Math. Program., Ser. B 91: 447-478 (2002)

Digital Object Identifier (DOI) 10.1007/s101070100262

David P. Williamson*
The primal-dual method for approximation algorithms

Received: June 19, 2000 / Accepted: February 7, 2001
Published online October 2, 2001 — © Springer-Verlag 2001

Abstract. In this survey, we give an overview of a technique used to design and analyze algorithms that
provide approximate solutions to N P-hard problems in combinatorial optimization. Because of parallels with
the primal-dual method commonly used in combinatorial optimization, we call it the primal-dual method
for approximation algorithms. We show how this technique can be used to derive approximation algorithms
for a number of different problems, including network design problems, feedback vertex set problems, and
facility location problems.

1. Introduction

Many problems of interest in combinatorial optimization are considered unlikely to
have efficient algorithms; most of these problems are NP-hard, and unless P = NP
they do not have polynomial-time algorithms to find an optimal solution. Researchers in
combinatorial optimization have considered several approaches to deal with NP-hard
problems. These approaches fall into one of two classes. The first class contains al-
gorithms that find the optimal solution but do not run in polynomial time. Integer
programming is an example of such an approach. Integer programmers attempt to de-
velop branch-and-bound (or branch-and-cut, etc.) algorithms for dealing with particular
problems such that the algorithm runs quickly enough in practice for instances of in-
terest, although the algorithm is not guaranteed to be efficient for all instances. The
second class contains algorithms that run in polynomial time but do not find the optimal
solution for all instances. Heuristics and metaheuristics (such as simulated annealing
or genetic algorithms) are one approach in this class. Typically researchers develop
a heuristic for a problem and empirically demonstrate its effectiveness on instances of
interest. In this survey, we will consider another approach in this second class called
approximation algorithms. Approximation algorithms are polynomial-time heuristics
for NP-hard problems whose solution values are provably close to optimum for all
instances of the problem.

More formally, an a-approximation algorithm for an optimization problem is an
algorithm that runs in polynomial time and produces a solution whose value is within
a factor of « of the value of an optimal solution. The parameter « is called the perform-
ance guarantee or the approximation ratio of the algorithm. We assume that the value
of any feasible solution is nonnegative for the problems we consider; extensions of the

D.P. Williamson: IBM T.J. Watson Research Center and IBM Almaden Research Center

* Current address: IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120, USA
e-mail: dpw@almaden. ibm.com, WWW: www.almaden.ibm.com/cs/people/dpw

448 David P. Williamson

notion of performance guarantee have been developed in other cases, but we will not
discuss them here. This survey will follow the convention that o« > 1 for minimization
problems and @ < 1 for maximization problems, so that a 2-approximation algorithm
for a minimization problem produces a solution of value no more than twice the op-
timal value, and a %-approximation algorithm for a maximization problem produces
a solution of value at least half the optimal value. The reciprocal 1/« is sometimes used
in the literature for maximization problems, so that the examples above would both
be referred to as 2-approximation algorithms. We say that a minimization problem has
a polynomial-time approximation scheme if there is a family {A.} of algorithms such
that A¢ is a (1 4 €)-approximation algorithm for any fixed € > 0.

The term “approximation algorithm” appears to have been coined by David Johnson
in a seminal paper in 1974 [51]. In this paper, Johnson gives approximation algorithms
for several now-classical problems, including a polynomial-time approximation scheme
for the subset sum problem, a %—approximation algorithm for the maximum satisfi-
ability problem, an (Inn + 1)-approximation algorithm for the set cover problem, as
well as heuristics for graph coloring and maximum clique, though he could find no
performance guarantee of O(n'~) forany € > 0 for the latter two problems, where n is
the number of vertices in the graph. However, approximation algorithms were present
in the literature even before the concept of NP-completeness was introduced. Lovisz
reports that a 1967 paper of ErdSs [27] contains a proof that the size of maximum cut
in a graph with non-negative edge weights is at least half the sum of the edge weights,
and that the proof can easily be converted into a %-approximation algorithm for the
maximum cut problem. Graham [44] gave 2-approximation algorithms for a number
of scheduling problems in 1966. Finally, although it doesn’t quite fit the definition
given above of an approximation algorithm, in 1964 Vizing [68] gave an algorithm
to compute an edge coloring of a graph which uses at most one color more than the
minimum possible.

In the past dozen years there have been a number of exciting developments in
the area of approximation algorithms. It is not possible in the space provided to give
a comprehensive overview of these developments, so in this survey we will focus on
one very useful algorithmic technique, called the primal-dual method, that has been
developed and applied to several different problems in combinatorial optimization.
However, we will very briefly touch on one other development in the following para-
graphs. For more details about the area, the reader is invited to consult the excellent
survey of Shmoys [65], the book of surveys edited by Hochbaum [48], or the book of
Vazirani [67].

One very exciting development of the past decade is the emergence of proof tech-
niques that show that many problems do not have approximation algorithms with certain
performance guarantees unless P = NP. In other words, for some problems, finding
an approximation algorithm with a particular performance guarantee is just as difficult
as finding a polynomial-time algorithm for the problem itself. These results have their
roots in research in theoretical computer science quite unrelated to optimization. The
connection to optimization was made in a groundbreaking paper of Feige, Goldwasser,
Lovész, Safra, and Szegedy [32], and culminated in two papers of Arora and Safra [4,5]
and Arora, Lund, Motwani, Sudan, and Szegedy [2,3] which gave a new characteriza-
tion of NP. As a consequence they showed that a collection of optimization problems

The primal-dual method for approximation algorithms 449

could have no polynomial-time approximation scheme unless P = NP. This collection
includes such problems as the symmetric traveling salesman problem with edge costs
that obey the triangle inequality, the maximum cut problem, the minimum vertex cover
problem, and the maximum satisfiability problem.

These results have subsequently been strengthened and extended in a number of
different ways. For instance, a sequence of papers [32,16], culminating in a paper of
Hastad [46], has shown that for the maximum clique problem, no performance guarantee
of O(n'~€) for any € > (Qispossible unless NP = RP (where n is the number of vertices
in the graph, and RP is randomized polynomial time). Feige and Kilian extended this
result to the minimum chromatic number problem [33]. Another sequence of papers,
starting with the work of Lund and Yannakakis [57], and subsequently refined by other
researchers [17,31], has shown that there can be no c¢ In n-approximation algorithm for
the set cover problem for ¢ < 1 unless there are O(n?1°€1°¢™))_time algorithms for
any NP-complete problem. Still other papers have shown that one cannot obtain con-
stant performance guarantees better than certain bounds for particular problems unless

P = NP; for instance, % for the symmetric traveling salesman problem with triangle

inequality [61], % ~ .941 for the maximum cut problem [45], % for the minimum-
weight vertex cover problem [45], and % for the maximum satisfiability problem [45].
It is interesting to note that several of the performance guarantees obtained in Johnson’s
original 1974 paper are shown to be essentially the best possible by these results.

We do not give an indepth review of the primal-dual method for combinatorial op-
timization here; a good overview can be found in the textbook of Papadimitriou and
Steiglitz [60] (see also the survey of Goemans and Williamson [42]). The basic idea
was first used by Kuhn [56] to give the so-called Hungarian algorithm for solving the
assignment problem. It was then extended by Dantzig, Ford, and Fulkerson [22] to
a general algorithm for linear programming. The basic idea is that given a feasible dual
solution y, we attempt to find a feasible primal solution x that obeys the complemen-
tary slackness conditions with respect to y. If we can find such an x, we have optimal
solutions. If none exists, this gives a way to modify the dual solution to increase the
dual objective value. For combinatorial problems such as the assignment problem, the
method converts weighted problems into unweighted ones. For instance, determining
whether there exists a primal x obeying complementary slackness with respect to y in
the case of the assignment problem reduces to finding the maximum matching in an
unweighted bipartite graph on 2n nodes. Given the maximum matching it is easy to
determine a direction for dual increase such that only O(n?) increases are necessary
before we find optimal solutions.

The primal-dual method for approximation algorithms considers a primal integer
programming formulation of the problem in question and the dual of a linear program-
ming relaxation of the integer program. The method above is modified by relaxing
complementary slackness conditions related to dual variables; that is, we relax the con-
dition that if y; > 0 the corresponding primal constraint must be met with equality. As
we will see below, relaxing this constraint in appropriate ways leads to provably good
algorithms for NP-hard problems in combinatorial optimization. The method yields
a solution to the primal integer problem that costs no more than « times the value of
the feasible dual solution constructed, which implies that the primal solution is within

450 David P. Williamson

a factor of « of optimal. The value of the dual solution is always within some factor
of « of the value of the primal solution, but may from instance to instance be much
closer; by comparing the value of the primal and dual solutions generated, we can give
a guarantee for the instance which might be better than «.

The performance guarantee of an algorithm using the primal-dual method is thus
connected with the integrality gap of the integer programming formulation of the prob-
lem. The integrality gap of a formulation is the worst-case ratio over all instances of the
value of the integer program to the value of the corresponding linear programming re-
laxation. Since the performance guarantee of an algorithm using the primal-dual method
is proven by comparing the value of a primal solution against the value of a feasible
dual, its performance guarantee can never be shown to be better than the integrality gap
of the formulation used. Conversely, a proof of a performance guarantee of « obtained
in this way implies that the integrality gap is no more than o.

So far the primal-dual method for approximation algorithms usually leads to dual-
ascent algorithms in which dual variables are never decreased (though see Sect. 4
for some intriguing recent exceptions). Dual-ascent heuristics for hard combinatorial
problems are not new; for example, see papers by Balakrishnan, Magnanti, and Wong [7],
Erlenkotter [29], Wong [73], and the thesis of Raghavan [62]. However, such heuristics
are not typically accompanied by performance guarantees, as is the case here.

As a brief illustration of the primal-dual method, we consider the minimum-weight
vertex cover problem. In this problem, we are given a graph G = (V, E) with weights
w; > 0 for all vertices i € V, and we must select a minimum-weight subset of vertices
such that each edge is covered (that is, at least one of its endpoints is chosen). This
problem can be modelled by the integer program

Min E w;X;

subject to:
xi+x;>1 V@i, j)e E
x; € {0, 1} VieV.

