
Re-engineering Legacy Code with Design Patterns:
A Case Study in Mesh Generation Software

Chaman Singh Verma
Dept. of Computer Science

The College of William & Mary
Williamsburg, VA 23185

csv@cs.wm.edu

Ling Liu
Dept. of Computer Science

The College of William & Mary
Williamsburg, VA 23185

lingliu@cs.wm.edu

Abstract— Software for scientific computing, like other soft-
ware, evolves over time and becomes increasingly hard to
maintain. In addition, much scientific software is experimental
in nature, requiring a high degree of flexibility so that new
algorithms can be developed and implemented quickly. Design
patterns have been proposed as one method for increasing the
flexibility and extensibility of software in general. However, to
date, there has been little research to determine if design patterns
can be applied effectively for scientific software. In this paper,
we present a case study in the application of design patterns
for the re-engineering of software for mesh generation. We
applied twelve well-known design patterns from the literature,
and evaluated these design patterns according to several criteria,
including: flexibility, extensibility, maintainability, and simplicity.
We found that design patterns can be applied to significantly im-
prove the design of the software, without adversely affecting the
performance. As a secondary practical contribution, we believe
that this research can also lead to the eventual development of
a flexible framework for mesh generation.

Keywords: Design patterns, generic programming, mesh gen-
eration.

I. I NTRODUCTION

Software reuse is identified as one of the best strategies to
handle complexities associated with development and mainte-
nance of complex software. Reuse has been very successful
in many areas, especially in compilers, operating systems,
numerical and GUI libraries for a long time. Although many
libraries have passed the test of time, they suffer from one big
disadvantage: they have fixed interfaces and data structures.
There is very tight coupling between their algorithms and data;
therefore these libraries are not extendable for user defined
data types.

Today, design patterns [1] and generic programming [2] are
emerging techniques which have been proposed as solutions
which can alleviate this problem. Design patterns stress upon
decoupling the system for increasing flexibility, and generic
programming allows developers to reuse the software by
parameterizing the data types. Many application domains (e.g.
GUI builders, network communication libraries) have greatly
benefited from using design patterns.

Some research has been performed in the use of these meth-
ods for the development of industrial software. For example,
Coplien [3] et. al. have provided industrial experience with
design patterns.

However, while generic programming is a well-established
practice in scientific software, today we lack evidence that
design patterns can significantly improve such code without
adversely affecting performance.

In this paper, we explore how design patterns can be applied
to re-engineer legacy code to increase the flexibility of the
system. We have applied twelve design patterns from the
literature [1] to an existing mesh generation software system.
We characterized the design patterns in terms of three primary
design criteria: static and dynamic extendibility, reliability, and
clean design of the system.

We then evaluated the resulting system in terms of these
criteria. Our evaluation assumed that users of software im-
plemented in an object-oriented language are willing to sac-
rifice some performance for other benefits. As a result, our
evaluation of the performance impact of the design patterns
is informal, and is meant to ensure that any performance
degradation is acceptable to users.

We characterize the use of each design pattern in our system
in terms (1) the probability of being able to apply it, (2) the
benefits of using it, and (3) the extent to which the code
must be changed to implement it. We conclude, based on
our experiences, that the modified system exhibits enhanced
flexibility, extensibility, maintainability and understandability,
without sacrificing too much performance.

As a longer term goal, we hope to use design patterns
to develop a flexible framework for mesh generation. This
framework will allow researchers to collaborate on the de-
velopment of new algorithms and data structures for mesh
generation, and to perform experiments to assess the quality of
existing algorithms. In addition, we believe that this framework
will lead to the development of a web-based service-oriented
version of the software.

The rest of the paper is structured as follows. In Section
II we give background and related work, Section III describes
re-engineering legacy code with design patterns, in Section IV
we evaluate our work and Section V concludes.

II. BACKGROUND

Parnas [4] explained some realities about software aging.
Developing reliable and robust software is a difficult and time
consuming human activity. Most legacy software evolves over

a large period of time. Such software is trustworthy, in its
limited functionality. Today, much software is still being used
because the user base is very large, and because the software
contains hidden and critical design decisions. According to
Parnas, software aging is inevitable, but efforts must to taken to
delay the degradation. Instead of throwing away such software,
we need some solution which allows us to use it in our new
system, and then to slowly change or replace it as our system
evolves.

Re-engineering, as defined by Chikofsky and Cross [5], is
the examination of the existing legacy software in order to un-
derstand its specification, followed by subsequent modification
or re-implementation to create a new, improved form. To date,
a lot of research has been done in providing tool support for
software re-engineering. For example, Verhoef in [6] discussed
the necessity for automating modifications to legacy assets.
Brunekreef [7] also presented a software renovation factory
which is user-controlled through a graphical user interface.

