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Abstract 

An automatic adaptive quadrilateral mesh conversion scheme for the generation of adaptive refinement meshes over 
analytical curved surfaces is proposed. The starting point of the quadrilateral mesh generator is a background triangular 
mesh of the curved surface. By a carefully controlled process to merge two triangles at a time the triangular mesh can be 
completely converted to quadrilaterals. A rapidly graded quadrilateral mesh with node spacing compatible with the desired 
element size distribution can be obtained from a well-graded triangular mesh. The quality of the quadrilateral mesh can be 
subsequently enhanced by a series of mesh modifications and element shape improvement procedures. The present scheme 
can be used in conjunction with an adaptive surface triangular mesh generator to generate quadrilateral meshes suitable 
for adaptive shell refinement analysis. © 1997 Elsevier Science B.V. 
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I. Introduction 

There are at least two reasons that make the quadrilateral mesh more preferable to the triangu- 
lar mesh for the finite element analysis of  shell structures. First, as pointed out by a number of 
researches [1-3] that a high-quality quadrilateral mesh can give better solution than a triangular 
mesh with similar :number of  degrees of  freedom. Second, most of  the simple, robust and efficient 
degenerated shell elements are quadrilateral such as those based on the assumed strain approach [4, 
5]. Although some robust and efficient triangular shell elements exist, most of  them are either lim- 
ited to linear facet elements [6] or formulated in a more complex form such as the inclusion of  
discrete Kirchhoff constraint with nodeless variable or bubble functions [7] which make them less 
favorable compared[ to the standard quadratic or cubic assumed strain quadrilateral elements in prac- 
tical appl ica t ions .  There fore ,  an au toma t i c  quadr i la tera l  m e s h  genera to r  is a v e r y  va luab le  tool  for  
the i m p l e m e n t a t i o n  o f  genera l  and  adap t ive  shell  finite e l emen t  analys is  p rog ram.  
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Although the generation of quadrilateral mesh can be dated back to the early 70s when Zienkiewicz 
and Phillips [8] presented the isoparametric mapping techniques, no successful development of a fully 
automatic graded quadrilateral mesh generator for arbitrary domain has been found until this decade. 
Two different approaches, namely the direct and the indirect approaches are used for the generation 
of quadrilateral elements. 

(1) Direct schemes: The most classical method of this type is the mapping procedure [8-11]. 
Elements are generated in the physical domain by mapping a regular or nearly regular quadrilateral 
mesh on the parent parametric coordinate plane to the physical domain which can either be a plane 
or a curved surface. The element generated are usually of high quality unless the physical domain 
is a seriously distorted image of the parametric plane. However, this technique is mainly suitable 
for simple, simply connected domains. Extra manually domain subdivision procedure is required 
for irregular, multi-connected regions [12]. Moreover, the degree of gradation that can be achieved 
by this method is very limited. As the ability of a mesh generator to achieve a given element 
density distribution is a key factor governing its usefulness in an adaptive finite element analysis, 
quadrilateral mesh generator of this type is generally not suitable for adaptive analysis. Besides 
the mapping technique, Talbert and Parkinson [13] proposed a recursive decomposition method for 
meshing of general multi-connected domain. In the same year, Blacker [14] proposed the paving 
technique for the generation of graded quadrilateral meshes without the need of domain subdivision 
in case of complex multi-connected domain. 

(2) Indirect schemes: In the indirect scheme, quadrilateral elements are formed by converting 
the elements in a background triangular mesh into quadrilaterals through the operations of merging 
and splitting. A simple conversion scheme was proposed by Lo [15] using selective removal of 
diagonals between triangles for the generation of meshes with mixed types of elements. Later, the 
scheme was extended by Lee and Lo [16] for generating complete quadrilateral meshes over arbitrary 
planar regions. A similar method was also proposed by Johnston et al. [17] for converting all the 
triangles in a triangular mesh into quadrilaterals. A different method which performs the merging 
process simultaneously with the generation of triangular element was developed by Zhu et al. [18] 
based on the triangular mesh generator implemented by Peraire [19]. Since in the indirect schemes, 
quadrilateral elements are generated from the background triangular mesh, it is not difficult to achieve 
a high element density gradient through a highly graded background mesh. Irregular domains with 
multi-openings can also be handled as easy as regular, simply connected domains with a suitable 
triangular mesh generation scheme such as the surface mesh generator developed by Lau and Lo [20]. 
Unfortunately, the quality of the elements from such schemes are usually of lower quality compared 
to those by the direct schemes. Therefore, mesh quality enhancement procedures are usually required 
for the production of high quality graded quadrilateral mesh suitable for adaptive analysis. 