We relax the integrality constraint x; € {0, 1} to x; > 0; any optimal solution x* to this
LP will have x < 1 for all i € V. If we take the dual of the resulting linear program,
we obtain the following:

Max Z Y, j)

(.)EE
subject to:
Z Yk = Wi VieV ()
k:Gi,k)eE
Vi) =0 V@i, j) € E.

Our primal-dual algorithm starts out with the dual feasible solution in which all y
variables are set to 0, and a primal infeasible solution in which all xvariables are set to 0.

The primal-dual method for approximation algorithms 451

As long as our primal solution x is infeasible, there must be some uncovered edge (i, j)
for which x; + x; = 0. We increase its corresponding dual variable y; ; as much as
possible, maintaining dual feasibility, so that it must be the case that the dual constraint
(1) is met with equality for either i or j (possibly both). If 3 . ; g Yin) = wi, we
setx; = Landif } 4. ; peg Y(jkh = wj we setx; = 1. Eventually we achieve a primal
feasible solution x such that

Dwixi=) (Y yiw)xi @)

iev i€V ki(ikeE
= Z (xi +x5) v (3)

(i.))eE
<2 Z Y. j)s (4)

(i,))eE

where the equality (2) follows since } . ; yeg Y.k = wi forallx; = 1, the equality (3)
follows by rearranging the double sum, and the inequality (4) follows since x; +x; < 2.
The dual objective function Y ; ;< ¥,) is a lower bound on the value of the optimum
integer solution. Thus the inequality above shows that our solution is no more than twice
optimal, implying that the algorithm is a 2-approximation algorithm.

In the next section, we develop the basic ideas given above into a primal-dual
algorithm for a generic problem, and give theorems for its analysis. In Sect. 3, we give
applications of this algorithm and analysis to various N P-hard problems in combinatorial
optimization. Then in Sect. 4, we show how recent papers have modified this central
algorithm to obtain new approximation algorithms for other problems. We conclude in
Sect. 5.

Other surveys on the primal-dual method have been given by Goemans and
Williamson [42] and Bertsimas and Teo [18] (see also the thesis of Teo [66]). Our
central exposition in Sect. 2 closely follows that of [42].

2. The primal-dual method for approximation algorithms

‘We now show how the primal-dual method can be used to give approximation algorithms
for NP-hard problems in combinatorial optimization. In order to do this, it will be useful
to consider the hitting set problem: given a ground set of elements £, nonnegative costs
c. forall elements e € E, and subsets 71, ... , T, € E, we want to find a minimum-cost
subset A C E so that A has a nonempty intersection with each subset 7;. We say that A
hits each subset T;.

The hitting set problem can be used to model a number of NP-hard problems, and
we will consider several in this section. For example, we can formulate the minimum-
weight vertex cover problem as a hitting set problem in which the ground set elements
are vertices, and we have a subset 7; = {u, v} for each edge (u, v) in the graph. In
the minimum-weight feedback vertex set problem in undirected graphs, we are given as
input an undirected graph G = (V, E) and nonnegative weights w; > 0 on the vertices

452 David P. Williamson

i € V, and the goal is to remove a minimum-weight set of vertices from G so as to
make the remaining graph acyclic. We can view this as a hitting set problem in which
the ground set elements are the vertices of the graph, and we must hit every cycle in the
graph; that is, 7; = C;, where C; is the ith cycle of G. In the shortest s-t path problem,
we are given an undirected graph with nonnegative edge costs ¢, for all e € E, and two
distinguished vertices s and ¢, and we must find the minimum-cost path from s to 7.
We can formulate this as a hitting set problem in which the edges are the ground set
elements and we must hit every cut in the graph separating s from ¢; that is, for all
S; € Vwiths € S;jand ¢ ¢ S;, we must select an edge from 7; = §(S;), where §(S;)
is the set of edges with exactly one endpoint in ;. By the max-flow/min-cut theorem
of Ford and Fulkerson [34], we have selected an edge in every cut separating s from
t iff there is a path from s to ¢. In the minimum-cost branching problem we are given
a directed graph G = (V, A), nonnegative costs ¢, for all arcs a € A, and a root vertex
r € V, and the goal is to find a minimum-cost branching (a set of arcs such that for
every vertex, there is a path from the root to the vertex). By using a max-flow/min-cut
argument, one can see that the following hitting set problem models the minimum-cost
branching problem: the ground set of elements are the arcs, and for every set of vertices
S; € V — r, we must hit the set §~(S;) of arcs, where §~(S;) is the set of arcs whose
heads are in S; and tails are not in S;. Finally, in the generalized Steiner tree problem we
are given an undirected graph G = (V, E), nonnegative costs ¢, > Oonalledgese € E,
and k pairs of vertices s;,¢; € V. The goal is to find a minimum-cost set of edges F,
such that for each j = 1, ... ,k, s; and ¢; are connected in the graph (V, F). Again,
a max-flow/min-cut argument will show that the problem can be modelled by the hitting
set problem in which the ground set elements are the edges and we must hit every cut
that separates some s;-¢; pair; in other words, for each §; C V such that for some j,
[S; N {s;, 2;}| = 1, we must hit T; = 5(S;).

Except for the minimum-cost s-¢ path problem and the minimum-cost branching
problem, all of the problems above are NP-hard. For many of them, the size of the
hitting set formulation is exponential in the size of the input. For example, in the
feedback vertex set problem, the number of cycles can be exponential in the size of the
graph. We will see later that the primal-dual method can often be used in these cases
and still results in a polynomial-time algorithm.

We can model the hitting set problem by the following integer program:

Min E CeXe

eckE

erzl Vi

eeT;

xe €{0,1} VeeE.

subject to:

We relax the integrality constraint x, € {0, 1} to x, > 0; as in the case of the vertex

cover problem, any optimal solution x* to this linear program will have x* < 1 for all
e € E. If we take the dual of the resulting linear program, we obtain the following:

The primal-dual method for approximation algorithms 453

p
Max Z Vi
i=1
subject to:

Zyiice Ve e E

ireeT;

yi>0 Vi.

Our goal is to construct a feasible solution x to the primal integer program and
a feasible solution y to the dual linear program such that Zee ECeXe < - Zf’zl y; for
some value of «. This implies that the cost of our primal solution is no more than « times
the cost of an optimal solution to the integer program. If we can construct our solutions
in polynomial time, then we have an «-approximation algorithm. We will sometimes
give our primal solution as x or as a subset A € E, which implies the solution x, = 1
for e € A and x, = 0 otherwise.

The development of the primal-dual method for approximation algorithms can be
said to start with a non-primal-dual approximation algorithm for the hitting set problem
due to Hochbaum [47]. Hochbaum’s algorithm obtains an optimal solution y* to the
dual LP, and then constructs a primal solution A by choosing all elements ¢ € E such
that the corresponding dual inequality is tight (that is, met with equality). So then
A={e€E:) 1 ¥ = cc} Interms of the primal-dual method for combinatorial
optimization, we construct a primal solution such that the complementary slackness
conditions are obeyed with respect to the primal variables x,; that is, x, > 0 implies
that) ;..er, ¥;' = c.. We claim that A is a feasible solution to the hitting set problem,
and we will prove this later. Then the cost of this solution is

Yo=Y > ¥ (5)

ecA ecAieeT;
P
=Y ylANT, 6)
i=1

where (5) follows since the complementary slackness conditions are obeyed for the
primal variables, and (6) follows by reversing the double sum. If we let f = max; |T;|,
then certainly |[A N T;| < f for all i, so that

p

Zceff'zy;‘k-

ecA i=1

Assuming the claim that A is feasible, we thus have an f-approximation algorithm for
the hitting set problem. As an example of what can be proved in this case, recall that in
the minimum-weight vertex cover problem each subset 7; contained the two endpoints
of an edge in a graph, so that | 7;| = 2 for each i in this case. Thus Hochbaum’s algorithm
gives a 2-approximation algorithm for the minimum-weight vertex cover problem.

We now prove the claim of feasibility. The central idea, as in the case of the standard
primal-dual method, is that if no primal solution obeys the complementary slackness
conditions, then a dual increase is possible.

454 David P. Williamson

1 y<0

2 A<

3 While A is not feasible

4 Find violated Ty (i.e. Ty s.t. AN T = ()

5 Increase yi until 3 e € T such that Zi:eeT,- Vi = Ce
6 A <~ AU e}

7 Return A.

Fig. 1. The basic primal-dual algorithm

Lemma 1 (Hochbaum [47]). The set A obtained above is a feasible solution for the
hitting set problem.

Proof. Suppose not. Then there is some set 7; such that AN 7; = ¢. By the choice of A,
it follows that for all e € T;, Y ;. 7. ¥/ < ce. Since the dual inequalities for e € T;
are the only ones in which the variable y} participates, we can feasibly increase y; by
€ > 0, where € = mineer, (ce — Y_.cer; Vii)- This contradicts the optimality of y*.

O

The first algorithm using the primal-dual method for approximation algorithms is
due to Bar-Yehuda and Even [12]. Essentially, they realized that an optimal dual solution
y* was not needed; the proof above goes through for any feasible dual solution y such
that A = {e € E : } ;o7 yi = Ce} is a feasible solution to the hitting set problem.
Furthermore, if A is not feasible, then the proof of Lemma 1 shows how to improve
a current dual feasible solution so that the dual objective function increases, and so that
there is one more tight dual inequality. Thus given an initial dual feasible solution, this
process gives a polynomial-time algorithm that eventually finds a feasible dual solution
y and a feasible primal solution A = {e € E : Zi:eeTi Yi = ce}; by the reasoning above,
Y eeaCe <2 VilANT;| < £Y°F_| vi. Since all costs c, are non-negative, the dual
solution y; = 0 for all i can be used as an initial feasible dual solution. We summarize
Bar-Yehuda and Even’s algorithm in Fig. 1. The argument above shows that it is an
f-approximation algorithm for the hitting set problem. The 2-approximation algorithm
for the vertex cover problem given in the introduction is this algorithm specialized to
the vertex cover problem.

We now turn to a slightly more complicated application of the primal-dual algorithm:
the feedback vertex set problem for undirected graphs. Let A and y be the primal and
dual solution created by the algorithm. Recall from equations (5) and (6) that if for
any y; > 0 it is the case that |A N T;| < «, then the algorithm is an «-approximation
algorithm. Recall now that for the hitting set problem modelling this problem, each
ground element e is a vertex j, the cost ¢, is the vertex weight w;, and the sets T; are
the cycles in the graph. In this case, Bar-Yehuda, Naor, Geiger, and Roth [14] obtain
a performance guarantee of 4 log, n (where n = |V|) by carefully choosing the violated
cycle in line 4 of the algorithm, and by noticing that one can succesfully ignore some
vertices since their corresponding dual inequalities will always be satisfied. In order to

The primal-dual method for approximation algorithms 455

choose the violated cycle, Bar-Yehuda et al. invoke the following lemma of Erdés and
Pésa [28].

