. w Proc. 1Ve AL

 Inferring a Sequence Generated by a Linear Congruence

~

Joan B. Plumstead

Computer Sciecnce Division, University of California - Berkeley

Abstract

Suppose it is known that {Xg, X, '+, X}
is produced by a pseudo-random number gen-
erator of the form X;;; = aX; + b mod m, but
a, b, and m are unknown. Can one efficiently
predict the remainder of the sequence with
knowledge of only a few elements from that se-
quence? This question is answered in the
affirmative and an algorithm is given.

Introduction

A pseudo-random number generator
which is as cryptographically secure as the
Rivest-Shamir-Adleman encryption scheme is
presented in [Shamir]. This method for gen-
erating pseudo-random numbers is quite slow,
though, and it is not known whether any statis-
tical biases might be present in the sequences
it generates. Blum and Micali give a pseudo-
random bit generator, with arbitrarily small
bias, which is cryptographically strong, assum-
ing the problem of index finding is intractable.
But their method is also slow. This brings up
the question of whether any of the pseudo-
random number generators commonly in use
are also cryptographically secure. In particu-
lar, the linear congruential method is very pop-
ular and fast. Obviously, this method is not
cryptographically secure if the modulus, m, is
known. In that case, one’could solve for z in the
congruence (X, — Xp)x = (X5 — X;) mod m.
Then X;.;=z(X;)+ (X; —z(Xg)) mod m will
generate the original sequence. In [K1980],
Knuth has discussed this problem, assuming m
is known and is a power of two, but assuming
that only the high order bits of the numbers
generated are actually used. In this paper, we
assume the m is unknown and arbitrary, but .

* This research was supported by a féllowship
from the University of California.

0272-5428/82/0000/0153$00.75 © 1982 IEEE

that the low order bits are also used. It is shown
that this method is also cryptographically in-
secure, A similar result is given in [Reeds], but
that result,. unlike the one presented here, re-
lies on the assumption that factoring is easy.

Throughout this paper, we assume that a
fixed linear congruential random number gen-
erator, X;,; = aX; + b mod m, is given, but the
constants a, b, and m are unknown. The prob-
lem is to prediet, from some of the X;, the
remainder of the sequence. In the first section,
two algorithms which use only-an initial seg-
ment of the sequence to find an @ and a 3, such
that X, = &X; + bmod m for all i =0, are
presented and compared. In the worst case,
neither algorithm requires.an ipitial segment of

length greater than 2 + llogzm . but neither al-
gorithm finds m.. ’

In the second section, a modified version
of one of these algorithms is used to predict m
and the unknown portion of the sequence. Here
the problem becomes one of inference. In some
cases, it may take a long time to find m, even
though many correct predictions for the X; can
be made before m can be uniquely determined.
The algorithm presented in this second section
looks at X, X;, and Xp;, and then begins
predicting the X;. In a few cases, X, X, and Xg
will be sufficient to de’g\ermine an & and a b
such that X;,; = &X; + b mod m for all i = 0.
Otherwise, suitable ‘@ and b are determined
when the first.incorrect prediction is'made and
the correct value for that X; is made known. In
all cases, when the first error occurs in predict-
ing some X;, we assume the correct value is
made known. Then an initial guess is made for
m. When further errors are made in predicting
the X; and the correct values are made known,

m is updated so that it is consistent with all.

previous data. Analysis of the algorithm shows
that no more than 2 + logzm updates need ever

" be made.

153 -

et

In the third section, we see that, if some
of the X; with i > j are known, they can also be
useful in predicting Xj.

1. Finding a multiplier and increment

To show that linear congruential pseudo-
random number generators are cryptographi-
cally insecure, we will assume that nonnegative
integers X,, @, b, and m are fixed, but un-
known, and that m > maz(1,Xg,a,b). The se-
quence of numbers <X;> is obtained by setting

)(_.H_l—((IX +b)modm for j = 0.

. In this section, two algorithms are
presented for finding an & and a b such that

X; =(8X; + b) mod m, for all'j = 0, given a re-
latively short initial subsequence of <X;>. With
either algorithm, although it is p0551b1e that
the & and b found will not satisfy @ = @ mod m
or b= b mod m, they can be used in predict-
ing the remalnder of the sequence <X;>, and

this is all we are interested in. Neither algo-

rithm requires knowledge of m.

