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Abstract 

An automatic two-dimensional mesh generation scheme based on superelement decomposition technique is presented. The 
proposed approximate skeletal method (ASM) uses shape interrogation techniques on simplified geometric representation 
of the shape boundary to generate non-intersecting, topologically simple and mappable superelements. A recursive mesh 
generation scheme, meshing by successive decomposition, is introduced which uses edge-based hierarchical data structures to 
successively create parent-child edge relations and possible transitions based on the nodal spacing on these edges. Individual 
edge segments are obtained by transfinite mapping techniques. The use of a structured background grid is suggested to 
ensure full control of the mesh in case of transitions and grading. Finally, application to plane adaptive FEA problems 
demonstrates that the proposed mesh generator (MSD) results in good mesh grading and convergence characteristics. 

1. Introduction 

The integration of  FE analysis with geometric design models has usually been a time-consuming 
task which depends mostly on the expertise of  the analyst or the modeller. Over the last few years this 
problem has been addressed by the creation of  separate preprocessor modules which create the geometric 
model of  the problem domain by using computational geometry and other standard techniques in CAD. 
The output of  these modules are externally linked to the input of  FE programs which subsequently carry 
out the analysis. However, with the advent of  large computers and more demand from the users in the 
full automation of  ~the modelling-analysis systems it has been felt that only a full integration of  CAD 
systems with FE systems could provide a solution [1]. A major part of  this effort is concentrated on 
mesh generation techniques. Good reviews of  general mesh generation schemes are available in Refs. 
[2-5]. The available mesh generators now in use can be generally categorized into two groups [6]: 
• mapped mesh generators; 
• automatic mesh generators. 
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In mapped mesh generation methods the problem domain is manually decomposed into mappable, 
topologically simple patches which are necessarily non-intersecting and whose union results in the 
parent domain. The mapping techniques, usually isoparametric or transfinite procedures, employ either 
in implicit or explicit form, a set of geometric representations within each individual patch. These 
representations are defined in terms of the information available on the boundary of the mesh patch. These 
schemes produce structured meshes if only one mesh patch is used to decompose the domain. However, 
if several patches are to be discretized then semi-structured meshes are created. These are structured 
within each patch; however, the topology of the patches themselves is unstructured. Computationally 
these mesh generators are easy to handle as only the grid coordinates need to be stored and the mappable 
patches are created manually. However, control on mesh density requirements is poor and badly shaped 
meshes result if the patch itself is skewed or has a large aspect ratio. Automatic mesh generators 
generally produce unstructured meshes and are boundary based, i.e. the boundary discretization is the 
starting point of the generation process. These procedures are computationally more intensive, as, at 
every step of element generation, the geometry of the unmeshed domain needs to be evaluated. Although 
user interaction is minimal and better control of generation parameters is possible, both connectivity 
and coordinate data of the elements need to be stored rendering them computationally expensive. 

From the observations made above, it can be stated that the motivation for the development of a new 
mesh generator is basically twofold: 

1. The full automation of the domain decomposition into superelements based on the boundary 
information of the problem domain; 

2. The integration of computational efficiency of mapping techniques and the versatility of unstruc- 
tured mesh generators. 

In view of the characteristics of the mesh generator stated above, a new method of quadrilateral 
mesh generation, meshing by successive superelement decomposition (MSD), is presented. This gener- 
ator comprises two major operations: decomposition of the domain into superelements by the approxi- 
mate skeletal method (ASM), followed by meshin9 by successive decomposition, which is a recursive 
quadrilateral element generation scheme within individual superelements. 

2. Skeleton-based domain decomposition 

2.1. Background on skeleton and skeletal curves 

The skeleton-based method is used to create a set of non-intersecting superelements whose union 
gives the problem domain. The technique of  skeletal curve generation as presented in this paper is based 
on the medial axis transform (MAT) technique which was first proposed by Blum [7] as a method to 
recognize biological shapes. Subsequently Tam et al. [8] and Nebi Gursoy et al. [9] have applied this 
method to automate finite element mesh generation. 

In MAT, an intrinsic coordinate system is used to define any two-dimensional object. Given a closed 
boundary A of a domain t2, the Euclidean distance d(x, A)  from any point x to a set of boundary points 
A is 

d ( x , A )  = min[d(x ,y)  : y C A]. (1) 
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Fig. 1. Basic definitions. 

For some points, more than one boundary point satisfies this property of  the minimum distance. The 
locus o f  such points defines the medial axis or the skeleton of  the system. Blum [7] defines the medial 
axis of  a domain f2 bounded by a closed curve A in the Euclidean plane to be the union of  the centers of  
all maximal disks which fit into A. Thus, on the skeleton S generated by the set of  boundary points A, a 
function f ( x )  can be defined, where f ( x )  maps A into the set of  non-negative real number space R as: 

f ( x )  = d(x, A). (2) 

• This function f ( x )  is called the radius function or the disk function of  the domain; this is shown in 
Fig. 1 [9]. It is evident that the skeleton of  the domain is composed of  a set of  discontinuous curves 
each of  which can be associated to a certain set of  boundary points. Such individual curve segments are 
called skeletal curves. If the set of  skeletal curves of  the domain is given together with the associated 
disk functions, then it can be shown that such data are sufficient for the extraction of  all the features 
of  the parent domaJin. Thus the MAT technique is basically a shape interrogation-extraction procedure. 
It may also be noticed that the medial axis o f  any object is closely related to its Voronoi diagram. 
In fact, the medial axis and the Voronoi diagram of  a convex polygonal domain are identical to each 
other. However, in non-convex domains, i.e. in cases where the problem domain is characterized by the 
presence of  one or several reentrant vertices (comers at domain boundary where the angle measured 
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from a position exterior to the domain is less than 180 °), the medial axis diagram differs markedly from 
the Voronoi diagram in the proximity of these vertices. 

The construction of the skeleton is a computationally intensive task. Currently three construction 
methods are in vogue, as referred to in the report by Turkiyyah et al. [10]: 

(a) Transformation of the original spatial domain into a bitmap and subsequently applying thinning 
algorithms which erode the shape boundary in layers. 

(b) A point is said to be within e distance from the skeleton if its minimum distances from any two 
boundary points differ by at most e. Hence geometric search techniques could be employed to locate 
points on the skeleton to any degree of accuracy. The points thus located are then connected into arcs 
to form the skeleton. All points on a given skeletal curve are then associated with a distinct set of 
boundary segments. 

(c) If the boundary segments have simple analytical descriptions, then it is possible to compute the 
equations of the skeletal curve segments in simple parametric form. This ensures an explicit computation 
of the medial axis branches. 