Lemma 2 (Erdés and Pésa [28]). Given a graph G' = (V', E') with no degree 1
vertices and with every vertex of degree 2 adjacent to two vertices of higher degree,
there exists a cycle of length no longer than 4 1og, |V'|, and it can be found in polynomial
time.

Of course, the given input graph might not meet the conditions of the lemma. Thus
we show that we can ignore some vertices; the remaining vertices we call special
vertices. We map the graph onto a graph G’ that contains exactly the special vertices,
such that there is a bijective mapping between cycles of G and of G’. Then by applying
the lemma to G’ we can find in G a violated cycle of at most 4 log, n special vertices,
and since we only add special vertices to A, we get that for any y; > 0 (corresponding
to some violated cycle 7; chosen in line 4), |A N T;| < 4log, n, implying the desired
performance guarantee.

Now we need to specify which vertices we can ignore, and why their dual inequalities
will remain feasible. Suppose that as we add a vertex j to A in line 6 of the algorithm,
we remove j and its incident edges from the graph. Certainly we can ignore any vertex
in the remaining graph that is no longer in a cycle; since we only add vertices from the
chosen violated set (line 5), we only add vertices that are in some cycle. Now consider
any path of vertices that all have degree 2. Since any cycle that goes through one of
these vertices must go through all of them, it must be the case that when the reduced
costw; =w; — Y . jer; Vi of a vertex j on this path decreases by e, the reduced cost
of all vertices on this path also decreases by €. Thus we can safely ignore all vertices in
this path except for one special vertex j with the smallest reduced cost, since no dual
inequality for any vertex on the path will become tight unless the dual inequality for j
becomes tight. Furthermore, if j is added to A, then all cycles containing the vertices
on this path will be hit, and so no other vertex from the path need by added to A.

Since we can ignore any vertex not on a cycle, and ignore all but one vertex on a path
of vertices of degree 2, we obtain the desired graph G’ from G by removing all vertices
currently in A, recursively removing all degree 1 vertices, and replacing any path of
degree 2 vertices with the special vertex for that path. This yields a graph G’ obeying the
properties of the lemma, such that any cycle in G’ has a one-to-one mapping to a cycle
of G. Thus we can find a cycle of at most 4 log, n special vertices in G.

This argument yields a (4 log, n)-approximation algorithm for the minimum-weight
feedback vertex set problem in undirected graphs. In fact, as we will discuss in Sect. 3.2,
one can obtain a 2-approximation algorithm for this problem using the primal-dual
method, but one must use a different integer programming formulation of the problem.
It has been shown that the integrality gap for the hitting set formulation of the problem
is Q(logn) [30].

We now turn to modifications of the basic primal-dual algorithm of Bar-Yehuda and
Even. The first is a relatively simple idea: once a feasible solution A has been obtained,
we should examine the elements of A and delete any that are not needed for a feasible
solution. This idea was first introduced by Goemans and Williamson [41], but we will
present here a refinement discovered independently by Klein and Ravi [53] and Saran,

456 David P. Williamson

y<«0

Al <0

[< 1 (I is a counter)

While A; is not feasible
Choose violated T}
Increase y; until 3 ¢; € Ty such that Zi:e,eT,- Vi = Cq
A1 < AjU {er}
l<—I1+1

A« Al—l

For j <[—1downto 1
If A" — {e;} is still feasible

A — A —{ej}
Return A’.

Fig. 2. The primal-dual algorithm with reverse delete step added

Vazirani, and Young [64]. They showed that it is useful for the analysis of the algorithm
to examine the elements of A for possible deletion in a certain order; in particular, in the
reverse of the order in which the elements of A were added. This part of the algorithm
is sometimes called the reverse delete. We present the modified algorithm in Fig. 2.

To see why the reverse delete step is useful for the analysis, consider the set T;,
chosen in the /th iteration of the algorithm. Let A; be the set of elements in A at the
beginning of the /th iteration, let e; be the element added in the /th iteration, and let
A’ be the final set returned by the algorithm. By the analysis at the beginning of the
section (Equations (5) and (6)), if we can show that |A" N Tj,| < « for all iterations /,
we have an «-approximation algorithm. Note that since T;, is chosen as a violated set,
it is the case that 7;, N A; = @, so if B = A’ — A;, then we only need prove that
|BNT;| < o. Furthermore, when ¢; is considered for deletion, no element e; for j < [
has been considered for deletion, so the contents of A at that point in time in the reverse
delete step must be precisely A; U B. Finally, because each element in B was added
after the /th iteration, it must be the case that each of them was already considered by
the reverse delete step and is necessary for the feasibility of A;U B. Thus forany e € B,
A; U B — e is not a feasible solution. We call any set of elements D such that A; U D
is feasible an augmentation of A;, and any augmentation D such that for any e € D,
A; U D — e is not feasible, a minimal augmentation. We have shown above that B is
a minimal augmentation of A;. We are trying to bound |B N T; |, and certainly this is
dominated by the maximum of |D N T; | over all minimal augmentations D of A;. Thus
we have shown the following theorem.

Theorem 1. If for all iterations | of the algorithm in Fig. 2,

max IDNT;| <«a,
D:min. aug. of A;

the algorithm is an a-approximation algorithm.

The primal-dual method for approximation algorithms 457

To illustrate the use of this analysis, we consider the shortest s-7 path problem and the
minimum-cost branching problem. Recall that for the minimum-cost s-¢ path problem,
we need to hit the sets 7; = §(S;) for all sets S; with s € S;, t ¢ S;, where §(S;) is
the set of edges with exactly one endpoint in S;. To apply the primal-dual algorithm
of Fig. 2, we need to specify which violated set T;, is chosen for a given infeasible
solution A;. Here we invoke a principle that turns out to be useful for a number of
problems of this sort: we choose the minimal violated set T; = 8(S;), where by this we
mean a set §; such that there is no other set §; C §; with T; = §(S;) also violated.
For the minimum-cost s-¢ path problem, this principle implies that for an infeasible
solution A;, we find the connected component S;, containing s in the graph (V, A;), and
choose the violated set T;, = §(S;,). It is not difficult to see that for any augmentation D
of A;,if |[DNS(S;)| > 1, then an edge of D N J(S;,) can be removed with the remaining
edges still containing an s-t path. Thus for any minimal augmentation D, it is the case
that |D N 8(S;,)| = 1, which implies by the analysis of the preceding paragraph that
the primal-dual method gives a 1-approximation algorithm, or an optimal algorithm, for
the shortest s-# path problem. In fact, one can show that this algorithm is just Dijsktra’s
algorithm [23,609].

For the minimum-cost branching problem, we need to hit the sets 7; = 6~ (S;) for
all §; € V — r. Recall that §7(S§;) is the set of arcs with their heads in S; and their
tails not in S;. Given an infeasible set A;, we find a strongly connected component S;,
in the graph (V, A;) which does not contain the root r and for which A; N §7(S;) = @.
We choose as our violated set 7;, = 6~ (S;,). It is not hard to show that such a strongly
connected component must exist if A; is infeasible. Then again it is easy to see that for
any augmentation D of A;, only one arc in D N §~(S;,) is necessary, since the strong
connectivity of S; implies all the vertices of S;, can be reached through that arc. Hence
for any minimal augmentation D of A;, |[DN387(S;)| = 1, and we again have an optimal
algorithm. One can show that this algorithm is the same as Edmonds’ algorithm for the
minimum-cost branching problem [25].

We now introduce another modification to our primal-dual algorithm. To motivate
the modification, we consider the generalized Steiner tree problem. Recall that this
can be modelled by a hitting set problem in which we must hit all 7; = §(S;) such
that |S; N {s;,#;}| = 1 for some s;-¢; pair that must be connected. Suppose we try
to apply the algorithm in Fig. 2 and the analysis above to this problem. As with the
shortest s-¢ path problem, we will invoke the principle of finding a minimal violated
set and choose some connected component S;, of (V, A;) such that [S; N {s;, 1;}| = 1,
and choose as our violated set T;, = §(S;;). However, consider the problem in which
§s=s8§ =8y =---=s8,and 1y, ..., t are distinct vertices. Then for A; = J, the vertex
s and each t; is a possible minimal violated set. Without loss of generality, suppose
we choose the violated set T = §({s}). Then one possible minimal augmentation is
D ={(s,11),(s,12),...,(s,)}, and | D N T| = k. Thus the algorithm and analysis we
have developed so far would only give a k-approximation algorithm.

However, if we consider the number of times this augmentation hits these minimal
violated sets averaged over the number of minimal violated sets, we get something
better: |[DN&({s})| = k, but [DNS({z;})| = 1, with k + 1 minimal violated sets, leading
to an average of 2k/(k + 1) &~ 2. This leads to the following idea: suppose we choose
multiple violated sets and increase their dual variables simultaneously and uniformly.

458 David P. Williamson

y<«0
A <0
[< 1 (I is a counter)
While A; is not feasible
Choose a subset V; of violated sets
Increase yi uniformly for all 7x € V; until 3 ¢; ¢ A;
such that } ., 7. vi = ¢¢
A1 < AjU {e}
< 1+1
A <~ A
For j <1 —1downto 1
If A" — {e;} is still feasible
Al — A —{ej}
Return A’.

Fig. 3. The general primal-dual algorithm

It turns out that this gives good approximation algorithms for a number of problems,
including a 2-approximation algorithm for the generalized Steiner tree problem. We give
the modified algorithm in Fig 3. The idea of increasing multiple duals was introduced
implicitly by Agrawal, Klein, and Ravi [1] (who did not refer to LP duality), and
was made explicit by Goemans and Williamson [41]. Bertsimas and Teo [18] reduce
this algorithm to the one in Fig. 2 by observing that the constraints corresponding to
the multiple violated sets chosen in a given iteration can be aggregated into a single
constraint, whose corresponding dual can be increased as in the previous algorithm in
Fig. 2.