The sequence of numbers <Y,> is ob-
tained by setting ¥, = X, — X,y for k = 1. By
subtracting X4 = (aXp + b) mod m and
X, =(aX,_y+b)modm, one- gets that
Xps1 — X = (@ (X — Xp—q)) mod m, and thus
Ypri=0aY, mod m for k=1 The {following
theorem reduces the problem of computing a,
b, and m to that of computing an & and an ™
such that Y, ,.q = 8%, mod M fork =

Theorem 1. Suppose Yy, =&Y, mod m, for
l=k <=s. Then setting b=X;-@&X, gives
ax; +b_)(}+1modmfor0<_7<s '

Proof Suppose Yir1 =87, mod M, for
1=k =<s. Let0<_7<s ThenaXJ+b - X;

_7+1
aX; +(X1—8Xy) — X;41 = 8(X;—Xg) — (X;41=Xy)

=8 Y = Y1 = 3 (8K-Yy) = 0 mod 7.
Coi=1 i=1 i=1
Therefore for 0=<j=<s, we have that

8X; + b = X;,, mod 7.

The follow-mg algorithm ﬁnds an & and a b
from {X; | 0= < ¢}, where ¢ = O(lagsm). For
burposes of this algorithm, define ged(Y) =

Procedure Find-ab1:
ifY;,=0thend « 1
else begin
- Find the least £ = 1; and the corresponding
d, such that ng(Yli Yz, cae .Yt) =d and
d | Yeyus
Find u; for 1<z =t such that Z'U.LY =d;

8« (1/d) zumﬂ, =
end
b - Xl - EXO;
end Find-ab1.

Figure 1. Algorithm 1 for ﬁndmg the rnultlpher
and 1ncrement

This algorithm is both correct and fast.

Theorem 2. The algorlthm Find-abl computes
an & and a b such that Xy = 88X, + bmod m
- for all ¥ = 0. In addition, the algorithm only re-
quires knowledge of {X; | 0<1i < t+1] where

= Ilogzm, and can be executed in time poly-

nomial in logzm.

Proof: We will show that Y, = &Yk mod m for

all £ =1, By Theorem 1, this is sufficient to
- prove the correctness of algorlthm Find-abl.

Deﬁne g = gcd(m d). Notice that Za:u, Y, =
i=1

Eui iv1mod m; so da=dZmodm and
i=1

a=8&mod m/g. Since g divides Y, andm, g
divides gcd(Y;;m) for all j=1. Hence
a =@ mod (m/gcd(;m)) for all j =1, It is
well known [NZ] that if £ is a solution of
rz =s mod m, then, for any integer k,
zy+ Icm/gcd('r m) is also a solution. Since o is
a solution of zY; = Y;,ymod m, Gis also a solu-

tion, and &Y; = Y+1mod m for allj = 1.

“To " see that knowledge of
(X, |0<i=<t+1],, where ¢t < llogaml, “is
sufficient, note that from these X;,
{Y; | 1<i<t+1] can be calculated. - In calcu-
lating £, if ged(Yq, Y, .. ., Y;) = g and g does
not divide Y;+1, then ged(Y,, Yz, s Yyy) =
g/2. The condition ged(Y,, Y, ..., ¥,)=d
and d | Y;y; will eventually be satisfied, be-
cause if d =1, then d | ¥, Thus, since
IY{]<m, t = Ilogzm " The ged, multiplication,

division, and addition operations are all polyno-

. mial, and they are only executed a polynormnial

number of times. Thus the algorithm is polyno—

154

mial. ®

A slightly faster, but more complicated al-
.gorithm for finding & and .b from
{(X; | 0=1 =7}, where £ = O(logzm), is given in
Figure 2. ’

Procedure Find-ab2:
ifY;=0thend« 1
elseif Y, | Yothen @ « Y/ ¥,
else begin

g < ged(Yy,Yy)

CieYy/g

CoeYalg

1e1

{Look for least i such that Cp¥; # Cy%;41)
while (Cz}’i = Cl},‘i'*'l) doi«1+1

{Compute an i such that m | M and
ged(Cy, 7/ ged(m.g)) = 1
e |CY; = Cy Yo
repeat
“m' « ged(Cy, M/ ged(M,g))
n e m/ m' .
untilm'=1

{Compute & C{! is the multiplicative
inverse of Cy mod (M/ ged(m,g))}

8 « C71Cp mod A
end
be X, - 88Xy mod
end Find-abg.

Figure 2. Algorithm 2 for finding the multlpher
and increment.