2. The quadrilateral mesh generation algorithm 

2.1. Basic requirements 

The algorithm presented in this paper is an indirect scheme based on the systematic merging 
technique proposed by Lee and Lo [ 16] for the generation of quadrilateral meshes in planar domain. 
It is extended for quadrilateral mesh generation over general analytical curved surfaces. Unlike the 
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Fig. 1. Formation of poor-shaped quadrilaterals. 

method presented by Zhu [18], the boundary segments are preserved after the conversion which are 
necessary for joining meshes from different surface patches. The whole process can be divided into 
three stages, namely, the pre-processing of background triangular mesh, the merging of triangles 
and mesh quality enhancement. 

The input data required for the generation scheme are the background triangular mesh over the 
surface which can be conveniently obtained by the surface mesh generator described in reference [20] 
and a correct description of the surface. The surface may consist of more than one subsurfaces 
and each of them may either be represented in term of known analytical form or in a numerical 
representation coupled with a background mesh. Furthermore, the input background mesh may also 
consist of both triangular and quadrilateral elements: the only addition work needed is to decompose 
all the quadrilateral elements back into triangles by subdividing the elements along their shorter 
diagonals. Since a complete conversion into quadrilateral elements is not possible if the number of 
boundary segments enclosing the domain is not even, it is essential to ensure that the number of 
boundary segments is always even before triangulation. In the present scheme, as in our previous 
work on planar quaqkilateral mesh generation [ 16], it is further required that the number of segments 
in each closed loop of boundary curves is even. 

2.2. Pre-processin9 o f  the triangular mesh 

In order to avoid the formation of poor-shaped quadrilaterals along the domain boundary which is 
difficult to rectify by the subsequent mesh quality enhancement processes, some preprocessing work 
has to be done betbre the merging of the triangles. Since poor quality quadrilaterals are usually 
resulted from merging two boundary triangles that give a large interior angle (Fig. 1 ), the formation 
of poor quadrilaterals along the domain boundary can be avoided by splitting potentially dangerous 
triangles connected to boundary nodes. Consider a boundary node A with neighbouring boundary 
nodes B and C (Fig. 2), suppose that there are N elements connected to node A, and without loss 
of generality, we label them sequentially from 1 to N. Let $; be the internal angle of element i at 
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Fig. 2. Internal angles of elements connected to a boundary node. 
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Fig. 3. Splitting of triangle in case of 135 ° <~i <225 ° and ~bi >~bi+l. 

node A, and 0~ i be the sum of  the intemal angles of  elements i and i + 1 at node A (Fig. 2), 

cz,=~b~+~b~+~, i = I , . . . , N - 1 .  (1) 

Obviously, the angle 0~ i is the potential value of  intemal angle at A when the triangular mesh is 
converted to a quadrilateral mesh. According to the criterion of  Zhu et al. [18], a quadrilateral 
element is deemed satisfactory if all its angles fall within the interval [45 °, 135°]. Based on this 
criterion, if  any ai is larger than 135 °, either one of  the elements or both elements will be split. 
The following rule is adopted for the splitting of  the triangles: 

(1) If 135°<cq ~< 225 °, the triangle with the larger intemal angle is split, the other remain un- 
changed. Thus if ~i > ~/+1, element i will be split as shown in Fig. 3. 

(2) If at >225 °, both triangles will be split (Fig. 4). 

However, in order to preserve the integrity of  the boundary, no triangle splitting will be performed 
if the edge opposite to the node A is a boundary segment. 
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Fig. 4. Splitting of triangle in case of ~ti >225 °. 

D 

8 

Fig. 5. The connected candidate triangles. 

2.3. Mergin9 of triangles 

In order to avoid the complicated and tedious steps for the resolution of isolated triangles, the 
advancing front technique is used for the merging of triangular elements. A n  initial front is first 
set up which is simply the boundary of the triangular mesh. The orientation of the generation front 
is defined in such a way that the cross products of the surface outward normal and the direction 
cosines of any front segments are always pointing towards the interior of the surfaces [20]. For 
a multi-connected domain, the whole generation front may consist of several loops. The generation 
front will shrink each time when two triangles are merged, and the whole process finishes when the 
front is empty. Consider and edge AB on the generation front and let node C be the third node of 
the triangle connec~Ied to AB (Fig. 5). Denote the base triangle ABC and the triangles connected 
to the edge AC (AACD) and BC (ABEC) by A~ ,  ALP and A ~ ,  respectively. If either one of the 
triangles A5¢ or A ~  is absent, say ASa, then the base triangle will merge with A ~  provided that 
the merging will not split the segment loops. 