We now show how we can analyze the algorithm in Fig. 3 via the following theorem.
Notice that this algorithm and its analysis generalize the algorithm of Fig. 2, in which
only one violated set is chosen in each iteration.

Theorem 2. If for every iteration | of the algorithm in Fig. 3,

max E |IDN Ty <V,
D:min. aug. of A;
TreV;

the algorithm is an a-approximation algorithm.

Proof. Let A’ be the final solution returned by the algorithm. We wish to prove that
> eear Ce < a Y P yi. As before, we have that

p
Doce=) D wi=) ANTiy
i=1

ecA’ ecA ieeT;

So we need to prove that

p p
YIANTlyi<a) i
i=1 i=1

The primal-dual method for approximation algorithms 459

Let €; be the amount by which the duals are increased in iteration / of the algorithm.
Then clearly, for the solution y at the end of the algorithm,

P
Y vi=) Wi
i=1 1

Similarly,

P P
YIANT =) 1ANT Y a=Y (Y. IANT)e.
i=1 i=1 1

LT eV, TxeV,

Thus certainly the inequality follows if for all iterations /,

Y IANT < eV,
TreV;

As in the proof of Theorem 1, } 7 .y, |A" N Tx| is dominated by

max Z |D N Tyl
D:min. aug. of A
& lTkEV[

Thus the theorem follows.
|

To illustrate the use of the algorithm and the theorem, we show how we can obtain
a 2-approximation algorithm for the generalized Steiner tree problem. As suggested
above, in each iteration [we choose all the minimal violated sets; that is, we choose
the sets 7; = §(S;) for all connected components S; in (V, A;) such that for some j, S;
contains exactly one of s; or ¢;. Thus

V, = {T; = §(S;) : S; a connected component of (V, A;), |S;N{s;, ¢;}| = 1 for some j}.

Theorem 3. Using the algorithm in Fig. 3 with the choice of V; as given above yields
a 2-approximation algorithm for the generalized Steiner tree problem.

Proof. To prove this, we show that the statement of Theorem 2 holds for « = 2. To
do this, we consider the graph in which each connected component of (V, A;) has
been shrunk to a single node; let V’ be this set of vertices. Let D be any minimal
augmentation of A;, and consider the graph H = (V’, D). Note first that H is a forest,
otherwise D is not minimal. Observe also that some of the vertices in V' correspond
to connected components S; that are in V; and some do not. Let R € V' be the first
type of vertex, which we will call red, and B = V' — R be the second type, which
we will call blue. Observe that |R| = |V|. Also, if deg(v) is the degree of v € V'
in the graph H, and v corresponds to the connected component S; in (V, A;), then
|IDNT;| =|DNSS;)| = deg(v). Thus the desired inequality

Y IDNT <2V
TreV;

460 David P. Williamson

reduces to proving that), _p deg(v) < 2|R|. If we can show that no blue vertex has
degree 1, then the statement would follow, since (ignoring blue vertices of degree 0),

D deg(v)=) deg(v) =) deg(v)

vER vERUB veB
< 2(IR| + |B|) — 2|B|
= 2|R|.

The inequalities follow since the sum of degrees of the vertices in the forest H is no
more than twice the number of vertices, and every blue vertex in the sum has degree at
least 2. To show that no blue vertex has degree 1, assume the opposite: let v be a blue
vertex of degree 1, let e € D be the adjacent edge in H, and let S be the connected
component corresponding to v in (V, A;). Because D is a minimal augmentation, e is
necessary for feasibility. Since e is the only edge in D N §(S) there must be some j such
that either s; or ¢; is in S and the other is not in S. But then 7' = §(S) would be in V,
and v would be red, which is a contradiction.

O

Thus the algorithm in Fig. 3 gives a 2-approximation algorithm for the generalized
Steiner tree problem. The first 2-approximation algorithm for this problem was given
by Agrawal, Klein, and Ravi [1]. Its use of the primal-dual method was made explicit
by Goemans and Williamson [41].

Approximation algorithms for many NP-hard problems can be derived from the
framework above, as we will see in the following section. However, it is important to
remember that the algorithm and analysis given above is only one potential way of
applying the primal-dual technique, the one that developed historically from papers
in the 80s and early 90s. A few recent papers have used their own variations of the
primal-dual method; we will discuss these in Sect. 4.

3. Some applications of the primal-dual framework

In this section, we describe some of the results that can be obtained directly from the
algorithm of Fig. 3 and its analysis in Theorem 2.

3.1. Network design problems

The first application of the primal-dual algorithm of Fig. 3 was to network design prob-
lems. It was first applied (implicitly) to the generalized Steiner tree problem by Agrawal,
Klein, and Ravi [1], and was then generalized to apply to a number of other network de-
sign problems by Goemans and Williamson [41,40], Klein and Ravi [53], Williamson,
Goemans, Mihail, and Vazirani [71], Gabow, Goemans, and Williamson [36], and Goe-
mans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [39]. This line of work is
summarized in the survey of Goemans and Williamson [42].

The primal-dual method for approximation algorithms 461

Given an undirected graph G = (V, E) and nonnegative costs ¢, for all e € E,
consider the following integer programming formulation:

Min E CeXe

ecE

subject to:

(ND) D xe= f(S) VS:pESCV
eed(S)
xe €10, 1},

where f : 2V — {0, 1}. This integer program corresponds to a hitting set problem in
which the edge set E is the set of ground elements, and we must hit all sets 7 = §(5) for
which f(S) = 1. Clearly this models the generalized Steiner tree problem in the case
that f(S) = 1iff [S N {s;, #;}| = 1 for some ;.

In fact, the integer program can be used to model a number of network design
problems. It models the minimum spanning tree problem when f(S) = 1forall S C V,
S % (. In the Steiner tree problem, we are given a set of terminals 7 € V, and must
return a minimum-cost tree connecting all the vertices in 7. The integer program models
this problem when f(S) = 1iff 0 < |SN T| < |T|; that is, the cut S separates a pair
of terminals. It models the shortest s-¢ path problem when f(S) = Liff |[SN {s, t}| = 1.
The T-join problem is one of finding a minimum-cost forest such that all vertices
in T have odd degree and all other vertices have even degree (clearly, |7| must be
even). This can be modelled by the integer program when f(S) = 1iff |SN T is odd.
Consider the problem of finding a minimum-cost set of edges such that every connected
component has O(mod k) vertices for any k such that | V| = O(mod k). We call this a tree
partitioning problem, and it can be modelled by the integer program by setting f(S) = 1
iff |S| # O(mod k).

All of the functions f used for these problems are proper functions. We say a function
f :2Y — Nis proper if f(V) = 0, f(S) = f(V —8) for all S € V, and for
any disjoint A and B, f(A U B) < max(f(A), f(B)). Goemans and Williamson [41]
show that the algorithm in Fig. 3 gives a 2-approximation algorithm for (ND) for
any proper function with range {0, 1}. To apply the algorithm, they use the principle
of finding minimal violated sets, which for any infeasible solution A is the set of
connected components C of (V, A) such that f(C) = 1. That is, in every iteration /
of the algorithm V; = {T; = §(S;) : S; a connected component of (V, A;), f(S;) = 1}.
We can apply Theorem 2 with @ = 2 to show that this gives us a 2-approximation
algorithm. In fact, the proof of this is almost identical to the proof above of Theorem 3
for the generalized Steiner tree problem. We only need to modify the last part of the
proof to show that for any proper function, no blue node has degree 1; we leave this
as an exercise for the reader. This algorithm can be implemented in O(n” logn) time
for these problems using simple data structures, and somewhat faster running times by
using more complicated data structures (see Klein [54], Gabow et al. [36]).

Thus we get a number of 2-approximation algorithms for various problems. For the
minimum spanning tree, we get an optimal algorithm, since in this case the primal-dual
algorithm emulates Kruskal’s algorithm [55]. In the case of the Steiner tree problem,

462 David P. Williamson

we get an algorithm which emulates a number of previously known 2-approximation
algorithms for the Steiner tree problem (see the survey of Winter [72]). In the case of
the shortest s-¢ path problem, we get an optimal algorithm. In the case of the T-join
problem, a polynomial-time algorithm is known, due to Edmonds and Johnson [26]. The
primal-dual algorithm gives a 2-approximation algorithm with a running time faster than
the best known running time of the Edmonds-Johnson algorithm on dense graphs. And
in the case of the tree partitioning problem, we get a 2-approximation algorithm. In
fact, given that edge costs obey the triangle inequality, we can use this algorithm to get
approximation algorithms for a number of other problems. By partitioning the graph
into trees of even size (using k = 2), we can obtain a matching of the graph by doubling
each tree, shortcutting the tree to a tour of its vertices, then choosing the cheaper of
the two matchings imposed by the tour. This gives us a 2-approximation algorithm
of the minimum-cost perfect matching problem whose running time is faster than the
best known matching algorithm on dense graphs. Williamson and Goemans [70] have
implemented the matching algorithm and found that it is typically within 4% of optimal.

In a similar manner, we can get 2-approximation algorithms in the case that the
function f : 2V — {0, 1} is downwards monotone [40]. We say that f is downwards
monotone if f(S) < A(T) forall S O T # (. We can use this to model the problem of
partitioning the graph into trees each of which has at least k vertices (with f(S) = 1 if
0 < |S| < k), and some location-design and location-routing problems [40].