In this work, we attempt to manually re-engineer a legacy
system into a more extendable and adaptable system. By using
design patterns, we hope to be able to use legacy code in
new software, and also re-engineer it in order to improve
characteristics such as the flexibility of the resulting system.

In this section, we first present some of the disadvantages of
legacy software, and then analyze the causes of inflexibility.
Next we propose some explanations for the lack of use of
reusable software. Finally, we discuss the requirements for
making software adaptive.

A. Disadvantages of Legacy Code

There are several disadvantages of using legacy code.

• It is difficult to maintain and extend the functionality of
most legacy software, especially if the software is written
in functional languages such as C and FORTRAN.

• Rewriting them requires a large investment of money and
human effort.

• Such software contains substantial duplication of code for
the same functionality, where the code differs only in the
data types.

• Legacy code does not take advantage of modern processor
design. Most of the code was written when thread pro-
gramming was in its infancy and distributed computing
was non-existent.

• In general, most legacy code handles memory and errors
poorly. For example, FORTRAN does not have dynamic
memory allocation and C code often has memory leak
problems.

B. Analysis of Legacy Code Inflexibility

Before we begin to re-engineer legacy code, we need to
understand the primary causes for its inflexibility.

• Conditional statements:“If-then-else” and “switch” state-
ments are fundamental to almost all programming lan-
guages, but their use sometimes restricts extension be-
cause hard-coded constructs simply assume that the alter-
native conditions arefinite and remainfixed throughout

the lifetime of the software. If the conditions or require-
ments change, adding new conditions require significant
effort. Object-Oriented programs always try to eliminate
the use of switch statements.

• Multiple inheritance: Although C++ allows multiple
inheritance, in general it creates more complexities and
ambiguities than the solutions it provides. The problem
with multiple inheritance is the famousDiamond Problem
[8]. Some programming languages such as JAVA have
already discarded this feature in favor of simplicity and
consistency, using single implementation inheritance and
multiple interface inheritance.

• Lack of abstraction:Object-orientation is a powerful tech-
nique as long as we are able to break down the systems
into smaller granularity and appropriate objects. There are
no silver bullets in using inheritance and polymorphic
features of object-oriented programming—even though
the features are present, it is difficult to use them to
implement the proper abstractions for a given system. As
a result it is not uncommon to find much duplication of
concepts and functions in a given system.

• Lack of separation of concerns:Software has three basic
components, namely: concept (what you want to do),
algorithm (how to do it) and data management (how to
manage data and resource). Parnas [4] demonstrated the
importance of modularity, and gave criteria for decom-
posing a system into modules of autonomic concerns.
Unfortunately, even after 30 years since the publication
of this seminal paper, most applications developed today
still have tight coupling among concerns, so it is difficult
to change or replace any part of the code. The Standard
Template Library (STL) is the first widely used software
library which separates these three concerns. For exam-
ple, STL provides abstractions for containers, iterators for
containers, and algorithms over containers. Each of these
is largely independent of each other.

• Conservative assumptions:Most programmers imple-
ment the code considering only the immediate require-
ments, and few believe that their programs will have a
very long lifetime. As a result, they make certain assump-
tions in their implementations which become obsolete
very quickly.

C. Reluctance for Reusing Software Components

Despite the enormous advantages of reusable software com-
ponents in both the short and long term, incorporating them
into new systems or in restructuring the existing applications
have not been up to expectations [9]. Reluctance could be
attributed to some of the following reasons:

• It is hard to manually understand the behavior of the
code or side-effects which may be introduced as a result
of using the software. In addition, automatic or semi-
automatic tools for analyzing these effects are inadequate.

• An incremental approach to software reuse is also diffi-
cult and error-prone. Sometimes, small changes are just

not possible. As a result, either we do not change the
software, or we change the entire system.

• There is much uncertainty on the part of software devel-
opers as to whether reuse will significantly improve the
quality of the resulting system. There is little evidence
and few accepted metrics for success in the reuse of
software in real applications. Very often, there is often
a trade off between performance and quality.

• The learning curve could be steep.
• Highly motivated software developers are tempted to

rewrite code.
• Old systems often have little or no documentation.
• If the reusable component comes from a commercial com-

pany, there might be issues related to patents, copyrights
and royalty payments.

For a comprehensive introduction to software components
and reuse, see [10].