2.2. Approximate skeletal method ( A S M )  - a simplified process to generate skeletal curves 
for  creation o f  superelements 

A mathematically accurate derivation of the skeleton is not of  critical importance to the generation 
of superelements since an accurate extraction of the domain characteristics is not pertinent in FEA. 
In the proposed technique approximations are introduced in the mathematical representation of the 
boundary segments as well as the skeletal curves. These cause minor perturbations in the skeleton of the 
domain - which however produce no major shape distortion in the generated superelements. All curved 
boundary edges are approximately represented as a union of a series of straight lines. This ensures 
simpler mathematical computations since skeletal curves for straight boundaries have simple analytical 
descriptions, i.e. curves of first or second degree. The skeletal curve itself is accurately represented 
by a fourth-degree polynomial if the boundary definition consists of second-degree curves, but in 
the proposed set of algorithms the skeletal curves are shown to be adequately handled by piecewise 
continuous second-degree polynomials, which is consistent with the simplified boundary representations. 
This ensures a minimization of the computational efforts required for the generation of  the skeleton. 

The skeletal curves and the corresponding radial lines (discussed in later sections) together with 
the boundary of the domain constitute the set of non-intersecting superelements. The procedure for 
generating the superelements can be shown as a four-step process - namely generation of  the equidistant 
curve, generation of the skeletal curve from the equidistant curve, tracing of radial lines to demarcate 
superelements and merging to check and correct for distorted superelements. Detailed descriptions of  
these steps follow in the next sections. 

Step 1: Generation o f  the equidistant curve. The equidistant curve for a pair of line segments is 
defined as the locus of all the points which are equidistant from those segments. In Fig. 2, the line 
segments el and e2 are used to generate the equidistant curve given by five distinct segments RS, ST, 
TU, UVand VWwhose points of transition S, T, U, and Vare demarcated by the perpendiculars P1, 
P2, P3 and P4. The equation of the equidistant curve changes in these five different segments and in 
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RS, ST, TU, UV, VW = Segments of equidistant curve. 

P1, P2, P3, P4 = Perpendiculars from ends of e l  and e2. 
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Fig. 2. Equidistant Curve. 

any given segment the exact equation of the curve in parametric form is given as 

x ( t )  = ao + al * t + a2 * t 2, (3) 

y ( t )  = bo + bl * t + b2 * t 2, (4) 

where t is a local parametric variable defined in this curve segment whose limits are given by to < t < 
t2, to being the first control  po in t  (i.e. the site of the initiation of the generation of the current curve 
segment) and t2 the last control point (i.e. where the current curve segment terminates). The global 
parametric coordinate system of the equidistant curve is obtained by combining the local parametric 
systems of the successive segments after shifting the origin of the local systems using the following 
transformation: 

to*(i) = to*(i-l) + t2 (i-1) (5) 

for i ~> 2, where * denotes the global parametric system and the superscript i denotes the segment number. 
to *(;) is the starting global parametric value for the ith segment of the equidistant curve, to *(i-1) is the 
global parametric value for the previous segment and t2 (~-l) is the limiting value of the local parameter 
for the previous segment, to *(l) is taken as 0. The transformation equation between the local and global 
parameters for subsequent segments is given by: 

t *i : to *i q- t i. (6) 
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It is of primary interest to identify the region in which the first control point of a particular equidistant 
curve segment lies with respect to the generating line segments. In Fig. 2, two local coordinate systems, 
(xl, Yl; x2, Y2) are defined on the two line segments for this purpose. The local xi direction is chosen 
to be parallel to the ith line segment. A simple orthogonal transformation links these local coordinate 
systems to the global Cartesian system of coordinates and is given as 

{ X g } =  [ cos0 sinOo]{xi } (7) 
yg - s in  0 cos y,- " 

The subscript i indicates local variables pertaining to the ith edge, g indicates global variables and 0 is 
the angle the segment i makes anticlockwise with the global x axis. 

After the transformation the local xi coordinate is scaled by dividing by the length of the edge Li as 
shown below: 

where 5 and )3 are the normalized local coordinates. 
Hence, let the coordinates of the first control point of any curve segment in the two coordinate 

systems defined with respect to the two edges el and e2 be Xl, Yl and x2, )32 respectively. In Fig. 2, 
the perpendicular at the point A of el corresponds to £1 = 0, and that at point B corresponds to £~ = 1. 
The perpendicular at point C at e2 corresponds to £2 = 0, and that at point D corresponds to £2 -- 1. 
The position of the first control point of any equidistant curve segment may be in any one of the four 
regions given below: 

Region on the backside of  an edge: For any edge, the region defined by £ < 0 is its backside. In 
Fig. 2, the region to the left of perpendicular P1, denoted by RB, is the backside of the edge el.  

Region on thefrontside of  an edge: For any edge, the region defined by £~> 1.0 is its frontside. In 
Fig. 2, the region to the right of perpendicular P2, denoted by RF, is the frontside of the edge el. 

Region on the leftside of  an edge: For any edge, the region defined by 0 ~<£ ~< 1.0, )3 i> 0 is its leflside. 
In Fig. 2, the region between the perpendiculars P1 and P2, denoted by RL, is the leftside of the edge el. 

Region on the rightside of  an edge: For any edge, the region defined by 0-,.<£~< 1.0, ~-,.<0 is its 
rightside. In Fig. (2), the region denoted by RR is the rightside of the edge el.  By virtue of the ordering 
of the boundary edges, the meshable regions of the domain lie exterior to the rightside of the edges. 

As stated earlier, the location of the first control point is of critical importance to the segment of the 
equidistant curve generated from it. In Table 1 and Fig. 3, three such typical cases are shown where 
the position of the first control point influences the equidistant curve segment. The location of the first 
control point is expressed in the two sets of coordinates with respect to the two edges as given by: 

xl, Yl - coordinates of first control point in normalized local coordinate system of edge 1 (el). 
x2, y2 - coordinates of first control point in normalized local coordinate system of edge 2 (e2). 

Step 2: Generation of  skeletal curves. The skeletal curve of two boundary elements is a subset of the 
equidistant curve generated by these elements. In the present work, a boundary element is considered to 
be a straight line, a chain of straight line segments representing a curved edge or a reentrant vertex. The 
skeletal curve is generated from the equidistant curve by the truncation of those points on the equidistant 
curve which are more proximal to some boundary element distinct from the pair of generating elements. 
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Table 1 

Position of  initial point w.r.t. Conditions Position of  Degree of  Figure. no. 

Edge 1 Edge 2 next control point equation 

Back Front Xl < 1 Pa or Pb 1 3(a), 3(b) 
x 2 > l  

Left Xl < 0 Pa or Pc 2 3(c), 3(d) 
0 < x2~<l 

Back Xl < 0 Pa 1 3(e) 
X240 

Left Front 0~Xl < 1 Pd or Pb 1 3(f), 3(g) 

Left 0~<xl < 1 Pc or Pb 1 3(h), 3(i) 
0 < x2~<l 

Back 0~<Xl < 1 Pb 2 3(j) 
x2~<0 

Front Front Xl/> 1 Pd 1 3(k) 
X2> 1 

Left xl i> 1 Pc 2 3(1) 
0 < x2~<l 

Back Xl/> 1 - 1 3(m) 
x2~<l 
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Fig. 3. Influence of  initial point (Control point: Case 1 ) 
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(m) 

Let D(t) indicate the Euclidean distance from either boundary element to a point on the equidistant 
curve generated by them whose parametric coordinate value is t. D(t) may be called the distance 
function of  the equidistant curve and is given as a polynomial function of  t and is evaluated along with 
the generation of  the equidistant curve. In order to represent the distance function accurately, a 
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polynomial of  degree four is required since D(t) is handled in squared form. However, to ease compu- 
tational efforts, D(t ) is represented as a piecewise continuous quadratic polynomial. 