Let g be the greatest common divisor of
Y, and Y, and let § be the greatest common
divisor of g and m. Then for all & = 1, § divides
Y;. Define €, = Y/ g and Cz = Ya/g. For con-
venience define v = (aY{—Yz)/m and d =g/§.

Y5 we have that gcd(YT,m) divides g -and

ged Yy m = 1. This

ged(m,g) 'ged(m,g) |
that ged(Cy, m/ged(m.g)) =1,
for some integer w, so

g/ 9cd(Cy,9/ ged(q.9))
=wm/ged(Cy,wm / gecd(wm,g))

wm/ged(Cy,wm / (ged(m,g) - ged(w,d)))
wm/ged(Cy,w/ ged(w,d)) -
= w'm where w' divides w,

implies

Now q'= wm

Therefore, m divides q/ged(Cy, g/ gcd(q.g)).

Theorem 4. The algorithm in Figure 2 com-
putes an & and a b such that
Xpp1=8X, + bmod m for all k =0. In addi-
tion, the algorlthrn only regpires knowledge of
{X; | 0<4<T+1}, wheret < IlogzmT and can be

executed in time polynomial in logam.

Proof: Suppose that Cp¥; = C'IY,,H for alli < £,

but CpY; # C,Y;y,. Since al; = Y, mod m,
Yi/9)aY; = C ¥,y mod m. This implies that

Y2+’l)m .
: and CpY

Y; = Cy ¥4y mod m,

vY;
CiYisq — dgt m mod m. But d divides v and

g divides Y;, so C;Y; = C,Y;,; mod m. Thus,
before the repeat loop is entered, m divides A
and 7 > 0. By Lemma 3, if m divides 7, then m
divides (Mm/gcd(C,, ™/ gcd(M,g))); so execu-

tion of the repeat loop does not alter the fact

that . divides .

Consider-the & which is computed. We will
show that &Y, = Y., mod m for all k = 1. Cer-
tainly &Y, = Y, mod 7, so @Y, = Yy mod m. If

- &Y; = Y;4y mod m, then, 8aY; = a¥j,,; mod m,

The proof of correctness for algorithm Find-ab2

‘'uses the following technical lemma:

lemma 3. If m divides an integer g, then m
divides g/ ged (Cy,q/ ged(q,g)).

Proof: This proof uses the following fact about
greatest common divisors: for ‘any @, b, and ¢,
ged(ab.c) ged(e,c) - ged(b,c/ged(a,c)).
Since ged(Yy,Yz) =g, and ged(Y,;m) divides

)

155

so 8Yjy1= Y.z mod m. Thus we have that
ay, = ch+1 mod m for all k = 1. By Theorém 1,
X1 = @X;, + b mod m for allk = 0.

If Yy=0 or Y, divides Y5, this algorithm
is essentially the same as that in Figure 1.
Therefore assume Yy # 0 and Y, does not divide
Y, To see that knowledge of {X; | 0<1i = 7+1},
where ¥ < {logzm| is sufficient, note that from
these X;, {¥; | 1 =i <7%+1] can be calculated.
Certainly, CpY, = C,Y,. Suppose the condition
on the while logp holds for 1 sj._ ;I‘hen, for

C

P=i Y= 21%; and Y4y = |2 Yy Thus
Cq €1

(C divides |Y;| <m. Since [Cil =2

7 <llog2m 1)J so t= !logzm The ged, in-

verse, multiplication, division, and addition
operations are all polynomial, and they are only -

executed a polynomial number of times. Thus
the algorithm is polynomial. =

The worst case analysis for both of these
.algorithms for finding @ and b.gives that.nei-
her gorithm requires that more than

llogzm + 2 of the X; -be known. In fact, this

analysis is fairly tight. When X, =0, a = 277,
b =2", and m = 2™ + 1, both algorithms re-

quire knowledge of n+3 of the X;. Thus, in the

worst case, neither algorithm is better. In some
cases, though, such as when Xq=0, a =3,
b = 36, and m = 48, the second algorithm finds
& using fewer X;. (This example also shows that
the repeat loop in the second algorithm cannot
be completely eliminated.) It is fairly easy to
see that the second algorithm never requires
knowledge of more of the X; than the first does.
The following theorem shows that algorithm
Find-ab? is optimal in the sense that it never
requires knowledge of more of the X; than are
necessary to uniquely determine a
mod (m/ged(Y;,m)). By this criterion, both al-
gorithms are optimal in the cases where three
or fewer of the X; are Yequired.