D. Adaptive Software

We hope to develop new software or re-engineer legacy
codes into software which is adaptable. Adaptive software has
the following characteristics:

• Program for change: Although it is hard to predict the
future, objects should not make assumptions which are
valid for only a short duration of time. Whenever possible,
a good design should abstract some core concepts into
a small number of functions and classes, and provide
simple interfaces to access the functionality.

• Flexible and dynamic relationships:Rarely an object
exists in isolation. There has to be a simple mechanism
to create permanent and temporary relationships among
objects.

• Centralized authority:Programs are difficult to under-
stand, maintain and extend when some decision or func-
tionality is scattered throughout the code. Whenever
possible, there should be one place for one piece of
functionality. This simplifies modification and testing of
the system.

• Division of labor: A class should have a single, well-
defined purpose as well as a simple interface. A class
should delegate other responsibilities to other suitable
classes. Minimization of functionality increases both the
productivity, reliability and reuse.

• Standardization:Successful software reuse requires stan-
dardization. With standardization comes reliability, easy
availability and large support.

III. R E-ENGINEERINGLEGACY CODE

According to Gammaet. al. [1] design patterns are recur-
ring solutions to software design problems which we find
repeatedly in real-world application development. When we
use design patterns, we do not reinvent the wheel. Another
way of looking at design patterns is to consider them as well-
proven component integrations with a common vocabulary for
the system designer and developer. Buschmann [11] collected
design patterns in the context of software architecture.

Fig. 1. Surface mesh generation on pipe

Gammaet. al. [1] identified 23 design patterns and created a
catalog, which is known as the GoF(Gang of Four)book. We
have taken several patterns from this catalog and applied them
to our application. In the figure 2 we list all the GoF design
patterns which we applied, and the main purpose behind
using each pattern in our application. To shorten our paper,
we have not shown any examples of some patterns in the
next section(Singleton, Reference counting, Decorator, Facade
etc). Although design patterns are often written in an object-
oriented language, design patterns have little to do with object-
orientation ([3]).

Application: Mesh Generation
Numerical simulation uses partial differential equations

(PDEs). For example, the Navier-Stokes equations are used
in Computational Fluid Dynamics. The first step in numer-
ical simulation is to discretize the geometric space into a
large number of cells. In 2D these cells are triangles or
quadrilaterals, and in 3D they are tetrahedra, pentahedra or
hexahedra. Once a good quality mesh has been created,
numerical discretization of the PDEs is carried out, and
for each cell, governing equations are solved. For complex
geometries, an unstructured mesh (in which the topology is
explicit) is preferred because of the engineering requirements
for high quality mesh. A sample mesh generated over a simple
geometry is given in Figure 1.

A. Components in Mesh Generation Software System

Mesh generation is a fairly complicated process which
utilizes many external libraries, software tools, algorithms and
data management tools. The following are main components
in mesh generation which explains the need for reusing the
software:

• Geometric modeling:Construction of a geometric model
involves designing the model with geometric primitives
such as circles, lines, planes or NURBS (Non-Uniform
Rational B-Splines) curves and surfaces. Highly interac-
tive graphical display systems are needed to design com-
plicated models, which is often done with commercial
CAD systems.

Extendibility Reliability Cleaniness

Decorator Pattern

Strategy Pattern

Factory Pattern

Visitor Pattern

State Pattern Template Pattern

Iterator Pattern

Design Patterns

Bridge Pattern

Observer Pattern

Prototype Pattern

Reference Counting

Singleton Pattern

Memento

Fig. 2. Design patterns objectives

• Adaptive or Multi-precision library: Geometric algo-
rithms demand robustness in numerical calculation. Most
of the time, standard IEEE floating points are not suitable
for this task, and therefore researchers either use libraries
for exact arithmetic or fast adaptive multi-precision com-
putation.

• Geometric kernel library: A geometric library is a col-
lection of large spatial data structures for geometric space
(e.g. Kd-trees, quadtree, octree, BSP, etc.). These libraries
often provide algorithms for computing the convex hulls,
2-3D triangulations, Voronoi diagrams and fast proximity
queries.

• Mesh generation algorithm:These libraries include com-
ponents for generating a structured or unstructured mesh
in the specified geometries. An unstructured mesh is
mostly generated by using eitherAdvancing Frontor
Delaunay Triangulationalgorithms.

• Sequential and parallel data structures:Very often, we
need an extremely refined mesh containing millions of
cells for finite element analysis. In order to provide
efficient insertion, removal or query for some elements,
commercial software often uses a database (e.g. SQL or
Oracle).

• Domain decomposition and object migration tools:We
often use parallel processing to reduce the time and
memory requirements for the execution of an application.
Software components are needed to decompose, distribute
and control the distributed tasks.