The most sophisticated use of the primal-dual method for network design problems
is an approximation algorithm that works for any proper function f. One problem
that can be modelled by (ND) with such a function is the survivable network design
problem (SNDP). In this problem, a value r;; is given for every pair of nodes i, j, and
one must find a minimum-cost set of edges such that for every i, j pair there are at least
r;j edge-disjoint paths between i and j. This problem arises in the design of low-cost
fault-tolerant networks, since it implies that i and j will still be connected even after
rij — 1 edge failures. By using the function f(S) = maXx;es, j¢s 7i;j, the integer program
(ND) models the SNDP. Work on approximation algorithms for (ND) with any proper
function started with a paper of Klein and Ravi [53], who gave a 3-approximation
algorithm in the case that the proper function has range {0, 2}. Williamson, Goemans,
Mihail, and Vazirani [71] gave the first approximation algorithm for general proper f;
it has performance guarantee 2k, where k = maxg f(S) (for SNDP k = max; ; r;;).
Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [39] improved this to
a 2 Hy-approximation algorithm, where H, = 1 + % + -+ %

All of these algorithms use the primal-dual method in a sequence of k phases. To
illustrate, we consider the algorithm of Goemans et al. Let F be the set of edges selected
in phases 1 through j — 1, and suppose we are now in phase j. In phase j, we form
a hitting set problem in which we must hit all sets 7 = §(S) with maximum deficiency,
where the deficiency of a set S is f(S) — |5(S) N F|. We use the algorithm of Fig. 3 to
produce a set of edges A’. We add these to F, and start the next phase. Notice that each
phase reduces the maximum deficiency by at least one, so that the maximum deficiency
is at most k — j 4 1 in phase j. Initially the deficiency is k, and when the deficiency
of all sets is nonpositive, we have a feasible solution since F will contain at least f(S)
edges from §(S) for each S. Roughly speaking, because the optimal solution to the
SNDP has at least k — j + 1 edges of E — F hitting each set of maximum deficiency

The primal-dual method for approximation algorithms 463

in phase j, the optimal solution to the hitting set problem in phase j costs at most
ﬁ times the optimum solution to SNDP. Goemans et al. prove that the primal-dual
algorithm gives a hitting set solution of no more than twice the hitting set optimal. Thus
the cost of the overall set of edges F the algorithm produces is at most lezl k—f—+1
times the SNDP optimal, for a 2H-approximation algorithm. Goemans et al. [39]
show that their algorithm extends to the case of weakly supermodular functions f,
a generalization of proper functions, when the minimally violated sets can be found
in polynomial time (as they can for proper f); a function f is weakly supermodular
if f(V) = 0 and for all A, B C V, either f(A) + f(B) < f(AN B)+ f(AU B) or
f(A) + f(B) = f(A—B)+ f(B—A).

Mihail, Shallcross, Dean and Mostrel [58] implemented a variation of this algorithm
for use in a telephone network design toolkit, and found that it works well in practice.

Recently, Jain [49] gave a non-primal-dual 2-approximation algorithm for (N D) for
any weakly supermodular function f (assuming a certain polynomial-time separation
oracle for f) by showing that any basic solution to the LP relaxation will always contain
some e € E for which x, > 1/2. The performance guarantee is obtained by rounding
the value for this edge up to 1, then recursing on the remaining subproblem.

Although the performance guarantee of Jain’s algorithm is much stronger than
that given for the primal-dual algorithm above, the primal-dual algorithm is still of
interest. Jain’s algorithm requires solving the linear programming relaxation of (ND)
with the integer constraints x, € {0, 1} replaced by 0 < x, < 1, which is a nontrivial
computational task. The primal-dual algorithm is likely to be more efficient in practice.

3.2. Feedback vertex set problems

Another application of the primal-dual method has been to feedback vertex set problems,
as we saw in Sect. 2. However, as we remarked in that section, the integrality gap for the
hitting set formulation of the problem is at least €2(logn), and so we will not be able to
obtain better performance guarantees unless we consider special cases of the problem,
or different integer programming formulations. We consider both in turn in this section.

Goemans and Williamson [43] consider feedback vertex problems in planar graphs.
They consider a class of hitting set problems, in which one must hit a select set of cycles
C of a graph. Their class includes the feedback vertex set problem, the feedback vertex
set problem in directed graphs (in which C is the set of directed cycles), the subset
feedback vertex set problem (in which one is given a set of vertices S, and C is the set of
cycles which contain some vertex of S), and the graph bipartization problem (in which
C is the set of odd cycles; thus removing a solution set of vertices causes the remaining
graph to be bipartite). They apply the algorithm of Fig. 3 to these problems to obtain
a %—approximation algorithm for these problems. To choose the collection of violated
sets in the algorithm, they consider the face-minimal violated sets. Suppose each time
the algorithm selects a vertex to add to A, we remove the vertex and incident edges
from the graph, leaving a planar graph. Given a plane embedding, for any simple cycle
C € C, let F(C) be the set of faces of the graph interior to C. Then we say C € C is
face-minimal if there is no C’ € C such that F(C') C F(C). The class of cycles C is such
that in the collection of face-minimal cycles F F(C) N F(C") = ¢ for any two distinct

464 David P. Williamson

C, C' € F; the reader can verify this for the four problems given above. Goemans and
Williamson [43] show that for any minimal solution D to these hitting set problems
(that is, for any v € D, D — v does not hit all cycles in C)

Y. IcnD| < 3|7,
CeF

giving a 3-approximation algorithm for these problems in planar graphs via Theorem 2.
By carefully selecting a subset ' C F, they are able to replace the factor of 3 with 2,
leading to the claimed approximation algorithms.

Becker and Geiger [15] and Bafna, Berman, and Fujito [6] independently gave
the first 2-approximation algorithms for the feedback vertex set problem in general
undirected graphs. Because it will simplify our exposition somewhat, we will focus on
the algorithm of Bafna et al. Their algorithm chooses vertices in a series of iterations,
building up a feasible solution, and then removes excess vertices in a reverse delete step
as in the algorithms of Figs. 2 and 3. In a given iteration, the algorithm first checks to
see whether the graph contains any semi-disjoint cycles. A semi-disjoint cycle is a cycle
in which at most one vertex has degree greater than two. If the graph has a semi-disjoint
cycle, the algorithm selects the cheapest vertex from the cycle. Otherwise, the algorithm
selects the vertex that minimizes the ratio of weight to the vertex’s degree minus one;
that is, it chooses the arg min,cy #, where d(v) is the degree of the vertex. It then
reduces the weight of every vertex in the graph by € = min,ey #. After the vertex is
selected, it and all incident edges are removed from the graph, and all degree 1 vertices
and incident edges are removed until none are left.

Chudak, Goemans, Hochbaum, and Williamson [20] have shown that this algorithm
can be viewed as a primal-dual algorithm on a different integer programming formulation
of the feedback vertex set problem. Here we give the formulation and show how a primal-
dual algorithm is equivalent. To get the integer program, we first need the following
lemma.

Lemma 3. For any feedback vertex set F of a graph G = (V, E),

Y @) — 1) = |E| = V]| + 1.

veF

Proof. By the definition of a feedback vertex set, the removal of F leaves an acyclic
graph. Therefore, once F and edges incident to F' are removed from the graph, at most
|V — |F| — 1 edges remain. We remove at most) . d(v) edges from the graph.
Therefore, we have that [E| < (|[V| — |F| — 1) +), . d(v), and rearranging terms
gives the statement of the lemma.

O

Note that the lemma must still hold for the graph induced by any subset of vertices S;
that is, if G[S] = (V, E[S]) is the graph induced by the subset of vertices S, and dg(v)
is the degree of vertex v in G[S], then for any feedback vertex set F, we have that
ZueF(dS(v) — 1) > |E[S]] — |S|] + 1. We can use this to get the following integer

The primal-dual method for approximation algorithms 465

programming formulation of the problem:

Min E WyXy

veV
subject to:
(FVS) > ds) = Dxy=b(S) ScV
veS
'xU € {01 1} NS V,

where b(S) = |E[S]| — |S| + 1. By the reasoning above, any feedback vertex set gives
a feasible solution to the integer program (FVS). We can also show that any feasible
solution x to (FVS) must be a feedback vertex set. Suppose not, and suppose there is
some cycle C such that x, = 0 for all v € C. Consider the constraint of the integer
program corresponding to C. Since there are at least |C| edges in E[C] (since it contains
a cycle), the right-hand side of the constraint is at least 1, while the left-hand side is 0,
which contradicts the feasibility of x.

We now give a primal-dual algorithm for the problem based on this integer pro-
gramming formulation. First, we give the dual of a linear programming relaxation of
(FVS):

Max Y " b(S)ys
s
subject to:
(FVS — D) Y s —Dys<w, veV
SweS
ys >0 SCV.

We give the primal-dual algorithm in Fig. 4. It follows precisely the same format as the
algorithm of Fig. 2; here we increase the dual variable corresponding to a semi-disjoint
cycle (if one exists) or the dual variable corresponding to the vertex set of the remaining
graph. When some dual constraint becomes tight, we add the corresponding vertex to
our solution. It is not difficult to see that the vertex selected by the primal-dual algorithm
is exactly the same as that selected by the Bafna et al. algorithm. The cost of the vertices
returned is

Dowy=) Y dsw)—Dys=Y_ > (ds)—1ys.

veF’ veF’ Swes S veSNF’

To obtain a performance guarantee of 2, we wish to show that

D > ds) —Dys <2 b(S)ys,

S veSNF’ S

since the right-hand side is twice the dual objective function. We can do this if we
can show that for any S such that yg > 0, > _¢rp(ds(v) — 1) < 2b(S). By the

466 David P. Williamson

y<«0
F <0
[<0
V < V.:E <« E
While F is not feasible
I <—1+1
Recursively remove degree one vertices and edges from V' and E’
If (V/, E’) contains a semi-disjoint cycle C
S« C
Else
S <~V
Increase yg until Jv; € S : ZT:v,eT(dT(vl) — Dyr = ¢y,
F <~ FU{v}
Remove v; from V' and attached edges from E’.
For j < [downto 1
If F — {v;} is feasible then F' < F — {v;}
F' < F
Output F’ (and y)

Fig. 4. A primal-dual version of the Bafna-Berman-Fujito algorithm for the feedback vertex set problem

properties of the reverse delete, it can be shown that S N F’ is a minimal feedback
vertex set for G[S]. If S is a semidisjoint cycle, clearly the inequality holds since
a minimal feedback vertex set for G[S] consists of a single vertex v, ds(v) — 1 = 1, and
b(S) = 1. Now suppose S is the vertex set of a graph which contains no semidisjoint
cycle. Then the performance guarantee of 2 for the algorithm is implied by the following
lemma.

Lemma 4 (Bafna et al. [6], Chudak et al. [20]). For any minimal feedback vertex set
F of a graph G = (V, E) which contains no semidisjoint cycles,

> (dw) = 1) < 2b(V).

veF

Fujito [35] has extended this work to a primal-dual algorithm for node-deletion
problems for hereditary graph properties derived from matroids. A property is hereditary
if for any graph G that has the property, every subgraph of G also has the property. The
property is derived from a matroid if the edge subsets satisfying the property correspond
to independent sets of some matroid. Fujito studies the problem of deleting a minimum-
weight set of nodes so that the remaining graph satisfies such a property. Consider the
property of having no cycles: certainly this is hereditary, and it derives from the graphic
matroid. The feedback vertex set problem is the corresponding node deletion problem.
Fujito shows that if 7¢ is the rank function of the dual matroid, the following is an integer

The primal-dual method for approximation algorithms 467

programming formulation of the problem:

Min Z Wy Xy
subject to:

Y o rl@e@xy = rES) ScV

ves

xy € {0, 1} vev.