Theorem 5. Suppose algorithm Find-ab2 uses
only {Xg, Xy, -+ -, X¢}, where s = 0. Then, there
exists a z # @ mod (m/gcd(Y;,m)) and an m'’
such that ¥, =2Y, mod m'for 1<i<s-2. -
Proof: For s < 3, this is vacuously true, so we
may assume that ¥, # 0, and Y, does not divide
Yz Recall that Ci! is the multiplicative in-
verse. of C; mod (Mm/gcd(M,g)). Suppose
cric, —1=km/§.

If s =3, then it is sufficient to find a
z#amod {(m/gF) and an m' such that
Yo = zY, mod m'. (Note that §=gecd(g,m) =
ged(Yym)). Let 2z =a+1 and m'= |2Y,—Y;].
Since Y; does not divide Y, [aY;—Y;] <
|zY1~Yo|, som'>m > mazx (Y, Ya).

If s>3, then let m'=m+C§ and
z = (C{l+k)Cymod m'. Since, for 1 <1 < s—2,
Czy;: - Clyri“l'l = O, we have‘
0= (Cri+k)CeY; — (CT1+K)C Yy o
(CT1+E)CRY, — (1 + kCy + km/ §) Yoy,
(CL1+E)CRY; ~ Yy — (kY3407) (m + C1F)
2Y; — Y4y mod m'. .
One could negate both C; and Cy in algorithm
Find-ab® without affecting anything else, so it is
easy to arrange for (; to be positive. Then

o

- m'>m, so there cannot exist a ¥; > m'. Now,

we need only show that kCy # 0 mod (m/g). If
s >3, C, divides Yj and hence C; divides g.
Thus Y, = Cfu and Y,= Cyuv for some in-
tegers uw and v, with €; and v relatively prime.
Then g = Cyu and Cp = v. Since k& and C;! can
be determined from m and C,; using the Eu-

clidean algorithm, |k| < |C;|. In addition
c

Y= 02 Y, = uv? so ged(Y,, ¥, Y3) = and §
1

divides u. Hence [kCy| < |Cyuv| = |Y,] < m,

" so |kCy| <m/§. Since Y, does not divide Y,,

Co#0 and C;#1, so Kk #0. Thus

kCp %2 Omod (m/g). ®

2. Inferring the modulus

Determining the modulus, 'm, can be
more difficult-than finding an adequate & and b.
In fact, no bound less than m, such as those in
Theorem 2 and Theorem 4, can be put on the
number of X; required to determine m, or even
an adequate 7. Consider the sequence of
numbers generated by X;,, = aX; + b mod m
when a = 1. If only X X4, ..., X; have been
seen, and X; £ X;,, for 0<% <s—1, then m
could still be any integer greater than X;. Sup-
pose an observer knew that the sequence was
being generated by the linear congruential
method. After §eeing X, X4, and Xz, he or she
would know that for @=1 and b =X, — X,
X;p1=8X; + bmod m for all i>0. This ob-
server could then set his or her first guess for
m to infinity and begin predicting the X;. For
some 7, his or her guess for X; will be wrong.
But once the observer determines that Xj, the
guess for m can be updated, so that all the
remaining X; can be correctly predicted. Thus,
this particular random number generator is
cryptographically insecure. Similarly, one can
see that, for an arbitrary .linear congruential
random number generator, if, in inferring m,
an observer only had to make a small number
of updates to’his or her guesses at m, that ran-
dom number generator would also be crypto-
graphically insecure. Throughout this section
we will assume that after an incorrect guess is
made for some X;, the correct value is made
known. :

After determining & and b, using Pro-
cedure Find-abl or Find-ab2, one could predict
the m and X; as follows:

LS

1.) Initially set the guess for m_to infinity, and
predict that X;,;=aX; + b until an in-
correct prediction is made .

2.) When this first incorrect prediction is
made, Y., # &Y. But Y., =&Y, mod m,
so make the new guess for m equal to
[@Y; — Y;,1]. Call the guess 7.

3.) Continue predicting X;,; = @X; + b mod A
(or X;p1 = X; + 8Y; mod). Whenever an
incorrect guess is made for X +1, update M
(the current guess for m) to
QCd(m aY 1.+1)

If, when computing X;,, the current guess for
m is 7, then X;,, =aX; + b mod M for all
j=i.