In Fig. 2, let R(t) be the distance from an arbitrary point Q on the equidistant curve to a point M on a 
line segment e3. The degree of the square of  this function R(t) is also, in general, four. This implies that 
the solution of  D(t) = R(t) involves the computation of  a fourth-degree polynomial especially when 
the corresponding segment of the equidistant curve is quadratic. Thus, to ease computational efforts, 
the curved segrnen~Is of  the equidistant curve are treated as a union of straight line segments during the 
computation of  R(t ). 

For all t > to, the solution of  D(t) = R(t) yields a family of points on the equidistant curve, the 
Euclidean distances of  which to el,  e2 and e3 are equal; to being the parametric coordinate of  the 
point from where l:he generation of the equidistant curve commences. Since, both D(t) and R(t) are 
approximated to second-degree polynomials, let tl be the smaller of  the two roots; then for to < t < tn 
the points on the equidistant curve are closer to the el and e2 than to e3. Considering all such tl for 
all e3 the smallest value of t~ is selected which is designated as t2. Then, the portion of  the equidistant 
curve delimited by to and t2 is called the medial axis branch or the skeletal curve of  the edges el and 
e2. The delimiting points given by the parametric coordinates as to and tz are called skeleton nodes or 
branch points of the medial axis. 

Step 3: Decomposition into superelements - use o f  region graphs. The Euclidean distance function, 
D(t), represents peqoendiculars of  specified lengths directed into the problem domain from the points on 
the associated bourLdary element onto the corresponding points on the equidistant curve. As the skeletal 
curve is defined as the union of  the centers of  a set of  maximal disks which fit into the boundary elements 
of  a domain, D(t )may  be defined as the locus of  the point of  tangency of  a set of  disks whose center 
lies on the boundary contour and which fits maximally to the skeletal curve. In this context, the skeleton 
nodes can be identified as those points in the domain where at least three D(t) disks are coincident. In a 
given domain, if  the loci of  the point of  coincidence of  two D(t) disks whose centers lie on non-adjacent 
boundary elements are combined with the skeleton nodes in the domain, then the resulting diagram is 
called the shape pr~mitive. Thus, unlike skeletal curve branches which are bounded by skeleton nodes as 
well as boundary points, shape primitive branches are bounded by skeleton nodes only. Fig. 4 (adapted 
from [9]) illustrates the relationship between the Voronoi diagram, shape primitive, and the medial 
axis of  an arbitrary domain. It is seen that the shape primitive is a subset of  the skeletal diagram and 
the Voronoi diagram is a superset of  the skeletal diagram. In Fig. 5, six typical cases encountered in 
generating the shape primitive branches are shown. In case (1), where three boundary segments are 
adjacent, the shape primitive reduces to the skeleton node unlike the skeletal curve which is shown in 
dotted lines. In case (2.A), where two of  the boundary segments are adjacent and the generation of  the 
equidistant curve s~Larts from their common vertex, the situation is identical to the previous case. In all 
other cases the skeletal diagram is identical to the shape primitive. The shape primitive branches of  
a region, together with the radial lines (perpendiculars from the skeleton nodes to the most proximal 
boundary segments) and the boundary elements form the basis for the subdivision of  the domain into 
superelements. The: skeleton nodes are classified in this respect into four groups based on the number of  
radial lines that can be drawn from them. Fig. 5 also shows some typical examples of  this classification. 
In case (1) three boundary segments are adjacent; here three radial lines can be traced from the skeletal 
node to the segments giving two quadrilateral superelements D1 and D2. Cases (2.A) and (2.B) deal 
with situations where two boundary segments are adjacent; here too, three radial lines can be drawn to 
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VORONOI DIAGRAM MEDIAL AXIS DIAGRAM SHAPE PRIMITIVE 

Fig. 4. Shape primitive-definition. 

give one and three quadrilateral superelements, respectively. Case (3) is a more general situation where 
none of the edge segments share a common vertex; in this case also three radial lines can be drawn 
from the skeleton node to give two quadrilateral superelements D 1 and D2. All of  the cases mentioned 
so far show the effect of  triple-ray type skeleton nodes on the superelement generation process. In case 
(4), two double-ray type skeleton nodes are shown; here two quadrilateral superelements, D1 and D2, 
are generated. Case (5) deals with the reentrant vertex; here, as shown in Fig. 5, the shape primitive is 
a finite arc segment and is bounded by two skeleton nodes. To tackle this concavity and generate valid 
superelements, cuts are introduced (as done in Voronoi diagrams) between the skeleton nodes and the 
reentrant comer, perpendicular to the boundary segments. Subsequently, the arc segment is projected 
on to the opposing edge segment by radial lines giving rise to a triangular superelement D1 and a 
quadrilateral superelement D2. Both these skeleton nodes are pseudo-double-ray type nodes. Case (6) 
illustrates the effect of  a convex circular boundary segment on the generated superelements. From the 
junctions of  the arc to the adjacent boundary segments two radial lines are drawn to the skeleton node. 
If the included angle between the radial lines is greater than 1500 then a third radial line is drawn from 
the skeleton node to bisect the circular boundary. Thus, either one or two superelements are generated 
depending on whether the skeleton node is pseudo-double-ray type or pseudo-triple-ray type. 

The Voronoi diagram of a 2-D shape is composed of  non-intersecting cells such that each cell is 
associated to a boundary element and all domain points in a given cell are most proximal to the associated 
boundary element. This implies that each Voronoi cell is composed of  a single boundary element and 
several skeletal curves inclusive of Voronoi edges and cuts in the presence of reentrant vertices. In the 
present technique, individual superelements, in contrast to the Voronoi cells, consist of  a single shape 
primitive branch, partial or full boundary elements and radial lines or cuts. However, the union of either 
the Voronoi cells or the generated superelements independently give the parent domain. 