Note that in the case of the graphic matroid, rd(E[S]) = |E[S]| — |S| + ¢(G[S]), where
c(G[S]) is the number of connected components of S, and r?(8(v)) is the degree of
v minus the number of blocks containing v. Thus Fujito’s integer program is almost
the same as (FVS). He also gives a primal-dual 2-approximation algorithm for the
feedback vertex set problem (as well as some others), and it is somewhat simpler than
the one above in that the algorithm does not need a separate case for semi-disjoint
cycles.

3.3. Prize-collecting problems

In this section, we consider a variation of prize-collecting problems introduced by
Balas [8]. We will focus on the prize-collecting Steiner tree problem (PCST). In this
problem we are given an undirected graph G = (V, E), nonnegative costs on edges c,,
a root vertex r, and nonnegative penalties 7r; on the vertices i. The goal is to find a tree
T which includes r such that the cost of the edges in T plus the cost of the penalties of
vertices not in 7 is minimized. Johnson, Minkoff, and Phillips [52] study this problem
in the context of deciding which customers to connect to a cable system, forgoing
the profits of customers who are not connected. The objective function given above
minimizes the total cost of the cables and total profit lost.

The problem can be modelled as a hitting set problem in the following way. We have
two different types of ground elements: each edge e is a ground element, and each subset
X C V —risalso a ground element. The cost of each edge is c,, and the cost of a subset
Xisn(X) = Ziex ;. For all § € V — r, we must hit the set §(S) U{X : X D §};
that is, either we must select an edge of 6(S), or we must choose some subset X that is
a superset of S. We can show that this models the prize-collecting Steiner tree problem.
If we have a tree T that is a solution for the PCST spanning the vertices V(T'), we can get
a solution to the hitting set problem of no greater cost by including all edges from 7" and
the subset X of the vertices V — V(T'). Clearly this hits all sets S € V — V(T'), and all
other subsets S € V — r must include some vertices of 7, and thus §(S) is hit by some
edge of T'. Similarly, given a solution to the hitting set problem, we construct a solution
to PCST of no greater cost by taking as our tree 7 any tree spanning the connected
component containing r. The hitting set solution must contain some X 2 V — V(T)
to hit the set S = V — V(T'), and thus the cost of the hitting set solution includes the
penalties on vertices not spanned by 7.

468 David P. Williamson

Thus we can model the PCST by the following integer program:

Mianexe + Z 7(X)zx

ecE Xcv
subject to:
Y oxe+ Y =zl SCV-r
e€8(S) X:X2S
x. € {0, 1} ec E
zx € {0, 1} XCcVv.

Taking the dual of the linear programming relaxation, we obtain:

Max Z ys

SCV—r
subject to:
Z ys < ce ec E
S:ees(S)
Y oys=mX) XSV
S:SCX
ys >0 SCV—r.

We can apply the algorithm of Fig. 3 and the analysis of Theorem 2 in a more or
less straightforward fashion to obtain a 2-approximation algorithm for the PCST. Notice
that the two types of ground elements in the hitting set formulation lead to two different
types of packing constraints in the dual, one on edges and one on subsets of vertices.
Thus as we increase dual variables, either an edge constraint can become tight (in which
case we add the edge to our current solution), or a subset constraint can become tight (in
which case we add the subset to our current solution). The minimal violated sets chosen
in the algorithm of Fig. 3 are connected components C of the set of selected edges such
that » ¢ C and such that the subset C itself has not been selected by the algorithm (since
then the primal constraint corresponding to the set C is not violated). One can use the
analysis of Theorem 2 to show the following:

Theorem 4 (Goemans and Williamson [41]). The algorithm of Fig. 3 returns a tree T,
a set of unspanned vertices X, and a feasible dual solution y such that

Yoee+2Y m<2) s

ecT ieX SCV—r

Johnson, Minkoff, and Phillips [52] have implemented this algorithm and found that it
is usually within 5% of optimal on the instances they examined.

The algorithm for PCST can be used as a subroutine to obtain a 2-approximation
algorithm for the prize-collecting traveling salesman problem, in which we must find
a tour containing r that minimizes the cost of the tour plus the sum of the penalties of
the vertices not visited by the tour.

The primal-dual method for approximation algorithms 469

4. Recent developments of the primal-dual method

We now turn to recent applications of the primal-dual method that do not fit so easily in
the framework developed in Sect. 2. Interestingly, these developments give performance
guarantees on variations of some dual-ascent heuristics considered earlier in the literature
by Erlenkotter [29] for the uncapacitated facility location problem and Wong [73] for
the Steiner tree problem.

4.1. Uncapacitated facility location

In the uncapacitated facility location problem (UFL), we are given as input a finite set of
locations V, asubset F' C V of facilities, a set of facility costs f; > Oforalli € F, a set
of clients D = V — F, and a set of assignment costs ¢;; > 0 for assigning client j € D
to facility i € F. We assume that these assignment costs obey the triangle inequality,
in the sense that for clients j, k and facilities &, i, cpe < cpj + cij + cix. The goal is
to select a set of facilities to open and to assign clients to these open facilities so as to
minimize the total cost of open facilities and cost of the assignment.

The following integer programming formulation of the problem is due to Balinski [9].
‘We let the indicator variable y; denote whether facility 7 is open, and the indicator variable
x;;j denote whether client j has been assigned to facility i. Then the following IP models
UFL:

MinZﬁ‘yH— Z CijXij

ieF ieF,jeD
subject to:
> xij=1 jeb (7)
ielF
(UFL) Xij < yi ieF,jeD (8)
yi €10, 1} i€eF
x;j €{0, 1} ieF,jeD.

The constraints (7) guarantee that each client is assigned to some facility, and those in
(8) guarantee that a client is only assigned to an open facility. If we drop the integrality
constraints and take the dual, we obtain

jeD
subject to:
(UFLD) D wi < fi ieF ©9)
jeD
Vj —wjj = Cjj iEF,jED (10)

wij >0 ieF,jeD.

470 David P. Williamson

We cannot apply the algorithm of Fig. 3 in the most straightforward way here.
So far all of our integer programming formulations have been covering IPs whose
associated duals have been packing LPs, which is not the case for UFL. However,
Jain and Vazirani [50] show that it is possible to get a 3-approximation algorithm by
modifying the primal-dual algorithm somewhat. They set all the w;; and v; variables
of (UFLD) to zero, then increase the variables v; uniformly. If for some i, j v; > ¢;j,
they also increase w;; at the same rate to maintain the feasibility of the constraints (10).
Eventually for some facility i a constraint (9) becomes tight; to maintain feasibility,
they stop increasing the variables v; such that v; > ¢;; for that facility i. This process
continues until it is not possible to increase any v;. Now consider the graph G of
edges (7, j) such that for x;; the corresponding dual inequality is tight (that is, when
vj = ¢jj +w;;, which occurs whenever v; > c¢;;). Rather than creating an assignment of
clients to facilities solely from edges in this graph (as the primal-dual method developed
so far would do), Jain and Vazirani carefully choose a subset of facilities to open of
those whose corresponding dual constraint (9) is tight. The subset they open is such
that no open facility is within a path of length two of any other open facility in G, but
such that every client is within a path of length three of an open facility. Then by using
the triangle inequality they are able to show that assigning client j to the nearest open
facility does not cost more than v; — wj;; if j is next to an open facility i, and no more
than 3v; otherwise. Thus they are able to prove the following theorem, which implies
that the algorithm is a 3-approximation algorithm.

Theorem 5 (Jain and Vazirani [50]). The algorithm finds a feasible solution (x, y) to
the IP (UFL) such that

Z CijXij +3Zfi5’i =< 3Zvj.

ieF,jeD ieF jebD

Proof sketch. Suppose we divide the clients D into two sets: Dj, the clients that are
next to an open facility in G, and D3, the clients that are not. Note by the argument
above that any client in D is next to only one open facility. Then for the clients in D1,

Yo ciky=) (vi= D wiyEi) = Y vi—) fidie (11)

jeDy,ieF jeD; ieF jeDy ieF

The first equality follows since for clients j in Dj, the constraint corresponding to
i, j such that x;; = 1 is tight, and ¢;; = v; — w;;. The second equality follows
since all neighbors j of an open facility i are in D; and assigned to i, we have that
fi =2 jepWij = X jep wijXij- Multiplying the left-hand side of (11) by 3 gives the
inequality

Z CijXij 53(2 Uj_Zfi)_’i) (12)
jeDy,ieF jeD ieF

We know from above that } ;. p, jcp CijXij <3 ;cp, vj- Adding this inequality
to (12) and rearranging terms gives

The primal-dual method for approximation algorithms 471

Z CijXij +3Zfz‘5’i < 3201',

ieF,jeD ieF jeD

as desired.

4.2. Lagrangean relaxation and the k-median problem

The technique of Lagrangean relaxation has long been used in combinatorial optimiza-
tion; the central idea is roughly that given a difficult integer or linear program to solve,
one can often reduce the IP/LP to an easier IP/LP by removing some complicating
constraints, but adding penalties for their violation to the objective function. Recently
Jain and Vazirani [50] applied this technique to give an approximation algorithm for
the k-median problem. The k-median problem has the same input as UFL, except that
there are no costs for facilities, but rather an upper bound k on the number of facilities
that can be opened. The goal is to open at most & facilities so as to minimize the cost of
assigning clients to facilities.

We can give an integer programming formulation for the k-median problem much
like that for the uncapacitated facility location problem:

Min E CijXij

ieF,jeD
subject to:

Y oxij=1 jeD
ielF

(kM) Xij < i ieF,jeD
Y vi<k (13)
ieF
y;i € {0, 1} ieF
x;j €{0, 1} ieF, jeD.

The additional constraint (13) guarantees that no more than k facilities will be chosen.
Notice that if we apply Lagrangean relaxation to the complicating constraint (13),

we obtain the following:
Min Z CijXij +)»(Zyi — k)

ieF,jeD ieF
subject to:
Y oxij=1 jeD
ielF
(kMR) Xij < yi ieF jeD
yi € {0, 1} ieF

xij €{0, 1} ieF, jeD.