• Interactive visualization: Interactive graphical systems
help in understanding and modifying the geometric space
and mesh generation. In fact, they are an integral part of
the mesh generation process.

B. Applying Design Patterns

In the following section, we apply several GoF design
patterns in our application and explain why they are needed
using small examples.

1) Adapter Pattern Sometimes there are incompatible in-
terfaces between two software components. Adapter pat-
tern provides a clean mechanism to adapt one interface
to another. Adapter pattern could also be used to hide
the old design with the new one without reimplementing
the class from scratch. The end user will perceive the
class according to new design rules.
In our application, the geometric modeler uses NURBS
curves and surface which were originally written in
ANSI C. Here is how we wrap the original code in the
new class

1 namespace NURBS {
2 class Curve
3 {
4 pubic:
5 Curve(NURBS_Curve_t *c);
6
7 Point2D evaluate(double t);
8 point_t pt = NURBS_EvalCurve(oldcurve, t);
9 Point2D result;
10 result[0] = pt.x;
11 result[1] = pt.y;
12 }
13 private:
14 NURBS_Curve_t *oldcurve;

};
}

In this exampleNURBS Curve t class is an old struc-
ture which is not consistent with the new system. Old
structure and old functions are kept as private member
of the class. The end user can use the new system which
uses the old system without ever knowing inner details
of the old system.

2) Bridge Pattern Information hiding is fundamental to
OOP. Keeping class abstraction from its implementation
has many advantages for the following reasons.

• Most of end users are only interested in using the
classes, and not their implementations.

• Keeping implementation in header files results in
longer compilation time and if the header file
changes, the entire application has to be recompiled.

• It makes changing implementation easy. (There may
be different implementation for different platforms)

• Many classes can use reference counting for lazy
object copying.

The Bridge Pattern provides the solution to the problem
by providing a pointer to the representative class in the
original class and forwarding all the requests from the
main class. The only disadvantage of this approach is
that it require indirection for every function call, but
this is the price we are willing to pay for increasingly
the flexibility.

//Implemented in filename MeshGen2D.h
class MeshGen2D
{
public:

MeshGen2D() { rep = new MeshGen2DImpl(); }

void setData(int d)

{ rep->setData(d); }
int getData() const {

{ return rep->getData(); }
private:

MeshGen2DImpl *rep;
};

// Implemented in filename MeshGen2DImpl.h
class MeshGen2DImp
{
public:

MeshGen2DImpl();

void setData(int d) { data = d; }
int getData() const { return data; }

private:
int data;

};

This pattern is used in the new system wherever a class
implementation is lengthy and changable.

3) Factory Pattern Consider the following code from
legacy code

void Reader:: readFile(ifstream &infile)
{

GeoEntity *geoEntity;
while(infile) {

infile >> objectType;
switch(objectType)
{

case 0:
geoEntity = new GeoVertex;
break;

case 1:
geoEntity = new GeoEdge;
break;

case 2:
geoEntity = new GeoFace;
break;

case 3:
geoEntity = new GeoCell;
break;

}
}

Although the code seems to be clean design, there are
some shortcomings with this style of object creation
which becomes problematic in future. Consider the
following situations

• We may want to use some customized allocators for
performance improvement.

• We may want to add error reporting messages if the
allocation fails.

• We may want to hook some functions whenever we
create new instance of an object.

• We may want to add new shapes.
Factory pattern provide a solution for this problem.

Factory<GeoEntity> factory;

factory.Register(0, GeoVertex::create);
factory.Register(1, GeoEdge::create);
factory.Register(2, GeoFace::create);

factory.Register(3, GeoCell::create);

GeoEntity *geoEntity;
while(infile) {

infile >> objectType;
geoEntity = factory.newProduct(objectType);

}

Wherecreateis a static member function for creating a
new object.
With this pattern, user is relieved forever from hard-
coding new object creation. He can register or unregister
product using the services provided by factory. Another
advantage of usingcreate member function for every
object is that this function can be modified, extended
for various purposes without changing the application.

4) Memento Pattern There are many situations where we
want to store the internal representation of an object, for
example:
• Transmitting objects over network: To transfer

objects across the network, sender has to pack the
data into single contiguous buffer (marshaling) and
reconstruct the object at the receiver side. (unmar-
shalling).

• Persistent Storage: We want to store the object
into persistent storage for future use.

For ordinary structures and simple data types, serializa-
tion is simple. Memento pattern is very useful when
• we do not have access to the private data of a class.
• the classes we use are in the library form and we

do not have access to source code.
• we want to override default (un)marshalling func-

tions to store only part of the information instead
of entire class data.