In the implementation of  the superelement decomposition, the following data structures are used: 
1. binary trees; 
2. linked lists; 

The edoe tree, as shown in Fig. 6, is used for the edge-splitting operations during ray-tracing from 
the skeleton nodes to the boundary edges. The domain tree is implemented as a stack to ensure 
piecewise decomposition. The generated superelements are placed in a queue for subsequent processing 
and the skeleton nodes and superelement nodes are placed in linked lists. The algorithm for domain 
decomposition is given below. The decomposition strategy of a rectangular domain is shown in Fig. 7 
and the macro flowchart of  ASM is shown in Fig. 8. 
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Algorithm decompose-domain(L; E,N,B) 
begin 

first-node := boundary-node-with-included-acute-angle(L); 
put-first-node-in-node-list ; 
while (domain-stack is not empty) 

get-generating-boundary-edge-pair; 
trace-equidistant-curve-for(first-node, boundary-edges); 
for (all other edges) 

solve-D-R-eqns(edge-3, boundary-edges); 
endfor 
select-minimum-node(second-node); 
if (boundary-edges are adjacent) 

if (edge-3 is adjacent) 
trace-3-rays(second-node, edge-3, boundary-edges); 
split-edges(edge-3, boundary-edges); 
append-children-to-edge-tree; 
append-radial-lines(radial-list); 
create-2-superelements-append(superlement list); 
chop-2-superelements-from-domain; 
push-modified-domain-to-domain-stack; 

endif 
else 

trace-3-rays(second-node, edge-3, boundary-edges); 
split-edges(edge-3, boundary-edges); 
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append-children-to-edge-tree; 
append-radial-lines(radial-list); 
create-l-superelement-append(superelement list); 
chop-l-superelement-from-domain; 
split-modified-domain-left-right-child; 
push-right-domain-child-to-domain-stack; 
push-left-domain-child-to-domain-stack; 

endif 
else 

if (edge-3 is adjacent to either boundary edge) 
trace-3-rays(second-node, edge-3, boundary-edges); 
split-edges(edge-3, boundary-edges); 
append-children-to-edge-tree; 
append-radial-lines(radial-list); 
create-3-superelements-append(superelement-list) ; 
chop-3-superelements-from-domain; 
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push-modified-domain-to-domain-stack; 
endif 
else 

trace-3-rays(second-node, edge-3, boundary-edges); 
split-edges(edge-S, boundary-edges) ; 
append-children-to-edge-tree; 
append-radial-lines(radial-list); 
create-2-superelements-append(superelement list); 
chop-2-superelements-from-domain; 
split-modified-domain-left-right-child; 
push-right-domain-child-to-domain-stack; 
push-left-domain-child-to-domain-stack; 

endif 
endif 
put-second-node-in-node-list; 
first-node := second-node; 

endwhile 
end 

Step 4: Control and correction of  superelements - the mergin9 technique. If  the set of  boundary 
elements of  a domain include reentrant vertices or short boundary segments, distorted superelements 
are generated, which, in turn are responsible for large element distortions within them. Also, for convex 
vertices with large included angles, superelements with considerable taper distortions are generated. 
The meroin9 process rectifies this anomaly by moving skeleton nodes toward one another either to 
eliminate or to modify the geometry of these distorted superelements. Fig. 9 illustrates some examples 
of  distorted superelements. Case (1) shows where one of the two adjacent edges are short and a tapered 
superelement D 1 is generated. Case (2) shows a similar type of  distortion for a large angle at a convex 
corner. Case (3) demonstrates the occurrence of a skewed superelement D1 generated by a short 
boundary segment when all three boundary segments are disconnected. In case (4) two superelements 
with large aspect ratios are formed. Case (5) deals with a reentrant vertex with a large included angle; 
here a skewed triangular D1 is formed. In case (6) the tapered superelement D1 is formed due to two 
nearly parallel closely spaced edges in combination with a convex circular arc with a large radius of  
curvature. The aspect ratio (AR) of a superelement is defined as the ratio of the length of the shape 
primitive associated with it to the length of its largest radial line. Limiting values of 4 and 3 are set 
as allowable limits of aspect ratios for quadrilateral and triangular superelements, respectively, and 
corrections are made according to this limit unless there is some user-supplied value of  merge-distance 
which is the allowable minimum value of any superelement edge. 

Corrections to distorted superelements are effected by two techniques, parallel shift and anoular shift. 
These procedures are illustrated in Fig. 10. In Figs. 10(a) and 10(b) parallel shift is shown. Let S1S2 be 
a small shape primitive branch which makes the superelements V1 and V2 distorted. SIA and S~D are the 
two radials from $1. Let $1 move toward $2, then SIA, S1D (moving radials) move to SzB, $2C (fixed 
radials) parallely; the domains E1 and E2 (expanding domains) move to V1 and V2 (vanishing domains) 
and edges GA, FD (expanding edges) move to AB, DC (vanishing edges). Fig. 10(c) shows a typically 
taper distorted superelement which can be corrected by angular shifts. Angular shifts can occur in two 
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Fig. 9. Superelement distortion. 
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Fig. 10. Merging. 

ways, the skeleton node A is moved to A 1 thus making the taper distortion less as shown in Fig. 10(d). 
In Fig. 10(e), the boundary nodes C and D move outward to produce the same effect. Thus, to correct 
the superelement distortions, node movements are of prime importance. A node is termed movable if 
the following conditions are satisfied: 

1. Expanding and vanishing edges must be part of  the same parent edge. This is because the end 
points of  an edge are the control points of  the domain and cannot be moved. Hence the expanding edge 
cannot be on an edge which is connected to the vanishing edge by a boundary node. 

2. No distortion of  the neighboring domains is allowed. Consider the case shown in Figs. 10(f) - 
(g). When S1 moves to $2 to merge V1 and V2, the domain D3 gets distorted. 

3. Local or global symmetry of the skeleton should not be disturbed. Symmetry is recognized as a 
feature of  the decomposed topology if there exists a mirror image of  a diametrically opposite skeletal 
node to a given skeleton node and identical rays can be drawn from these mirror images. 
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2.3. Decomposition of  multiply connected domains 

In order to define multiply connected domains, split lines are created connecting the outer and inner 
boundaries so that the domain boundary is represented as a single closed curve as shown in Fig. 1. 
Split lines are not considered as boundary segments, and thus, the region on one side of  the split line is 
physically separated from the other side. This causes the non-coincidence of  skeletal curves cutting the 
split lines from either side. To handle this problem, it is ensured that as the decomposition process reaches 
the split line, the subdomains are divided about the midpoint of  the split line. The inner boundaries 
are represented as an inner loops and the outer boundary as a, outer loop. A search procedure is used 
to determine the nearest boundary node of  the outer loop from the starting node of  a particular inner 
loop. The boundary segments associated to this outer loop node are identified and Euclidean distances 
from the inner loop node to these segments are evaluated. The locus of  the minimum of  these distances 
becomes the split line and a new outer loop node is placed at the site of  intersection of the split line 
and the segment. This procedure, however, ensures that split lines can only join an inner loop to the 
outer loop; two inner loops cannot be joined. 