472 David P. Williamson

This is a relaxation of (kM) since any feasible solution for (kM) will also be feasible
and will have no greater cost (assuming A > 0). The IP (kMR) is identical to the
UFL formulation in which every facility cost is A, except for the constant term —Ak
in the objective function. If we relax the integrality conditions and take the dual we
obtain

Max Z vj — kA
jeD
subject to:
(kMRD) Zwijgx i€eF
jeD

vi—wijj <c¢j L€F jeD
wijzo iEF,jED.

Observe any dual solution (v, w) for the facility location dual LP (UFLD) with fa-
cility costs A is feasible for (kMRD). Furthermore, since (kMRD) is the dual of
the linear programming relaxation of (kMR), and (kMR) is a relaxation of the k-
median formulation (kM), the objective function value of any feasible solution to
(kMRD) gives a lower bound on the cost of an optimal solution to the k-median
problem.

Jain and Vazirani [50] use their UFL algorithm and the similarities between (UFL)
and the Lagrangean relaxation for (kM) to obtain an approximation algorithm for the
k-median problem. They observe that for facility cost A = O their UFL algorithm will
open all facilities, and for A = n max; ; ¢;; the algorithm will only open one facility. So
they perform a binary search on the value of A, running the UFL algorithm each time
in hopes of obtaining a solution (x, y) for (UFL) with) ;. y; = k. Suppose that this
occurs. Then by Theorem 5, we know that

Z CijXij < 3(21)]' — Z)@»i)

ieF,jeD jeD ieF
=3() v — k)
jebD

Since the constructed dual solution (v, w) is feasible for (UFL D) with facility costs A,
(v, w) is feasible for (kMRD), and thus) jepVj — Mk is a lower bound on the value
of the optimal k-median. Hence if we can find a value of A such that the UFL algorithm
opens exactly k facilities, the solution is within a factor of 3 of optimal for the k-median
problem.

However, in general such a value of A may not exist. In this case, Jain and Vazirani
find two solutions for two values of A sufficiently close, one which opens more than k
facilities, and one which opens fewer than & facilities. They then show that an appropriate
convex combination of the inequalities of Theorem 5 for the two solutions gives an
inequality showing that the convex combination of the primal solutions is no more than
3 times the value of a feasible dual solution for (kMR D). Jain and Vazirani then show
that by using the two solutions they can find a solution to the k-median problem that

The primal-dual method for approximation algorithms 473

costs no more than twice the cost of the convex combination of the two solutions. In
this way they obtain a 6-approximation algorithm for the k-median problem. Charikar
and Guha [19] are able to improve this algorithm to a 4-approximation algorithm by
carefully considering the differences in solutions produced by the algorithm for UFL
for values of A sufficiently close together.

Garg [37] implicitly used the technique above for solving the problem of find-
ing a minimum tree spanning k vertices. In this problem, given an undirected graph
with nonnegative costs ¢, on the edges, a root vertex r € V, and a positive inte-
ger k, one must find a minimum-cost tree including » that spans at least k vertices.
Garg uses the prize-collecting Steiner tree algorithm mentioned in Sect. 3.3 as sub-
routine while doing a binary search on a parameter A. Chudak, Roughgarden, and
Williamson [21] make explicit Garg’s use of Lagrangean relaxation. Consider the fol-
lowing integer program which models the problem of finding a minimum tree spanning

k vertices:
Min E CeXe
eeE

er-i-Zszl SCV-—r

e€d(S) X:X2S8

Y IXlex < VI -k (14)
Xcv

xe € {0, 1} ee E

zx € {0, 1} X CV.

subject to:

By using Lagrangean relaxation on the complicating constraint (14), we get an integer
program of the same form as that for the prize-collecting Steiner tree, in which each
penalty m; is the Lagrangean variable A. Garg [37] gives a simple 5-approximation
for the problem, and a more complicated 3-approximation algorithm that depends on
understanding the changes in the solution generated by the prize-collecting Steiner
tree algorithm for small perturbations of A. Chudak et al. [21] show that these
proofs can be made to follow an outline similar to that for the k-median problem
above.

4.3. The Steiner tree problem

In Sect. 3.1, we described a primal-dual 2-approximation algorithm for the Steiner tree
problem. One unsatisfying aspect of this algorithm is that the integer programming
formulation (ND) with the appropriate function f for the Steiner tree problem has an
integrality gap of two, even in the case when the set of terminals 7 = V; that is, when
the problem is a minimum spanning tree problem. In this case there are exact integer
programming formulations. Pick an arbitrary root vertex r, and let G' = (V, A) be
a directed graph formed from the undirected graph G by replacing each undirected edge
e = (i, j) of cost ¢, with two oppositely oriented arcs a = (i, j) and @’ = (J, i), both of

474 David P. Williamson

cost ¢, = ¢y = ce. Then the following linear program models the minimum spanning
tree problem:

Min Z CaXa
subject to:

Z xg > 1 SCV—r
acd—(S)

Xa >0 acA.

Recall that §7(S) is the set of arcs in a digraph with their heads in S € V, and tails not
in S. The proof of correctness of Edmonds’ branching algorithm given in Sect. 2 shows
that this is an exact formulation.

We can modify the formulation to give a integer programming formulation of the
Steiner tree problem. Let T be the set of terminals to be joined, and let r be an arbitrary
member of 7. Then the following integer program models the Steiner tree problem:

Min E CaXa

acA

subject to:

Z xa>1 SCV—r,SNT #y
aed=(S)
xq € {0, 1} aceA.

This is sometimes called the bidirected formulation of the Steiner tree problem. Notice
that this formulation corresponds to a hitting set problem in which we must hit every set
87 (S) for which § € V—r, SNT # (. The dual of the linear programming relaxation is

Max Z s

§:8CV—r,SNT £

subject to:

Z s < ¢q acA
S:aed=(S)

ys =0 SCV—r,SNT #¢.

We could apply the algorithm of Fig. 3 in some fashion to the problem, but it has not
been clear how to obtain a good performance guarantee via Theorem 2. Heuristically
some variant of the algorithm seems to give good results, however; Wong [73] shows
that choosing any single violated set (as in the algorithm of Fig. 2) gives solutions within
1% of optimal on small random instances.

Rajagopalan and Vazirani [63] give a modification to the primal-dual method that
gives a (% + €)-approximation algorithm for the Steiner tree problem on quasi-bipartite
graphs. They call a graph quasi-bipartite if every edge has at least one endpoint that
is a terminal. Their algorithm combines a local search algorithm with a primal-dual

The primal-dual method for approximation algorithms 475

algorithm. Given the set 7' of terminals and some subset X of non-terminals, they use
a variation of the algorithm of Fig. 3 in which they increase the duals of all minimal
sets S that contain some but not all vertices of 7 U X, and such that 6~ (S) contains no
edge of the current solution. Observe that this algorithm may increase dual variables yg
that do not contribute to the dual objective function, either because 7N S =P orr € S.
If the primal solution obtained ends up using a vertex v not in 7' U X, they show that
adding v to X can only improve the cost of the resulting solution, so v is added to X and
they iterate. If no such v is added, then they show that the cost of their solution F equals
the value of the sum of the dual variables; that is,) ", ca = > ¢ ¥s. Rajagopalan and
Vazirani show that the total value of duals that do not contribute to the objective is no
more than % Sgvs,sothat ¥ cpca < 3 d_s:scv_r.snT Vs» and therefore the cost

of F is no more than % times the optimal value. Madndoiu, Vazirani, and Ganley [59]
give experimental results with this algorithm.

5. Conclusion and open questions

Even in this lengthy survey, it has not been possible to be comprehensive. For ex-
ample, Bar-Noy, Bar-Yehuda, Freund, Naor, and Schieber [10] give an application of
the primal-dual method to scheduling problems, Garg, Vazirani, and Yannakakis [38] to
cut problems in trees, and Bertsimas and Teo [18] to several different problems. Inter-
estingly, the paper of Bar-Noy et al. gives the first primal-dual approximation algorithm
for a natural maximization problem; all previous applications have been to minimization
problems.

In addition, we have not been able to describe the connection of the primal-dual
method to the local-ratio theorem [13,6,11]. The two methods appear to be strongly
related, though as of the writing of this survey no formal connection has been shown.
In some cases, an approximation algorithm has been designed first using the local-ratio
theorem, and then shown to have a primal-dual approximation algorithm; for example,
this was the case for the feedback vertex set problem described in Sect. 3.2 [6,20], and
the scheduling problem of Bar-Noy et al. [10]. In the first case, the integer program
modelling the problem had to be inferred from the design of the local-ratio algorithm.

We close this survey by listing several open problems of interest in this area.

1. The algorithm of Jain [49] shows that the integrality gap is 2 for the network design
formulation (ND) of Sect. 3.1 for any weakly supermodular function f. Thus it
is possible that there is also a primal-dual algorithm for any weakly supermodular
function that has a performance guarantee of 2. Such an algorithm would be very
interesting, and possibly more practical than Jain’s. It would even be interesting to
provide a primal-dual 2-approximation algorithm for the survivable network design
problem in which one is allowed to have multiple copies of edges (that is, x, € N
rather than x, € {0, 1}).

2. It would be interesting to have a primal-dual approximation algorithm for the Steiner
tree problem with performance guarantee better than 2 by using the bidirected
formulation. On the other hand, perhaps no such performance guarantee is possible
because the integrality gap of the formulation is at least 2 — € for any € > 0. A proof
of this fact would also be of interest.

476 David P. Williamson

3. The primal-dual method for approximation algorithms shown in this survey are es-
sentially dual ascent algorithms. The standard primal-dual method for combinatorial
optimization problems can sometimes result in very complicated dual adjustment
schemes (for example, Edmonds’ blossom algorithm for weighted non-bipartite
matching [24]). Can a more complicated scheme result in new or improved approx-
imation algorithms for NP-hard problems in combinatorial optimization?

Acknowledgements. The author would like to thank Tim Roughgarden, David Shmoys, Madhu Sudan, and
the two anonymous referees for several comments that improved the presentation of this survey.