1 hash_map<int, Face*> facedb;
2 Memento<hash_map<int,Face*> > memento(facedb);

3 vector<char> buf = memento.setState();
3 MPI_Send(&buf[0], buf.size(), MPI_CHAR, dest,

0, MPI_COMM_WORLD);
4
5
6 MPI_Recv(&buf[0], numrecv, MPI_CHAR, source,
7 0, status, MPI_COMM_WORLD);
8 facedb = memento.getState(buf);

In the line 2, we serialize the object and store in the
memento object and in the line 8, de-serialization take
place using memento class.

5) Observer Pattern Object rarely exists in isolation.
Whenever state of an object changes, sometimes it is
necessary to notify its dependent or peer objects, so that
they can take appropriate actions. In figure 3 an edge
AB has been flipped to CD therefore lots of changes
take place Edge BD and AC have now new triangles as
neighbor.

// Adding observers of an edge AB.
edgeAB->addObserver(edgeCB);
edgeAB->addObserver(edgeAC);
edgeAB->addObserver(edgeAD);
edgeAB->addObserver(edgeDB);

Observer4 Observer3

Observer2
Observer1

A B

C

D

Observer4 Observer3

Observer2
Observer1

Subject
A B

C

D

Subject

Fig. 3. Using Observer pattern in edge flip operation

.
// notify all the observers.
edgeAB->notify();

In the original code, complex data structure were used
to reflect the changes whenever an edge is flipped. (
We have omitted giving original code because of length
considerations), but our experience says that this pattern
was able to reduce coupling between the object that
change and objects that needs change modifications. The
resulting code is much cleaner and easy to understand.
Observer pattern is a very powerful and useful pattern.
When the subject changes, it notifies to the observers and
they perform some calculations because of the changes.
This pattern allows those calculations to be performed
on On demandbasis. To implement this change requires
good understanding of the legacy code.

6) Prototype Pattern It is a pattern for object creation in
which an object is responsible for creating a new object
by cloning itself. Initially all the cloned objects inherits
all the attributes from parent but these can be changed
after the objects are created. Here is an example from
our legacy code
Face* createNewObject(Face *face)
{

Face *newface;
switch(face->getType())
{
case TRIANGLE:

newface = new Triangle();
break;

case QUAD:
newface = new Quadrilateral();
break;

case POLYGON:
newface = new Polygon();
break;

}
return newface;

}

The main difficulties with this approach are
• it is using switch statements to identify the type of

a parent object which is hard to evolve.
• It has an assumption that only three kinds of object

will be supported. Any new type of object will
require adding one moretypeid and changing this
part of code.

Now if the prototype pattern were used we could use
the same function as follow
Face* createNewObject(Face *face)
{

return face->clone();
}

which is more precise and elegant. In order to use this
pattern, every class has to provide a clone member
function, which is simple and produced no side effects.
In our re-engineered code, we used this pattern every-
where in the code.

7) State Pattern Most times, an object action depends
on the type of input it receives. The most common ap-
proach is to use switch statement and invoke appropriate
actions. Here is an example from the legacy code.

switch(cavityState)
{
case 0:

goodCavity();
break;

case 1:
lockedCavity();
break;

}

Depending upon the state, user take some actions. In
many cases, number of states could be large and user
may add or delete some states in the future releases.
Using switches makes the code difficult to change. We
apply state pattern to solve this problem in an elegant
way. The following three steps are required
• Create state objects for each of the possible state

derived fromState abstract base class
• Assign unique integer ID to each state class and

register them to State-Manager
• replace the switch statement by passingstate-ID to

the state-Manager
We create an object for each possible state, which is
derived from state abstract class and register them into
state repository as shown below.

class CavityState: public State
{
public:

void Operation();

protected:
Grid *grid;
Cavity *cavity;

}
class GoodCavity : public CavityState
{
public:

void Operation();
}

class LockedCavity : public CavityState
{
public:

void Operation();
}
int main()
{

CavityState *cavityState;
cavityState->Register(1, new GoodCavity);
cavityState->Register(2, new LockedCavity);
currentState = cavityState->getState(num);
currentState->Operation(num);

}
8) Strategy Pattern Many time, we apply different algo-

rithms for different input instances and conditions be-
cause some algorithms are well-suited to some specific
input or requirement. If the number of algorithms are
large or likely to change in future, it is not a good idea
to hard-code them using switch statements. Here is an
example from our legacy code

switch(algorithm)
{
case 0:

applyDelunayMethod();
break;

case 1:
applyAdvancedFrontMethod();
break;

case 2:
applyQuadtreeMethod();
break;