3. Rectangular background grid 

Element node spacings should be known at every point within the superelements for the generation 
of  fully controlled finite element meshes. In this paper, such node spacing information is obtained by 
interpolating from known node spacings at the grid points of  a proposed rectangular background grid. 
In more traditional techniques, especially in remeshing applications, the initial finite element mesh is 
used to interpolate the nodes of a new mesh by using the element shape functions. The inverse Jacobian 
is computed and a Newton search technique is employed to determine the node spacing of the new node. 
In the case of  higher order elements, quite often the number of  iterations in one search computation 
exceeds one. In the present technique, the total number of operations is lesser than the traditional 
techniques and the storage requirements are also low as a structured grid is used for interpolation and 
connectivity information need not be stored. In contrast to the Newton search procedures, the local 
coordinates r and s of  a point within a rectangular cell are given by the following equations: 

(x - ) 

r - -  ( x  2 _ Xl ) ,  ( 9 )  

( y  - y l )  

s -- (Y2 - Yl)' (10) 

where x and y are the global coordinates of the point, x~, y~ are the coordinates of the bottom left-hand 
comer of  the cell and x2, Y2 are the coordinates of  the upper right-hand comer of  the cell. 

3.1. Algorithm for generation of  rectangular baekoround grid 

The background grid is a closed grid of  horizontal and vertical lines which completely cover the 
problem domain. The x and y grid lines are placed in ascending order and a node spacing value is 
assigned to each grid point. Thus, from the physical analogy of  the distribution of  the grid points, a 



CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 17 

rectangular matrix can be formed where the node spacing values can be arranged in a two-dimensional 
array. The row indicates the position of the grid point on the x-lines and the column indicates its position 
on the y-lines. The input to the algorithm are the coordinates of  a set of  points in the problem domain 
and the node spacing values associated to them. In a typical adaptive mesh generation scheme, the 
node spacing values at the centroid of  the elements (based on error estimates) are used to create the 
background grid for the next refined mesh. The initial mesh is created by a user-specified target node 
spacing which is automatically assigned to the centroid of  the superelements. However, if a graded 
initial mesh is desired, separate target node spacings may be assigned to individual superelements 
which are automatically assigned to their respective centroids. 

The algorithm consists of  two parts, viz. grid generation and node spacing assignment to generated 
grid points from lalown node spacing data. Ideally, to assign node spacing values to a point, three 
closest points with imown node spacing which form a triangle about this point are located and the node 
spacing value is intc:rpolated from them. However, to enhance the speed and efficiency of  the algorithm, 
only the known grid point closest to the point is found and the node spacing value of  the former is 
allotted to the latter. The procedure to locate this nearest point is a binary search problem; however, 
a modified search technique is presented here which accelerates the process by using a lesser search 
space. The modified procedure is described below. 

The nodes are sorted in ascending order of  x as they are read. In order to locate the nearest node to 
a grid point, first, the node lying closest to the point in the x-direction is located and sorted first. Let 
this node be called the central node and the search is centered around this node. Let the distance from 
the central node to the grid point be called the search distance and nodes having x-coordinate values 
greater than the search distance are ignored. Starting from the central node, the nodes lying on either 
side of  it in the list are considered successively and the Euclidean distance from the node to the grid 
point is evaluated. If this distance is less than the search distance, the search distance is reduced to 
the new distance and thus the search is narrowed down to a few nodes lying around the central node 
instead of  the full list of  nodes as it is done in traditional binary search algorithms. Figs. 11 (a) and (b) 
show the flowchart of  the grid generation process. 

4. Meshing by successive decomposition 

Conventional superelement meshing techniques use isoparametric or transfinite mapping methods to 
create structured meshes by the intersection of  two sets of  curves which move from one superelement 
boundary to the opposite one. Thus, mesh controlling parameters like node spacing are largely ineffective 
within the domain of  the superelement. Thus for adaptive FEA applications which are characterized by 
local mesh refinements, mapped mesh generators are not much useful. 

In this context it is relevant to discuss some of  the existing quadrilateral mesh generation schemes. 
The advancing front method by Zhu and Zienkiewicz [11] uses a background mesh to discretize the 
boundary in one closed loop of straight line segments. Then a layer of  offset elements are generated 
which are as square as possible. Then the meshing progresses layer by layer. Talbert and Parkinson [12] 
used the splitting line technique which is based on the idea that the subsequent splitting of  a domain 
into convex parts will finally result in an all-quadrilateral mesh. The paving method of  Blacker and 
Stevenson [13] can also be used to generate all quadrilateral meshes. This method layers or "paves" 
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the geometry of the object with rows of quadrilateral elements from the boundary to the interior of the 
domain. 

The proposed technique overcomes the shortcomings of conventional mapping techniques like 
isoparametric mapping and the computational complexity of the unstructured mesh generation tech- 
niques mentioned ~bove. In MSD, the superelements are divided recursively using discrete curve seg- 
ments, generated by transfinite interpolations, on which the required node spacings are interpolated 
from the background grid to ensure a complete control of the mesh density. Multiple splitting methods 
like 2:1 and 3:1 splitting are introduced to create the transitions leading to mesh gradation within the 
subdomain. The sa]Jent features of the proposed meshing technique are described in the later sections. 

1. Computation of  the number of  nodes on the superelement edges. Let ns be the number of segments 
into which a super,element edge should be divided consistent with node spacing distribution, 5(t) the 
node spacing function along the length of the edge in terms of the arc-length parameter t and L the 
Length ofthe edge.  Then ns is chosen as a nearest integer to: 

fL 1.0 Ai = ~(~ dt. (11) 

6(t) is obtained by interpolating from the background grid and ns is computed independent of the 
superelements they bound. The discretization of the superelement boundaries prior to the commencement 
of splitting and the subsequent discretization of the splitting lines are carried out by this method. 

2. Adjustment fi~r the number of  nodes on the edges. Given any superelement, the prerequisite for 
any quadrilateral mesh to be generated in it is that the total number of segments on the boundary curves 
defining the superelement must be even [14]. 

In the previous step such a check was not implemented. Here, all the subdomains are now checked 
for this condition, and for any violation a suitable edge is selected where the nodes can be incremented 
to conform to an even division. 

Criteria for the selection of  a suitable edge 
(a) Since an edge is shared by two subdomains, any nodal increment on this edge must conform to an 

even division in either subdomain. If more than one edge of a superelement satisfies this condition then 
the priority is given to the edge which already has the largest number of divisions. The node spacings 
of such edges are not much affected as already a large number of divisions exist there. 

(b) Any superelement edge lying on the domain boundary may be selected as it does not affect any 
other superelements. 

(c) If the set of superelements is such that neither of the two strategies given above works then 
an iterative strategy is evolved. The edge with the largest nodal density is selected and the nodes are 
incremented. The perturbations on the neighboring superelements are computed and similar readjustment 
of the edge nodal density is done. This process is repeated till all superelements have an even number 
of segments on their boundary. 

3. Placement of" internal nodes on the edges. Let the position of a node Nk on the boundary curve 
be given by sk(k =: 0, 1,2 . . . .  , ns). Then, if t is the arc-length parameter the following equation may be 
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used to find the position of  the nodes on the edge after readjustments: 

n~ ~ 1.0 

where Ai is given from Eq. (11 ) and n~ is the nearest integer to Ai. 

