( x l  . . . . .  xn-1, ~ )  can be zero for all (xl . . . . .  x , -  0 E 11 x . . .  x 1,-1, where Ij = I. I f  x .  
is not one of  these zeros, then by the inductive hypothesis, E(x l  . . . . .  x , - t ,  £ , )  has at most 

(n - l )  K (41)  
III 

zeros in the (n - l)-fold Cartesian product I x . . .  x I. Thus the total number  of  zeros of  
E in the n-fold Cartesian product I × . - -  x I is at most 

111 x . . .  x I , - i I . K +  I / I  K I I i  x . . .  x 1,-11 = 111 x . . .  x , I R K ,  (42) 

where to avoid ambiguity we have written I as I j .  Q .E .D .  

It is clear that Corollary 5 justifies much the same sort of  probabilistic test as is discussed 
in the first section of the present paper. Moreover, i f  in addition to the hypotheses of 
Corollary 5 we asume that for 1 _< j _< m, Pj and ~j  have integer coefficients, and that kj 
is an integer, then identities of  the form 

Pj(x l  . . . . .  x,)k~ Q~ . . . . . .  ~ -- 0 (43) 
J--1 

can clearly be tested probabilistically, either by calculations carried out in rational 
arithmetic or by modular  calculations using primes chosen at random from a sufficiently 
large set. 
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