References

1. Agrawal, A., Klein, P., Ravi, R. (1995): When trees collide: An approximation algorithm for the
generalized Steiner problem on networks. SIAM Journal on Computing 24, 440-456
2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M. (1992): Proof verification and hardness
of approximation problems. In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 14-23
3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M. (1998): Proof verification and the hardness of
approximation problems. Journal of the ACM 45, 501-555
4. Arora, S., Safra, S. (1992): Probabilistic checking of proofs; a new characterization of NP. In: Proceedings
of the 33rd Annual IEEE Symposium on Foundations of Computer Science, pp. 2—13
5. Arora, S., Safra, S. (1998): Probabilistic checking of proofs: a new characterization of NP. Journal of
the ACM 45, 70-122
6. Bafna, V., Berman, P., Fujito, T. (1999): A 2-approximation algorithm for the undirected feedback vertex
set problem. STAM Journal on Discrete Mathematics 12, 289-297
7. Balakrishnan, A., Magnanti, T.L., Wong, R. (1989): A dual-ascent procedure for large-scale uncapacitated
network design. Operations Research 37, 716-740
8. Balas, E. (1989): The prize collecting traveling salesman problem. Networks 19, 621-636
9. Balinski, M.L. (1965): Integer programming: methods, uses, computation. Management Science 12,
253-313
10. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B. (2000): A unified approach to approx-
imating resource allocation and scheduling. In: Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing
11. Bar-Yehuda, R. (2000): One for the price of two: a unified approach for approximating covering problems.
Algorithmica 27, 131-144
12. Bar-Yehuda, R., Even, S. (1981): A linear time approximation algorithm for the weighted vertex cover
problem. Journal of Algorithms 2, 198-203
13. Bar-Yehuda, R., Even, S. (1985): A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics 25, 27-46
14. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M. (1998): Approximation algorithms for the feedback
vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM Journal on
Computing 27, 942-959
15. Becker, A., Geiger, D. (1996): Optimization of Pearl’s method of conditioning and greedy-like approxi-
mation algorithms for the vertex feedback set problem. Artificial Intelligence 83, 167-188
16. Bellare, M., Goldreich, O., Sudan, M. (1998): Free bits, PCPs, and nonapproximability — towards tight
results. STAM Journal on Computing 27, 804-915
17. Bellare, M., Goldwasser, S., Lund, C., Russell, A. (1993): Efficient probabilistically checkable proofs
and applications to approximation. In: Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, pp. 294-304
18. Bertsimas, D., Teo, C.-P. (1998): From valid inequalities to heuristics: A unified view of primal-dual
approximation algorithms in covering problems. Operations Research 46, 503-514
19. Charikar, M., Guha, S. (1999): Improved combinatorial algorithms for the facility location and k-median
problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
pp. 378-388
20. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P. (1998): A primal-dual interpretation
of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Operations
Research Letters 22, 111-118

The primal-dual method for approximation algorithms 477

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

Chudak, F.A., Roughgarden, T., Williamson, D.P. (2001): Approximate k-MSTs and k-Steiner trees via
the primal-dual method and Lagrangean relaxation. In: Aardal, K., Gerards, B., eds., Integer Programming
and Combinatorial Optimization, Lecture Notes in Computer Science 2081, pp. 60-70. Springer
Dantzig, G.B., Ford, L.R., Fulkerson, D.R. (1956): A primal-dual algorithm for linear programs. In: Kuhn,
H.W., Tucker, A.W., eds., Linear Inequalities and Related Systems, pp. 171-181. Princeton University
Press, Princeton, NJ

Dijkstra, E.W. (1959): A note on two problems in connexion with graphs. Numerische Mathematik 1,
269-271

Edmonds, J. (1965): Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449467
Edmonds, J. (1967): Optimum branchings. Journal of Research of the National Bureau of Standards B
71(B), 233-240

Edmonds, J., Johnson, E.L. (1973): Matching, Euler tours and the Chinese postman. Mathematical
Programming 5, 88-124

Erd6s, P. (1967): Grafok paros koriiljarasu részgrafjair6l (On bipartite subgraphs of graphs, in Hungarian).
Mat. Lapok 18, 283-288

Erdds, P., Posa, L. (1962): On the maximal number of disjoint circuits of a graph. Publ. Math Debrecen 9,
3-12

Erlenkotter, D. (1978): A dual-based procedure for uncapacitated facility location. Operations Re-
search 26, 992-1009

Even, G., Naor, J.S., Schieber, B., Zosin, L. (2000): Approximating minimum subset feedback sets in
undirected graphs with applications. SIAM Journal on Discrete Mathematics 13, 255-267

Feige, U. (1998): A threshold of Inn for approximating set cover. Journal of the ACM 45, 634-652
Feige, U., Goldwasser, S., Lovasz, L., Safra, S., Szegedy, M. (1996): Interactive proofs and the hardness
of approximating cliques. Journal of the ACM 43, 268-292

Feige, U., Kilian, J. (1998): Zero knowledge and the chromatic number. Journal of Computer and System
Sciences 57, 187-199

Ford, L.R., Fulkerson, D.R. (1956): Maximal flow through a network. Canadian Journal of Mathematics 8,
399-404

Fujito, T. (1999): Approximating node-deletion problems for matroidal properties. Journal of Algo-
rithms 31, 211-227

Gabow, H.N., Goemans, M.X., Williamson, D.P. (1998): An efficient approximation algorithm for the
survivable network design problem. Mathematical Programming 82, 13—40

Garg, N. (1996): A 3-approximation for the minimum tree spanning k vertices. In: Proceedings of the
37th Annual Symposium on Foundations of Computer Science, pp. 302-309

Garg, N., Vazirani, V., Yannakakis, M. (1997): Primal-dual approximation algorithms for integral flow
and multicut in trees. Algorithmica 18, 3-20

Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, E., Williamson, D. (1994): Improved
approximation algorithms for network design problems. In: Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 223-232

Goemans, M.X., Williamson, D.P. (1994): Approximating minimum-cost graph problems with spanning
tree edges. Operations Research Letters 16, 183-189

Goemans, M.X., Williamson, D.P. (1995): A general approximation technique for constrained forest
problems. SIAM Journal on Computing 24, 296-317

Goemans, M.X., Williamson, D.P. (1997): The primal-dual method for approximation algorithms and
its application to network design problems. In: Hochbaum, D.S., ed., Approximation algorithms for
NP-hard problems. PWS Publishing Company

Goemans, M.X., Williamson, D.P. (1998): Primal-dual approximation algorithms for feedback problems
in planar graphs. Combinatorica 18, 37-59

Graham, R. (1966): Bounds for certain multiprocessor anomalies. Bell System Technical Journal 45,
1563-1581

Hastad, J. (1997): Some optimal inapproximability results. In: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pp. 1-10

Hastad, J. (1999): Clique is hard to approximate within n'=€. Acta Math. 182, 105-142

Hochbaum, D.S. (1982): Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing 11, 555-556

Hochbaum, D.S., ed. (1997): Approximation algorithms for NP-hard problems. PWS Publishing Com-

pany

Jain, K. (2001): A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica 21, 39-60

Jain, K., Vazirani, V.V. (2001): Primal-dual approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangean relaxation. Journal of the ACM 48,
274-296

478 David P. Williamson: The primal-dual method for approximation algorithms

51. Johnson, D.S. (1974): Approximation algorithms for combinatorial problems. Journal of Computer and
System Sciences 9, 256278

52. Johnson, D.S., Minkoff, M., Phillips, S. (2000): The prize-collecting Steiner tree problem: theory and
practice. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
760-769

53. Klein, P, Ravi, R. (1993): When cycles collapse: A general approximation technique for constrained
two-connectivity problems. In: Proceedings of the Third MPS Conference on Integer Programming and
Combinatorial Optimization, pp. 39-55. Also appears as Brown University Technical Report CS-92-30

54. Klein, PN. (1994): A data structure for bicategories, with application to speeding up an approximation
algorithm. Information Processing Letters 52, 303-307

55. Kruskal, J. (1956): On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society 7, 48-50

56. Kuhn, H.W. (1955): The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly 2, 83-97

57. Lund, C., Yannakakis, M. (1994): On the hardness of approximating minimization problems. Journal of
the ACM 41, 960-981

58. Mihail, M., Shallcross, D., Dean, N., Mostrel, M. (1996): A commercial application of survivable network
design: ITP/INPLANS CCS network topology analyzer. In: Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 279-287

59. Mindoiu, LI, Vazirani, V.V., Ganley, J.L. (1999): A new heuristic for rectilinear Steiner trees. In:
Proceedings of the IEEE-ACM International Conference on Computer Aided Design

60. Papadimitriou, C.H., Steiglitz, K. (1982): Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, Englewood Cliffs, NJ

61. Papadimitriou, C.H., Vempala, S. (2000): On the approximability of the traveling salesman problem. In:
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing

62. Raghavan, S. (1994): Formulations and algorithms for network design problems with connectivity
requirements. PhD thesis, MIT

63. Rajagopalan, S., Vazirani, V.V. (1999): On the bidirected cut relaxation for the metric Steiner tree
problem. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
742-751

64. Saran, H., Vazirani, V., Young, N. (1992): A primal-dual approach to approximation algorithms for
network Steiner problems. In: Proceedings of Indo-US workshop on Cooperative Research in Computer
Science, pp. 166-168

65. Shmoys, D.B. (1995): Computing near-optimal solutions to combinatorial optimization problems. In:
Cook, W., Lovdsz, L., Seymour, P.D., eds., Combinatorial Optimization, pp. 355-397, American Mathe-
matical Society

66. Teo, C.-P. (1996): Constructing approximation algorithms via linear programming relaxations: primal
dual and randomized rounding techniques. PhD thesis, MIT

67. Vazirani, V.V. (2001): Approximation algorithms. Springer

68. Vizing, V.G. (1964): On an estimate of the chromatic class of a p-graph (in Russian). Diskret. Analiz. 3,
23-30

69. Williamson, D.P. (1993): On the design of approximation algorithms for a class of graph problems. PhD
thesis, MIT, Cambridge, MA, Also appears as Tech Report MIT/LCS/TR-584

70. Williamson, D.P., Goemans, M.X. (1996): Computational experience with an approximation algorithm
on large-scale Euclidean matching instances. INFORMS Journal on Computing 8, 29-40

71. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V. (1995): An approximation algorithm for
general graph connectivity problems. Combinatorica 15, 435-454

72. Winter, P. (1987): Steiner problem in networks: a survey. Networks 17, 129-167

73. Wong, R. (1984): A dual ascent approach for Steiner tree problems on a directed graph. Mathematical
Programming 28, 271-287