(12) 

4. Splittin 9 techniques for  quadrilateral superelements. A quadrilateral superelement is split into 
two, three, or four children superelements in one given sweep of  the recursion procedure depend- 
ing on the nodal distribution on the edges. The three different splitting procedures are illustrated 
below: 

Case 1 - direct splitting. If  any opposite edge pairs have at least more than two segments, then the 
superelement is split into two subregions by a single splitting line. In Fig. 12(d), ABCD is the parent 
superelement with nodes E and F on AB and CD which split the parent edges AB and CD into the 
children edges AE, EB and CF, FD respectively. EF is drawn by transfinite interpolation which splits 
the parent domain ABCD into the first level offsprings AEFD and EBCF. Nodes are interpolated on EF 
from the background grid and they are adjusted for an even number of  segments on the edges of the 
children superelements. 

Case 2 - 2  : 1 splittin9. If  two adjacent edges have only one segment each (i.e. no internal nodes), 
then three splitting lines divide the parent superelement into three progeny. In Fig. 12(e), ABCD is the 
parent superelement, AD and DC are parent edges with only one segment each, but AB and BC may 
have several segments. Let F and G be typical nodes on edges AB and BC closest to their respective 
midpoints. The point E is generated by taking the average of  the six points A,B, C ,D,F  and G. DE 
is plotted as a straight line. To generate EF as a transfinite curve, the midpoint M of  the edge AD 
is computed, and blending is done on AM and GB. Similarly EG is obtained by transfinite mapping 
between FB and NC where N is the midpoint of  CD. The nodes on EF, EG and DE are interpolated 
from the background grid and they are adjusted to satisfy the criteria of an even number of segments 
on the boundaries of children superelements. 

Case 3 - 3 : 1 splitting. In this case the number of segments on the three edges of  the superelement 
is one and the fourth edge has more than one segment. The minimum number of  segments on the fourth 
must be three to keep the total number of segments even. In Fig. 12(f), let ABCD be the parent domain, 
AB being the side which has more than one segment. The points E and F are internal nodes which lie 
on AB nearest to its points of trisection. The points G and H are computed so that the included angles 
are close to 120 °. DG, CH, GE, and HF are plotted as straight lines but GH is obtained using transfinite 
interpolation between EF and DC. As in the other cases, nodes are generated on the edges DG, GH, 
HC, GE and HF from the background grid and adjustment to the number is made to satisfy the criteria 
of an even number of segments on the boundaries of  children superelements. 

5. Splittin9 techniques for  triangular superelements (a) If  any of  the included angles, as shown 
in Fig. 12(g), is greater than 150 °, then a single splitting line is traced as shown. ABC is the parent 
superelement where A is the vertex with an angle greater than 150 °. Point D is a node lying closest to 
the midpoint of  BC. AD is plotted by transfinite interpolation between AB and AC. 
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(b) Any topolog',ieally correct triangular superelement as shown in Fig. 12(h) is split into one quadri- 
lateral element and two children quadrilateral superelements as shown. ABC is the parent superelement. 
AEFG is the quadrilateral element while EBDG and FGDC are quadrilateral superelements. BC is the 
smallest edge in ABC and E and F are nodes on AB and AC that lie closest to A. The coordinates of 
G are computed by taking the average of the coordinates of A to F. The splitting lines EG and FG are 
straight line segments while GD is traced by transfinite interpolation between EB and FC. The number 
of subsequent internal nodes on the child edge GD must also be adjusted to accommodate the even 
number of segments on superelement edges. 

6. Discrete transfinite mappin9 techniques. Once the splitting nodes have been selected, the splitting 
edge is traced as a transfinite curve by blending the boundaries of  the region R in a smooth manner. 
Transfinite mapping techniques [ 15-17] are used to generate meshes in topologically regular regions by 
blending the boundaries of  the region in a smooth manner. The mappable domain is defined by two sets 
of parametric curves, which are parametrized in orthogonal directions. Each such set contains all curves 
in one direction and is called a projector. Each projector interpolates all curves of  the corresponding 
set exactly. The product projector, which is composed from all curves of  both sets, interpolates all 
intersection points .of orthogonally parametrized curves and maps the four comers of  the computational 
domain to the four corresponding comers of  the physical domain. Finally, the Boolean sum projector 
which maps both curve sets exactly, represents the parametric interpolant of  the two dimensional 
domain. 
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A region bounded by any four curves, (Fig. 12(a)), Al(r),  A2(r), Bl(s), B2(s), - 1  < r < 1, 
- 1  < s < 1, can be interpolated using a bilinear projector as 

~(r,s) = PI(F)  + Pz(F) - PIP2(F). (13) 

The projector P1(F) interpolates between Al(r)  and Az(r) and the projector P2(F) interpolates 
between B1 (s) and B2(s): 

P1(F) = Nl(s) * Al(r)  + N2(s) * A2(r), (14) 

P2(F) = Nl(r)  * Bl(s) + Uz(r) * B2(s), (15) 

where 

Nl(r)  - (1 + r)  (16) 
2 ' 

(1 - r )  ( 1 7 )  
Nz(r) = 2 

Let 

Gl = N2(r) * N2(s) * ct(1, 1) + N2(r) * Nl(s) * ~(1 , -1) ,  (18) 

G2 = N1 (r) * Nz(s) * ~( -1 ,  1 ) + N1 (r) * Nl(s) * oc(--1,- 1). (19) 

Thus the product of  the projectors P~ and Pz is given by 

P1 • Pz(F) = GI + G2, (20) 

where ~(1, 1 ), ~(1, - 1 ), ~ ( -  1, 1 ), off- 1, - 1 ) are the corners of the region bounded by curves. 
Consider a case shown in Fig. 12(b). In order to generate a curve from the point Q1 to the point Q2, 

that is an average of the two curves Cl(r) and C2(r), the following procedure is adopted. Two fictitious 
curves C3(s) and C4(s) are assumed to pass through the points QI and Q2, forming a closed region with 
the curves G ( r )  and C2(r) as shown in Fig. 12(c) . It is also assumed that the points Q1 and Qz are 
obtained by substituting s = 0 in the equations for C3 and C4. Now, a curve that starts at Q~ and ends 
at Q2 is obtained by substituting s = 0 in Eq. (13). This curve ~(r,0) will be an average of  the curves 
C1 and C2. 

To use the expressions cited above, a parametric representation of  the curves C~(r) and Cz(r) must 
be available. In the current application, where the exact equation of  these curves is not available, the 
following procedure is adopted. The curve is approximated as a series of  broken straight lines between 
the control points, and in this way the total length of  the curve is evaluated. From the total length, the 
arc length parameters of  the control points are determined by mapping into a straight line in the range 
( -  1, 1 ). In order to evaluate the coordinate of  a given point t, the control points between which the 
point lies are fixed and a linear interpolation is made. 