}
The flexibility of changing algorithm at run time and
experimenting with different algorithms is important for
the quality of the software output. The above method,
although correct is not elegant. With strategy pattern we
can add and choice different algorithms at run time.
class DelaunayMethod: public Strategy
{
public:

void applyAlgorithm();
}

class AdvancedFrontMethod: public Strategy
{
public:

void applyAlgorithm();
}

class QuadtreeMethod: public Strategy
{
public:

void applyAlgorithm();
}
int main()
{

MeshGen2D *meshGen;

algRepository->Register(1, DelaunayMethod);
algRepository->Register(2, AdvancedFrontMethod);
algRepository->Register(3, QuadtreeMethod);

currentStrategy = algRepository->getAlgorithm(1);
meshGen->currentStrategy->applyAlgorithm();

}

This solution has the following advantages

• It has not used hard-coded switch statements.
• User registers algorithms in a repository and if

needed, he can query the algorithm. This allows
collaboration among team members and flexibility
in choosing the algorithm appropriate to the require-
ment.

• The code is modularized into small number of
classes which can be independently changed or
tested.

9) Template Pattern Template pattern is so fundamental
to object orientation that it is surprising to know that
GoF classified it under patterns category. This pattern
is also ambiguous because of the fact that C++ now
support templates. (We wish that GoF could find a
better alternate name to distinguish it from powerful
C++ templates).
In the template pattern, some functions which are com-
mon to the subclasses are put into base class and a
default behavior may be implemented. Derived classes
can override this function and refine the behavior. The
simplest example comes from base class object
class Object {
public:
Object() {}
virtual ˜Object() {}
virtual int hashCode() { return 0;}
virtual Object* clone() { return NULL;}
virtual bool equals(Object* obj)

{ return 1;}
virtual const char* getName()

{ return "Object";}
}

Every class which is directly or indirectly derived from
Object class can provide override function (such as
hashCode, clone etc).

10) Visitor Pattern Consider the following part of the code

class Face
{
public:
.
void getArea();
void getAspectRatio();

private:
double area, asr;

}
Here Face is a abstract class for the different type of
faces (triangles, quadrilateral ...) and with each face we
have difference quality parameters. This is not a clean
design. Suppose we change this class to

class Face
{
public:

.
void getQuality();

private:

double quality;
}
Wherequality could be area or aspect ratio or any other
user defined value associated with each face. With this
implementation, quality is defined external to the class
and can be defined by the user as

void FaceArea(vector<Face*> facedb)
{
vector<Face*> iterator iter;
Face *f;
for(i = facedb.begin(); i != facedb.end(); ++i)

switch((*i)->getType())
{
case TRIANGLE:

Triangle *tri =
dynamic_case<Triangle*>(*i);

tri->setQuality(TriangleArea(tri));
break;

case QUAD:
Quadrilateral *quad =

dynamic_case<Quadrilateral*>(*i);
quad->setQuality(QuadeArea(quad));
break;

}
}

}

Well, this code will work, but all the elegancy of object-
orientation and simplicity are hardly visible. Such codes
are difficult to maintain.
We solve this problem usingVisitor Pattern

class Grid
{
public:

void accept(Visitor<Face> *v) {
for(int i = 0; i < facedb.size(); i++)

v->visit(facedb[i]);
}

private:
vector<Face*> facedb;

}

class AreaVisitor : public Visitor<Face>
{
public:

void visit(Face *f){
double q = getArea(f);
f->setQuality(q);

}
private:

double getArea(Face *f);
};
class AspectVisitor : public Visitor<Face>
{
public:

void visit(Face *f){
double q = getAspectRatio(f);
f->setQuality(q);

}
private:

double getAspectRatio(Face *f);
};

int main()
{

Grid2D g2d;

Visitor<Face> *varea = new AreaVisitor;
grid.accept(varea);

Visitor<Face> *vasr = new AspectVisitor;
grid.accept(vasr);

}

With this pattern, we are able to redefine the func-
tionality of the class without changing it. Since this
functionality is outside the class, it is very easy to extend
by creating a new visitor class.

11) Iterator Pattern There are large number of data struc-
tures (vector, tree, graph, link list etc) to store collection
of objects. A particular data structures is decided by the
applications in hand. Iterator pattern provides technique
by which we can access elements of a container without
exposing its internal representation.
Although GoF provides a simple Iterator pattern, in our
view C++ iterators are more powerful, and we do not see
any reason why they should not be directly used instead
of GoF pattern. The following program tells how we do
it.