Suppose that both A ~  a and A ~  exist and C, D, E are interior nodes, then the merging of the 
base triangle with ,either AZP or A ~  will not change the topology of the generation front. This 
means that no splitting or merging of  segment loops on the generation front will occur. In this case, 
anyone of the connected triangles can be used to form a new quadrilateral with the base triangle. 
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Fig. 6. Measurement of element internal angle. 
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Fig. 7. A quadrilateral formed by merging two triangles. 

The one which gives a higher quality of  the resulting quadrilateral will be used. Since we aim at 
generating quadrilateral elements as close to a square or a rectangle as possible, the internal angle 
of  the element should be as close to right angle as possible. Let 6L and 6R be the absolute values 
of  maximum deviations of  the internal angles from a right angle for the quadrilateral generated by 
merging A ~  with A£¢ and A ~ ,  respectively. Then the one gives a smaller 6 value is considered 
as a better choice than the other. Unlike the situation for elements on plane surfaces, there is no 
unique way for measuring the internal angle of  a curved element. A valid internal angle measure 
should produce results approaching that of  a plane element when the element size tends to zero. In 
the proposed mesh generator, the element internal angle or more generally, any angle formed by 
two curves, is measured on the tangent plane at the point of  interest (Fig. 6). In other words, the 
angle between any two curves are simply the angle between the tangents to the two curves at the 
point of  intersection. Clearly, if the surface is degenerated into a plane, the internal angle measured 
by this method is the same as the angle measured on the plane. 

If one or more nodes of  the patch of  triangles A ~ ,  A.~e and A ~  other than A and B is lying on 
the generation front, then the merging of the corresponding element with the base triangle may cause 
either merging or splitting of  segment loop(s) on the generation front. If the number of  segments 
on the resulting segment loop(s) is not even, then a complete conversion to quadrilateral element 
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Table I 
Classification of nodes and edges of a candidate quadrilateral 

Entities Case Notation Description 

(i) NLI L is an internal node 
L (ii) NLB L is on 

(iii) NLO L is on segment loop other than 
(i) NRI R is an internal node 

R (ii) NRB R is on 
(iii) NRO R is on segment loop other than 

(i) ELI Et is an internal edge 
Ee (ii) ELB Et is on 

(iii) - -  - -  
(i) ERI Er is an internal edge 

Er (ii) ERB Er is on 
(iii) - -  - -  

(i) EOI Eo is an internal edge 
Eo (ii) EOB Eo is on 

(iii) EOO Eo is on segment loop other than 

may not be possible. Any merging operations that lead to the formation of  odd segment loops will 
be prohibited. 

Consider a quadrilateral formed by merging the base triangle with an adjacent triangle which can 
either be A~Za or zX~ and suppose that the labeling of  nodes and edges are as shown in Fig. 7. 
Let ~ be the loop containing the base segment AB. Then there are three possible cases for a node 
or an edge of  the quadrilateral regarding its relation to the generation front: (i) it is an internal 
node (or edge), i.e., not belonging to the generation front; (ii) it is on the same loop ~ containing 
AB; (iii) it is on a segment loop other than ~. All these possible situations for a node or an 
edge are summarized in Table 1. It should be noted that case (iii) will never occur on edge Et 
or Er since the generation front consists of  simple closed loops of  segments. By examining the 
various possible situations of  nodes L and R and edges Et, Er and E0, the local topology associated 
with the quadrilateral element can be determined and hence, the feasibility of  the element merging. 
The possible topol,agies, totally 17 different cases, are summarized in Table 2 and illustrated in 
Figs. 8-11. They are further classified into three groups. For the topologies in Group (I), the merging 
is considered as unconditionally feasible. For topologies belonging to Group (II), the feasibility of  
merging is conditional, the number of  segments on either the left or the right resulting loop must be 
checked and the mlmber has to be even. Finally, for topology in Group (III), the merging is only 
possible if the number of  segment on both the resulting left and right segment loops are even. 