4.1. Recursive division o f  superelements - implementation aspects 

The recursive superelement division is based on a modified "splitting transfinite curve" technique. 
In the traditional splitting line techniques, it is conjectured that the superelement being a convex 
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quadrilateral, any recursive subdivision also results in convex, non-overlapping, quadrilateral subre- 
gions. If such a procedure is thus allowed to terminate naturally, the superelement is finally broken into 
a set of  quadrilateral finite elements. In the modified technique, in contrast to the traditional methods 
where the domain is split into two subregions at any level of  subdivision, the domain can be split into 
two, three or four subregions depending on the relative nodal distribution on the four edges. Thus, the 
domain tree may have upto four progeny at a given level and the edge tree may have upto three chil- 
dren. In the process of  creation of  the new edges, the old edges are recursively divided about the point 
of  generation of  the new edge. Thus, at the creation of every new edge, the old parent edge splits into 
children edges which form the topology of  the newly created children subdomains. When an edge is 
divided, the nodes lying on the parent edge are copied onto the corresponding children edges. When 
new edges are created, the number of nodes on them are computed from node spacing requirement 
on the background grid. Again, these are modified as children superelements must also have an even 
number of  segments on their boundary. 

Algorithms used for recursive subdivision are discussed below. The first major algorithm is select- 
edge-pair, the input to this algorithm are the four edges ei of  the superelement R which are ordered 
in an anticlockwise sense and the output are the edge pairs E1 and E2 whose sum is maximum. This 
algorithm is only valid for a direct splitting case and is given in Appendix A. The splitting edge is 
traced between the edges as selected above. To select the splitting nodes, the following algorithm called 
find-splitting-nodes is used. The input to this algorithm are the selected edges E1 and E2, the output 
are the nodes n 1 and n2 which lie on E1 and E2. For direct splitting cases, n 1 and n2 lie closest to the 
forenode of  E1 and the backnode of  E2, respectively. In the case of the 2:1 split, nl and n2 lie nearest 
to the centers of  their respective edges. However, for the 3:1 split, nl and n2 lie on the same edge 
closest to its points of  trisection. This algorithm is also given in Appendix A. 

The splitting edge/edges are traced as shown in Fig. 12(d)-(f). The new edge/edges thus created 
is/are pushed to the tail of  the edge list which consists of  the four edges of R at the beginning of  
the process. The e, dges E1 and E2 which have been subsequently split give birth to two child edges 
which are appended to the corresponding parent edges. Thus, a binary edge tree is created whose roots 
constitute the elements of  the edge list. In the case of 3:1 transitions, the binary tree becomes a 3-tree. 
In that case, the progeny are marked as left, right and central children. The algorithms used to modify 
the edge topology as stated above are given in Appendix A. 

In the algorithm for 2:1 splitting, O and V indicate the nodes E and A respectively in Fig. 12(e). 
The nodes given by O1, 02, D1 and D2 are indicated by G, H, D and C, respectively, in Fig. 12(0. 
The algorithm for creating the binary edge tree and the edge-3-tree after every edge splitting operation 
is also shown in Appendix A. 

The next step in the meshing process is node generation on the new edge and subsequent adjustment 
for an even number of segments on the children subdomains. The process is similar to the one followed 
during the initial placement of  nodes on the superelement boundaries. However, during the recursive 
subdivision process, the node adjustment procedure is constrained. At any given level of  subdivision, 
no node can be created on the progeny of the four superelement boundaries or on those edges which 
form parts of  the elements themselves. This problem is tackled by using the topology of  the edge and 
domain trees and is discussed in later sections. In this context, it is pertinent to describe the structure 
of  the elements of  the domain tree. The children of  the domain tree are placed in a domain stack to 
ensure the recursive subdivision of  the left child prior to the right and/or center children. At every level, 
the domain to be divided next is kept at the top of  the stack. At the completion of  the element creation 
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process, the domain stack becomes empty. The creation of the domain tree is done in the algorithm 
called sp l i t - doma in  and this is shown in Appendix A. 

The edges of the domain progeny are numbered in an anticlockwise sense as shown in s p l i t -  
domain. It is also evident that the domain stack operations ensure that the left child is always subdivided 
recursively till a four-noded element is obtained. One important step in these operations which needs to 
be considered is node generation and adjustment. As stated earlier, this process, when followed in the 
recursive cycles, involves more constraints than when used in the primary stage prior to mesh generation. 
In the recursive procedure, no nodes can be generated on the progeny of the four superelement edges 
or on those edges which are part of the elements which have been "chopped off' from the domain 
tree. These constraints can be achieved from the topology of the edge tree itself. All the progeny of 
generated edges are provided with a flag, which changes value only when the associated element is 
a valid four-noded finite element. At any level, thus, nodes are generated only on those leaves of the 
edge tree whose flag value is unchanged. The element discretization process can thus be presented in 
a recursive algorithm as shown below: 

Algorithm divide-domain (R) 
begin 

while (domain-stack is not empty) 
pop-domain-from-domain- st ack (R) ; 
if (R is four-noded) 

push-in-element-stack (R) ; 
else 

select-edge-pair (R; El, E2) ; 
find-closest-nodes (El, E2 ; nl,n2) ; 
generate-transfinite-curve (nl ,n2 ; E3) ; 
append-new-edge-to-edge-list (E3, nl, n2 ; edge-list) ; 
create-edge-tree (El, E2, nl,n2 ; T) ; 
generate-nodes-on-edge (E3) ; 
adjust-nodes-for-quad-elements (T) ; 
split-domain(R) ; 

endif 
endwhile 

end 

Fig. 13 shows the recursive subdivision of a quadrilateral superelement and Fig. 14 shows the macro 
flowchart of the mesh generation procedure. 

4.2. Smooth ing  techniques 

A smoothing procedure has been adopted to properly condition the individual quadrilateral elements. 
Although various element parameters like aspect ratio, skew and taper have been identified for distortion 
measures, the current algorithm only relaxes the mesh for angular distortion measures. If an internal 
angle value exceeds 150 ° at a particular node then that node is identified for correction. The usual 
Laplacian smoothing [18] is adopted whence the coordinates of the node are changed to the average 
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Fig. 13. MSD example.  

of four closest points surrounding it. Fig. 15 shows the speed of mesh generation with and without the 
effects of smoothing for the cantilever problem. The plot shows the increase of CPU time (in seconds) 
with respect to the mesh generation (increase in number of nodes). It is observed that smoothing takes 
approximately hall' the time of the mesh generation process. 

5. Applications - adaptive finite element analysis 

This section deals with the most important application aspect of the mesh generation scheme- adaptive 
finite element analysis of linear elasticity problems. Even though the scheme is quite general, the scope 
of the current work: has been kept limited to h-version adaptive analysis of plane-stress, plane-strain and 
axisymmetric problems. As in any adaptive FEA module, the main components of the proposed scheme 
are, the error estimator, the refinement strategy and the mesh generator. But, in order to automate the 
process and to keep the program modules as general as possible, another component was identified - 
namely, automatic generation of the problem specific data required for analysis - i.e. loads, boundary 
conditions, element material property data, etc. Collectively these data are generally known as attribute 
information. A possible approach could be generation of all attribute data during mesh generation itself 
but this would restrict the mesh generation module to be specific to certain element classes only. 