One major dlsadvantage to this method is
that no guesses for X; can be made until & has
been computed. ThlS could require that as
many as O(loga(m)) of the X; be known. As

.mentioned previously, knowledge of the first

n + 3 terms in the sequence is necessary when
either the algorithm in Figure 1 or that in Fig-
ure21sused and X5 =0,a =271, b = 2" and

=2"™ + 1. In this case, one cannot deter-
mine & or m from {Xg, Xy, ..., X1} but
{Xa X4 ..., Xp4y) is uniquely determined by
Xo, X1, and X, if one assumes that m is odd.
The algorithm given below would correctly
predict {X3 X, ..., X, 4] from X, X,;, and
Xg. When Y, divides ¥,, this algorithm follows
the three steps outlined above. For the other
cases, the first part of this algorithm is a slight
modification of procedure Find-ab2, and the
lest part is essentially step 3 of the approach
described above.

Procedure Find-m-and-a:
{Handle the case where Y, = 0}

if ¥y = 0 then begin
a1
b<o0
M « oo

end

else

{Handle the case where ¥, | ¥y}

if Y, | Y, then begin

'&:“‘ Yg/Yl»
bFXl—aXQ
i« 1

157

{Predict X;,; = @X; + b until first error
occurs]

while (X;,, = 8X; + b) do
i e i+1
predict (Yz+1 = aY)
predict (X;,, = &X; + 6) .
end while

{Make first guess for m.}
Mo |8Y; = Yipy]

end

else

{Handle all other cases]

g < gcd(Y,7Yp)

CireYi/g
02 & Yg/g
1«1
. Ca.
{Predict ¥4, = E'_JY" until first error
occurs) ! A

e Ca 4
while (X;,, = X; + |2247;) do
-, . 1

1«1+ 1

- Cs
predict (¥, = (E_JY) :
1
c
predict (X;,, = X; + [Z’_Z_J ¥)
1

end while
{Make first guess at m, a, and b}

M« |CY; — C1 Y]

repeat
m' gcd(Cl,m/gcd(m g))
m « M/ m’

untilm' =1

{Ci! is the multiplicative inverse of
Cymod (m/ ged(M,g))}

& « C71Cp mod

{if ¥y = 0J

B

===

B e e T

¥

B B e Vs

{Continue making predictions for the X4, up-
dating 7, @ and b when necessary]

do forever
i1+ 1
predict (Y'H-i = 4Y; mod M)
predict (X;41 = X; + @Y; mod)
if Xz+1 #* ‘X:b"l-l then
7« gcd(r’fL a)g- -
a. « a mod T
b« bmod A
end if
end do
-.end Find-m-and-a.

Yis1)

Figure 3. Algorithm for finding the rnultlpher,
increment, and modulus.

Theorem 6. Suppose X, X,, and X, are given,
and for all i 20, X;,, =aX; + b miod m. Fur-
ther suppose that when.a mistake is made in
predicting X;, the correct value for X; is made
known. In predicting the remainder of the X;,
the algorithm in Figure "3 makes at most
2 + logom errors.

Proof: If ¥y = 0, then no mistakes are made, so
assume Y, # 0. First assume Y, does not divide
Y5, and suppose the first error occurs in
predicting X, 4. At this point, /7 and @ are com-
puted as in procedure Find-ab2. The proof of
Theorem 4 tells us that m divides the 7 com-
puted, and that @Y; = Y., mod m for all i = 1.

Since |Y; | <m for all i=1, m =
= |CpY; — C1Y41| <2mA
Now suppose Y; divides VY, Then

a="Yy Yl, so by Theorem 2, 8Y; = YWI mod m
for all i = 1. When the first error occurs in
predicting X4, Xj41 # 8X; + b, so Y G+1 # BY;.
Since m divides aY Y+1 =m, m S’fﬁ.
= |8Y;=Y;44] < mB+m <’om?]

In either case, within the do forever
loop, whenever an error occurs in predlctlng
X;4+1. then XJH # X; + aY; mod /. This im-
plies that M does not d1v1de &8Y; — Y;4q, SO
ged(m, 8Y; — Y;4q) <7/ 2. Therefore, whenev-
er an error occurs in predicting Xj,, 7 is up-
dated to a value no greater than half its previ-

ous value, but no less than m. This means that
no more than 1+ [loge(2m?2/m)| <2 + logym
errors can occur. =

158

3. Predictions from nonconsecutive data

The algorithm Find-m-and-a, when
predicting X; uses its knowledge of
{; | 0=1i=j-1{, but does not take into ac-
count any additional knowledge which may be
available. Perhaps several X; with 1 >j are
"known and could help in the predlctlon of X;. As
in the previous two sections, we will assume

-that Xg, X, and X, are known. If X, X;, or X,

Is unavailable, but X;, X;,;, and X1z are
known, then,of course, sumlar methods could
be used in predicting iX | i'= 7. If e and the &
computed are both relatively prime to m, one
could also predict {X;|0=<1i<j] wusing
inverses.