Sometimes, no new quadrilateral can be formed by simple merging because one of  the candidate 
triangles AL~ a or A ~  is absent while the other one is not feasible; or both AAe and A ~  are found 
to be infeasible choices. In such situation, one of  the connected triangle will be subdivided at its 
centroid to create three similar triangles, and then the one connected to the base triangle is merged 
to form a new quadrilateral as shown in Fig. 12. 
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Table 2 
Local topologies of a candidate quadrilateral 

Group Topology Comment 

ELB 
ERB 
ELB + ERB 
ELB + EOB 
ERB ÷ EOB 

(I) ELB + ERB + EOB 
NLO 
NRO 
ELB + NRO 
ERB + NLO 
NLO + NRO 

NLB 
NRB 

(II) EOB 
ERB + NLB 
ELB + NRB 

(III) NLB + NRB 

New node formed 

Two boundary nodes 
used 

removed after merging 

Loop merging 

Loop splitting 

Loop splitting 

3. Mesh quality enhancement 

Since the described merging method does not guarantee the quality of  the resulting quadrilateral 
and due to topological constraint, quadrilateral elements with internal angle greater than 180 ° may 
be formed. Hence, mesh quality enhancement procedures are essential for this kind of  indirect mesh 
generator to improve the overall quality of  the final quadrilateral mesh produced. Generally, two 
types of  mesh quality enhancement procedures can be employed: (i) mesh structure modification 
and (ii) element shape modification and node repositioning. Procedures of  the first class improve 
the mesh quality by introduction or elimination of  nodes and elements which results in a change of  
mesh structure and connectivity. While procedures of  the second class only modify the shape of  the 
elements and positions of  nodes, no new node or element will be introduced or deleted. In order 
to maintain the original discretization of  the boundary curves, in both mesh quality enhancement 
procedures, no modification will be made on the position of  the boundary nodes, and no element 
modification that affects the boundary nodes is allowed. 

3.1. M e s h  structure modification 

In this class of  procedures, a patch of  elements is considered at a time. Those patches satisfying 
some particular topology requirements will be modified. The central idea is to improve the con- 
nectivity number of  all the nodes in the mesh. The connectivity number N (or the node-element 
connectivity number) of  a node is defined as the number of  elements surrounding a given node. In 
the ideal case of  a uniform quadrilateral mesh, for an internal node there should be four elements 
surrounding it. For a general graded mesh there must be some nodes with N smaller or greater 
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Fig. 8. Local topologies of Group (I), Part A. 

than four to achiew~ the gradation effect of the mesh. However, the mesh quality may be adversely 
affected if N is much less than or greater than four. Therefore, the aim of the mesh structure mod- 
ification procedures is to improve the connectivity condition of the mesh in such a way that the 
number N for most of the interior nodes in the mesh should fall within the range 

3~<N~<6. 

The following are the mesh structure modifications used in the current implementation. 

(2) 

3.1.1. Node elimination 
This mesh modification procedure is used for the elimination of quadrilateral elements with internal 

angles greater than 180 ° which are created during the merging process. All interior nodes of the 
mesh are examined one by one. An interior node will be eliminated if its connectivity number 
is equal to two. Therefore, the ill-conditioned quadrilateral shown in Fig. 13 is eliminated by the 
merging of the two quadrilaterals. 
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Fig. 9. Local topologies of Group (I), Part B. 

3.1.2. Element  elimination 
All elements of  the mesh are examined one by one. For an element e, if a pair of  opposite nodes, 

say A and B as shown in Fig. 14 both have connectivity number equal to three and are interior 
nodes, then the element contains these two nodes will be eliminated. The nodes A and B will be 
merged into a single node. 

3.1.3. Edge elimination 
All edges connecting two interior nodes are examined. An edge AB will be eliminated if the 

connectivity numbers at both ends are equal to three. The elements connected to nodes A and B 
are reconstructed into two new quadrilaterals. The selection of  their common edge are based on the 
connectivity number of  the expected new edges DG and CF (Fig. 15). Let Nc,ND,NF, and NG be 
the connectivity numbers of  the nodes, C, D, F, and G respectively. Then the new quadrilaterals will 
be formed by introducing common edge DG if  

ND + <<.Nc + NF. (3) 

Otherwise, the new quadrilaterals will be formed by the common edge CF. 
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Fig. 12. Merging of infeasible triangle by element subdivision. 

Fig. 13. Node elimination. 

Fig. 14. Element elimination. 