Class Grid1D {
typedef multimap<int,Edge*> Container;

public:
typedef Container::iterator edge_iterator;
.
.
Edge* currentItem(edge_iterator iter)

{return iter->second;}
.

private:
Container container;

}

int main()
{

Grid1D *g1d;
Grid1D::edge_iterator eiter, ebegin, eend;

ebegin = g1d->edges_begin();
eend = g1d->edges_end();
for(eiter = ebegin; eiter != eend; ++eiter) {

Edge *edge = g1d->currentItem(eiter);
.
.

}

The application does not need to know anything about
container used in the class. In future, if we decide to
change “multimap” container to “hashmap”, only one
line in the header file will change which is a local
change. There is no need to change anything in the user
application.

C. Using Generic Libraries
Most of the legacy codes make use of data structures such

as link-list, vector, hash table, etc in their code, With the avail-
ability of Standard Template library (STL) and related Boost
C++ libraries, these data structures can easily be replaced
by standard data structures provided by these libraries. Since

STL was designed keeping performance in mind, only very
few software may need customized libraries of much higher
performance.

void DoSomething(Grid1D* g)
{

double *buf = new double[g->numNodes()];
.
.
delate buf;

}

instead of using conventional arrays, if we use STL vector,
we can avoid using delete every time (and avoid accidental
memory leaks);

void DoSomething(Grid1D* g)
{

vector<double> buf;
buf.resize(g->numNodes();
.
.

}

Other than standard data structures provided by STL, Matrix
Template library(MTL), Iterative template library (ITL) and
Boost Graph library(BGL) are some of the non-standard
but very flexible and powerful libraries based on the STL
design principle. The use of these libraries not only increases
the reliability but also decreases the size of original code
considerably. In our future studies, we plan to include them
and undertake performance studies.

Arrays and char string are perhaps the most common in
legacy code which are second class object. Using their first
class equivalents such as vector and string in C++ STL,
provides flexibility and reduces redundancy in the original
codes.

IV. EVALUATION OF EFFICACY OF DESIGN PATTERNS

Applying design pattern is tricky and sometimes difficult.
We can justify effort only when we see some quality improve-
ment in the new system. In this section, we answer some of
the common questions.

• Is new system more flexible ?
Yes. With the Prototype, Factory and abstract Factory,
instantiating new objects has become very simple and
flexible. With Strategy pattern, adding/replacing new al-
gorithms has become very simple.

• Is new system better maintainable ?
We follow the software maintainability defined by Fenton
[12] Maintainability = Understandability + Modifiability
+ Extendibility + Testability
With the above definition, design patterns are good
for software maintenance. They enforce modularization
which are easy to test than monolithic classes, we can
modify a component without having side effects, ex-
tendibility is the prime motivation of patterns.

• Is the process incremental ?
In general, no. Some of the design patterns such as factory
and prototype pattern are very simple to implement. State

and strategy patterns are relatively harder and require
good understanding of the software. Observer pattern’s
full potential can be realized only when we understand
nuts and bolts of the software. We are not sure whether
reference counting could be carried out incrementally.
Figure 4 we have listed probability of finding patterns in
a typical scientific software. The most powerful patterns
are at the bottom of pyramid, therefore most of the codes
will be suitable for re-engineering with design patterns.

• Are GoF pattern suitable for scientific computing ?
Yes, most of our software are experimental in nature and
therefore have high degree of changeability. With design
patterns we are able to add new features, and experiment
with new algorithms.
While we did not perform quantitative analysis of the
performance impact of our changes, we did informally
check that the performance did not degrade substantially.
We did this by re-generating the mesh in Figure 1, which
took at most 5 percent longer than the legacy version.

• Is design pattern a good lingua franca ?
Yes. With design pattern we can explain the behavior,
concepts and architecture of the software to both team
member and to the seniors.

• Are GoF patterns concise ?
Largely yes, but it seems that Memento, Template and
Iterator patterns are just syntactic sugar patterns. Most of
the developers use them without knowing that they are
patterns.

• Do we need new patterns to increase the flexibility ?
Yes. Similar to State, Factory and Strategy patterns,
one of the big obstacles in reusing the software comes
from using various termination condition. Consider the
iterative solvers in linear algebra, there are many criterion
to stop the iteration process and most of the software
use predefined conditions. AConditional Patternmay
be a good choice. We also find that there are no good
patterns for error handling and testing software. Since
these essential parts of any software development, we
need to find good patterns to address these recurring
problems.

Overall, design patterns have significantly improved the
quality of the software. They have forced modularization
(State, Strategy, Visitor). The bridge pattern allowed us to keep
implementation separate from interface. The Iterator pattern
provided a consistent and simpler interface for traversing over
the container. Design patterns helped us to evolve the legacy
software toward a reusable, object-oriented design.