Let Iy be the least i = 2 such that X; and
X;+1 are known. For j = 1, define I;yq to be the
least © > I; such that X; and X;,; are known.
Define U XIjH. ij and V XI:’+1+1 le'{-l
In many 51tuat10ns a U; can be thought of as
corresponding to some K, and V; to Yu—l For
example, in the case where only {X | 0<1i <k
isknown, [; = j+1, U; = = Yj4p and V; = Y4, for
l=j =< Ic—-2 As w1th the Y; and YH, by sub-

tracting Xp, 1= (X, + b) mod m and
X1 = (aX[+b)mod m, one gets ~ that
Xl}“+1 X[j.*.] = (u'(XI;.H Xll)) mod m, . S0

I{,- Ea,U- mod m.

The second algorlthm for finding @ used
the fact that, for all j = 1, CeY; = C1Y;44. The
proposition below shows that sornethlng similar
holds for the U; and ¥, but first two facts are
needed.

I Lytl -
Fact. U; = 3} Yyand V; = ') Y.
i=l+1 i=0+2

Fact. For all j = 1, § divides both U; and V.

Proposition 7. CpU; = C1V; mod m, for all
j=1. ’
Proof: Since al; = V; mod m., (Yl/g)a.U- =

Yotvm

CiV; mod m.. Thus C1V; mod m,
and CpU; = C1 \%m mod m. But d
divides and g divides U;, S0

ColU; = Cy V_?mod m. "

Suppose [; is defined for 1 <7 =k. Then
m divides' 7 = ged (| CoU; ~ C,V; | for
1=5<k). Assummg a sufhc1ent number of the
X; are known, this 77 will be nonzero and can be

used in place of the [M « [C,Y; — C1Y;4ql]
.statement in the algorithm in Figure 2 (of
course the while loop should also be eliminat-
ed), and & can be computed. Once & is found,
one can try to improve the guess for m by com-
puting ged(m, ged(|&U; — V;| for 1=<j <k)),
since this must be divisible by m. Call this im-
proved guess for m, . Then @ and " can be
used in predicting the ¥; and from them the X;.
If M is less than 2|X;| for some X;, then
7o = . Otherwise, some updates may still be
necessary. :

4. Conclusion

It was shown that, from knowledge of a
few of the numbers produced by a linear
congruential pseudo-random number genera-
tor, one can do quite well at predicting the
remainder of the sequence, Although this says
little about the effectiveness of using the
pseudo-random number generators in proba-
balistic algorithms, it does make theéir use in
cryptographic applications questionable. ’

Recently the results presented here have
been generalized to inferring sequences of the
form X; = a1 X;_ 3 + apX; o +.. 40, X;_, mod m.
These results will appear at some later date.

Acknowledgements

I would like to thank Manuel Blum for sug-
gesting this problem and for many helpful dis-
cussions. I would also like to thank Faith Fich,
Zvi Galil, Howard Karlofi, Bart Plumstead, and
David Shmoys for their criticisms of earlier ver-
sions of this paper.

References

[BiMi] Blum, M., and Micali, S., How to Gen-
erote Cryptographically Strong Se-
quences of Pseudo-Rondom Bits,
Proc. 23rd IEEL Symp. on Foundations
of Computer Science, 1982. '

[K1980] Knuth, D.E., Decij)h,é."ring o Linear

Congruential FEncryption, Technical
Report 024800, Stanford University,

1980. :

159

[Knuth] Knuth, D.E., Seminumerical Algo-
rithms, The Art of Computer Pro-
gramming, Volume 2, Addison—Wesley,
1969.

[NZ] Niven, I, and Zuckerman, H.S., 4n /n-

troduction to the Theory of Numbers,

- 3rd Edition, John Wiley and Sons, Inc.,
New York, 1972.

[Reeds] Reeds, J. "Cracking” a Random
Number Generator, Cryptologia, Vol
1, January 1977.

[Shamir] Shamir, A., On the Generation of Cryp-
tographically Strong Psewdo-Fandom
Sequences, International Colloquium
on Automata, Languages, and Pro-
gramming, 7th, 1980. . -

(== sz;:'e:—i‘;:_-!&rﬂ;?ﬂ:—e”—r—: I

B

s