3.1.4. Diagonal swapping 
Each pair of  connected quadrilaterals are examined. The common edge AD will be swapped to 

BE or CF if either one of  them gives a better node-element connection of  the patch than the current 
one (Fig, 16). Let Nx be the connectivity number of  a node X, X = A, B, C, D, E, and F, and denoting 
the sum of  connectivity numbers of  each pairs of  opposite nodes, respectively, by N1, N2 and N3, 

NI =NA + ND, N2=NB + NE, N3 =Nc + NF. (4) 
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Fig. 15. Edge elimination. 

The common edge AD will be swapped to BE if 

N1/>N2 -k 3 and N3 ~>N2 (5) 

or to the edge CF if 

Nl >/N3 + 3 ;and N2 >~N3. (6) 

It should be noted that all the above modifications will only be carried out if the change will not 
introduce any self-intersecting or ill-conditioned elements. 

The mesh modification procedures will be applied exactly as the same order as described above. 
That is, node elimination will be executed first which is then followed by element elimination 
and so on. After diagonal swapping is finished, node elimination will then be applied again to the 
modified mesh to start the next cycle o f  mesh modifications. The mesh modification cycle will be 
repeated until no filrther change in connectivity conditions of the mesh is needed. 

3.2. Element  shape modification 

Since element shape modification does not modify the structure of the mesh, they are applied after 
the node-element connectivity modifications. The element shape quality is enhanced by repositioning 
of interior nodes. Two element shape modification procedures will be described, the first one is the 
standard Laplacian smoothing and the other one is the internal angle smoothing. 
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Fig. 16. Diagonal swapping. 

3.2.1. Laplacian smoothing 
The Laplacian smoothing procedure is applied to improve the quality of the mesh. However, the 

standard coordinate calculation would not be applicable for a patch of elements on curved surfaces. 
Some modifications must be made to ensure that nodes after smoothing are on the curved surface. For 
a well-controlled discretization, a patch of elements on a curved surface should well approximate 
the original surface, and the change in direction of normal vectors of the individual element in 
the patch should be small. This means we can assume that the elements in a local patch can be 
well approximated by their projection on the tangent plane at the patch assembling point. Hence, the 
new coordinates of  the patch assembling point can be computed by the standard procedure using the 
projected coordinates instead of the actual nodal coordinates. Node repositioning is completed when 
new coordinates are projected back to the original surfaces. In order to avoid poor nodal position 
adjustment, the node will only be moved if the sum of the element internal angle deviations from 
right angle is less than that before node repositioning. 

3.2.2. Angle smoothing 
After the Laplacian smoothing, most of the elements should have internal angles quite close to 

optimal (right angle). However, there may still be some elements with internal angles much deviated 
from optimal and they can be further improved by angle smoothing. As shown in Fig. 17, consider 
an interior node P with connectivity number N. For convenience, we label the elements connected 
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Fig. 17. Angle smoothing. 

265 

to P sequentially from 1 to N. Let ~bi be the internal angle at node P of  element i, and denote the 
corresponding deviation anole by ~ which is defined as 

1~/={900°--~i ifl90°-4~;I >45°, 
if  190 ° - ~b;] ~<45 °. (7) 

That is, the deviation angle ~bi is considered as 0 ° if the deviation of  ~bi from the right angle is less 
than 45 ° . This means that an internal angle within the range [45 ° , 135 ° ] is considered as satisfactory. 
If  all ~bi values corresponding to node P are zero, then no angle smoothing will be performed for 
node P. Otherwise, the position of  node P will be moved through a displacement m defined as 

with 

m = r ~ t'i (8) 
u=l 360 ° 

~i_~ - PQi  1 N 
[[pQil[ and r =  Ni=l-- ~ HPQill (9) 

where Qi is the node opposite to node P on quadrilateral i. The new position of  node P is then 
given by the projection of  P* on the surface, where 

P* = P + m .  (10) 

Similar to the Laplacian smoothing, the node will only be moved if the sum of  the element internal 
angle deviations from right angle is less than that before adjustment. 