A. Design Pattern Mining

In large complex legacy code, finding the design pattern
requires good understanding of the code. Ferenc [13]et. al.
has reported developing automatic tools for finding patterns
from UML graphs, but as of now we did not find any freely
available tool on linux or other Unix platforms. For the time
being, we explored them manually and noticed that in non-
numerical scientific application, there exists possibility of ap-

Adapter Facade Factory Method

Iterator

Decorator

Prototype Observer State

Strategy Template Method Visitor

Memento Singleton

Bridge Composite

Chain of Responsiblity

MediatorProxy

Interpreter

Flyweight

Command

H
ig

h
M

ed
iu

m
Lo

w

Fig. 4. Probability of finding GoF design patterns in legacy codes

plying design patterns to improve the quality. Most of scientific
applications employ different algorithms for different input,
use different data types and have dependency among objects.
During re-engineering process, the use of design patterns
involves decision about level of intrusion in the software. Table
IV-A provides a guideline about level of intrusion which could
help in taking decisions.

Pattern Low medium Larges
Changes Changes Changes

Adapter -
√

-
Bridge

√
- -

Factory
√

- -
Memento

√
- -

Observer - -
√

Prototype
√

- -
Singleton

√
- -

Strategy - -
√

State - -
√

Template -
√

-
Visitor -

√

Iteretor -
√

-
Ref. Count - -

√

TABLE I

LEVEL OF INTRUSION IN SOFTWARE

B. Difficulties in Using Design Patterns

The major difficulties in applying design patterns are as
follows

• Lack of standard implementations:There are very few
freely available robust implementations of design patterns
in C++. Implementing robust and reliable design patterns
such as Singleton, Visitor, Factory, Reference Counting
etc are non-trivial task.

• Design patterns are just software tool:Design patterns
are not part of a language. They are just some valuable
software tricks, therefore they are likely to have different
interpretations and implementation by various people. It

is easy to create hard to understandable code which is
against the very tenet of design patterns.

• Breaking the hierarchy:Existing applications might have
to rearrange their hierarchies or use multiple inheritance,
both are difficult and error prone. Language such as JAVA
has advantages over C++ as it directly or indirect inherits
every class from one superclass “Object” and support
only single inheritance.

• Powerful patterns need high intrusion:Some of the
design patterns such as Visitor and Observer patterns
could realize their full potentials only when the user could
change or reorganize the code substantially which may
require lots of changes in the code and therefore the cost
of reengineering could be higher.

V. CONCLUSIONS

Despite many shortcomings, legacy codes are too important
to be left aside in the application development. Our exper-
iments have shown that with design patterns and generic
programming we can develop new systems which are very
adaptable and extendable. We have applied GoF design pattern
in our mesh generation application and we can categorically
say that design pattern improve the system and make them
flexible. This motivates us to explore patterns which could be
useful in distributed parallel computing.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[2] M. Jazayeri, R. Loos, and D. R. Musser, “Lecture notes in computer
science 1776 : Generic programming.”

[3] J. C. K. Beck, “Industrial experience with design patterns.”
[4] D. L. Parnas, “Software aging,” inProceedings of 16th International

Conference on Software Engineering. Sorrento, Italy: IEEE, 16–21
May 1994, pp. 279–87.

[5] E. J. Chikofsky and J. H. C. II, “Reverse engineering and design
recovery: A taxonomy,”IEEE Software, vol. 7, no. 1, pp. 13–17, Jan.
1990.

[6] C. Verheof, “Towards automated modification of legacy assets,” pro-
gramming Research Group, University of Amsterdam.

[7] J. Brunekreef and B. Diertens, “Towards a user-controlled software
renovation,” programming Research Group, University of Amsterdam.

[8] S. Meyers,Effective C++: 50 Specific Ways to Improve Your Programs
and Design. Addison-Wesley, 1992.

[9] B. J. Cox, “Planning the software industrial revolution,”IEEE Software,
vol. 7, no. 6, June 1990.

[10] C. Szyperski, D. Gruntz, and S. Murer,Component Software: Beyond
Object-Oriented Programming, 2nd ed. Addison-Wesley, 2002.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern Oriented Software Architecture: A System of Patterns. New
York: John Wiley and Sons, 1996.

[12] N. E. Fenton,Software Metrics: A Rigorous Approach. London:
Chapman and Hall, 1991.

[13] F. Rudolf, G. Juha, M. Laszlo, and P. Jukka, “Recognizing design
patterns in C++ programs with the integration of columbis and maisa,”
Department of Computer Science, Univ. of Helsinki, Tech. Rep., 2000.