4. Mesh generation examples 

As for the present quadrilateral mesh generation scheme pure surface quadrilateral meshes are 
generated from a background triangular mesh, the ability of  handling arbitrary element density 
distribution is determined mainly by the triangulator. For the mesh generation examples given in this 
section, all the background triangular meshes were generated by the surface triangulator described 
in Ref. [20] which has already been proved to give excellent results for various curved surfaces and 
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Table 3(a) 
Characteristics of input triangular meshes 

Surface NSR NN NET Amax/Amin 

1 (Fig. 18a) 1 634 1227 985.5 
2 (Fig. 19a) 1 2876 5616 50.3 
3 (Fig. 20a) 3 3376 6588 297.1 
4 (Fig. 21a) 4 1700 3308 218.5 

Table 3(b) 
Characteristics of final quadrilateral meshes 

Surface NSR NN NEQ tgmi n 0max N1 Arnax/Amin 

1 (Fig. 18b) 1 707 687 28 143 1 1022.1 
2 (Fig. 19b) 1 2940 2868 29 146 2 43.7 
3 (Fig. 20b) 3 3708 3627 25 144 2 291.3 
4 (Fig. 21b) 4 1864 1820 36 135 0 140.4 

Note: 
NSR = Number of subsurfaces. 
NN = Total number of node. 
NET = Total number of triangles. 
NEQ = Total number of quadrilaterals. 
Amax/Amin = ratio of maximum element size and minimum element size. 
tgmi n = Minimum internal angle of quadrilateral elements generated. 
Omax = Maximum internal angle of quadrilateral elements generated. 
N1 = Number of quadrilateral outside the range 30 ° ~<0 ~< 150 °. 

can be used to generate graded triangular meshes with tight control on the discretization error [21 ] 
in approximation of  the surfaces. 

Totally four different curved surfaces, which consist of  one or more subsurfaces, are given in this 
section as mesh generation examples. For all the surfaces tested, triangular meshes corresponding 
to different pre-defined node spacing functions were generated. These triangular meshes, together 
with the geometrical definitions of  the surfaces, are then fed into the quadrilateral mesh conversion 
scheme as input for the formation of  quadrilateral meshes. The exact analytical forms for these 
surfaces and the node spacing functions used will not be given here since they are very lengthy but 
not very informative. A much clearer picture of  the performance of  the present conversion scheme 
can be obtained by examining the characteristics of  the input triangular and the final quadrilateral 
meshes which are listed in Tables 3(a) and (b) respectively. The input triangular meshes and the final 
quadrilateral mesh generated are shown in Figs. 18-21 (Figs. 18a-21a for the background triangular 
meshes and Figs. 18b-21b for the resulted quadrilateral meshes). From Table 3 and Figs. 18-21, by 
comparing corresponding triangular and quadrilateral meshes, one can see that the quadrilateral mesh 
conversion scheme is able to preserve both the grading and density of  the background triangular 
meshes. It can be seen from Table 3 that the number of  nodes of  the final quadrilateral meshes 
generated are very similar to the corresponding input triangular meshes while the final number of  
quadrilaterals are approximately half o f  the number of  input triangles. Also, despite that the element 
size ratio in some meshes are quite large (>1000), the shape quality of  the elements generated 
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(a) 

(b) 

Fig. 18. (a) Input triangular mesh for Surface 1. (b) Final quadrilateral mesh for Surface 1. 

are well above the acceptable margin with very few elements with internal angles less than 30 ° 
or greater than 150 ° . Hence, it can be concluded that the proposed mesh conversion algorithm is 
capable to generate well graded quadrilateral meshes which are adequate representations o f  the target 
surfaces as well as preserving the element size o f  the input triangular meshes. 
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Fig. 19. (a) Input triangular mesh for Surface 2. (b) Final quadrilateral mesh for Surface 2. 
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Fig. 20. (a) Input triangular mesh for Surface 3. (b) Final quadrilateral mesh for Surface 3. 
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Fig. 21. (a) Input triangular mesh for Surface 4. (b) Final quadrilateral mesh for Surface 4. 
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5. Conclusion 

In this paper, a fiJlly automatic indirect quadrilateral mesh generator using the systematic merging 
technique for the generation of quadrilateral meshes over surfaces is presented. By merging two 
triangular elements at a time for the formation of quadrilateral mesh, the element density and grading 
of the background mesh can be well preserved. As a result, by using a high-quality well-graded 
triangular mesh as the background mesh, an equally well graded, high-quality quadrilateral mesh can 
be generated over analytical curved surfaces in compliance with a given element density distribution. 
The input data required by the mesh generator are no more than the background triangular mesh 
and the geometrical definition of the analytical surface. Therefore, the current conversion scheme 
can be used in conjunction with most surface triangulators for the generation of adaptive refinement 
quadrilateral meshes for shell analysis. 
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