Another major hurdle are points with analytic/non-analytic singularities. The points of concentrated 
loads, points of transition of loads and/or boundary conditions, comers, regions of material or geometric 
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Fig. 14. MSD - flowchart. 
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Fig. 15. Mesh generation speed. 
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Fig. 16. Loads and boundary conditions of examples. 

transition are all examples of these singularities. The mesh generator should ensure that nodes are placed 
at these control points and that element boundaries do not cross the regions of discontinuities. 

The adaptive procedure that was developed as a part of this work; identifies and provides satisfactory 
solutions to all the problems mentioned above. All attribute data are provided on the boundary segments 
which are transferred to superelement boundaries after the generation of superelements and are stored as 
superelement data that are suitably transferred to the finite element mesh after the mesh generation. The 
superelements and the superelement data are generated only once and the analysis data for each mesh 
are generated from the superelement data automatically. An adaptive finite element analysis package 
called PAFEM ha,~ been developed in ANSI-C on the DOMAIN-3500 system which is capable of 
analysis of plane eilasticity problems. 

The loading data and boundary conditions of three example problems are shown in Fig. 16. In 
Figs. 17-19 the meshes generated by MSD in typical adaptive applications are shown. Fig. 17 shows the 
adaptive analysis of a cantilever fixed at one end and loaded by a vertical shear load at the other end. In 
Fig. 18, the adaptive analysis of a shear loaded bracket is shown and in Fig. 19 a hook from a weighing 
machine is shown. For ease of fabrication the outer boundary of the hook is composed of straight 
edges. The machine operates by measuring strains from which the weight can be evaluated using proper 
calibration. Slits are introduced in the component to magnify the strains to augment the sensitivity of 
the machine. Because of the presence of confined regions and irregular geometry, conventional meshing 
techniques are difficult to implement as the mesh generated here would be very sensitive to the shape 
of the object. The superelements are shown in Fig. 19(a). The load is distributed over a small length of 
the hook at the bottom edge to remove singularities. The boundary conditions are also approximated to 
a continuous rigid support over the top horizontal section. The presence of stress concentration zones 
is automatically meshed to a finer density progressively as shown in Figs. 19(b)-(f). 
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Fig. 17. Adaptive analysis of cantilever. 

The error analysis is done by the least squares approach [19] and superconvergent extraction theory 
[20, 21]. In the adaptive procedure, if the local error does not exceed the target error, then the 
corresponding element size may be increased. This is called derefinement. Usually this technique re- 
duces the number of degrees of freedom of the solution for a given error thus making the solution more 
economic but element distortions increase which may affect the overall accuracy of the solution. The 
convergence characteristics of the three problems are shown in the plots given in Fig. 20 for derefined 
meshes and non-derefined meshes. 
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Fig. 18. Adaptive analysis of bracket. 
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L.S., D.R. 

6. Conclusions 

In this paper ASM is presented as a suitable domain decomposition technique which can tackle 
multiply connected domains as well. The mesh generation module is shown to be able to create both 
fine and coarse meshes. The application of  MSD to adaptive finite element analysis is also demonstrated 
with the aid of  several plane problems of  elasticity. It has been shown that graded meshes of  well- 
shaped elements may be obtained by the proposed method when used in an adaptive environment. The 
various advantages offered by this method may be stated as follows: 

1. Automatic domain decomposition ensures that at any step the mesh generator handles convex 
quadrilateral regions instead of  the full domain which may contain reentrant comers. 
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Fig. 18. Continued. 

2. ASM is ideally suited for automatic superelement generation as the skeletal curves closely follow 
the boundary ensuring that the generated superelements preserve the boundary characteristics. 

3. MSD is ideally suited for adaptive FEA as the node generation along any direction is guided 
by nodal density functions which ensure a greater degree of control over the mesh generation 
process. 

4. Edge-based data structures are used which make the manipulation of geometric quantities easier 
during mesh generation. In [22], edge-based data structures are presented as most efficient in FE 
programming. 

5. The background grid is shown to control the entire mesh generation process and the error analysis 
leads to only a new background grid from which the new mesh parameters may be computed. Thus the 
computational expenses of the mesh controlling operations are reasonable. 

6. Use of the proposed modified binary search technique to optimize the background grid for the 
placement of the gridlines saves a considerable amount of CPU time. 

7. Automated attribute modelling from superelement data and hierarchy information and automatic 
superelement decomposition from b-rep data, make the process truly automatic with minimal user 
interaction. 

8. MSD is suitable for parallel computing applications as each superelement can be processed sepa- 
rately as the mesh generation process in each is independent of the other superelements. 
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Fig. 19. Adaptive analysis of hook. 
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Fig. 20. Convergence characteristics. 

Appendix A 

1. The algorithm for selecting the optimal edges for splitting (as done in the direct splitting) is given 
below: 

Algorithm select-edge-pair (R; El, E2) 
begin 

find-edge-lengths (R; iI, 12,13,14) ; 
if((ll+13) _> (12+14)) 

El := el; 

E2 := e3; 
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else 
E1 := e'2; 
E2 := e4; 

33 

2. The algofithmusedforthe selection ofthe spliaing nodesis given in thefollowing section: 

Algorithm find-splitting-nodes(EI,E2; nl,n2) 
begin 

if (directsplit) 
find-forenode-of(E1); 
nl := node-on-El-closest-to-forenode; 
find-backnode-of(E2); 
n2 := node-on-E2-closest-to-backnode; 

endif 
if (2:1 split) 

find-center-of-El; 
for (all nodes on El) 

find-distance-from-node-to-center; 
endfor 
nl := node-with-least-distance; 
find-center-of-E2; 

for (all nodes on E2) 
find-distance-from-node-to-center; 

endfor 

n2 := node-with-least-distance; 
endif 
if (3:1 split) 

for (all nodes on El); 

ml := find-distance-to-onethird-distance-from-backnode; 
m2 := find-distance-to-onethird-distance-from-forenode; 

endfor 
nl := minimum(ml); 
n2 := minimum(m2); 

endif 
end  

3. The algorithm which modifies the edge topology of the domain by appending the splitting 
edge/edges to the old edge list is given below: 

Algorithm append-new-edge-to-edge-list(E,nl,n2; edge-list) 
begin 

if (direct split) 
E-back-node := nl; 
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end 

E-fore-node := n2; 

push-at-tail(edge-list, E); 

endif 

if (2:1 split) 

E3-back-node := nl; 

E3-fore-node := 0; 

E4-back-node := n2; 

E4-fore-node := 0; 

E5-back-node := V; 

E5-fore-node := O; 

push-at-tail(edge-list, E3,E4,E5); 

endif 

if (3:1 split) 

E3-back-node := nl; 

E3-fore-node := 01; 

E4-back-node := n2; 

E4-fore-node := 02; 

E5-back-node := 01; 

E5-fore-node := 02; 

E6-back-node := DI; 

E6-fore-node := 01; 

E7-back-node := D2; 

E7-fore-node := 02; 

push-at-tail(edge-list, E3,E4,E5,E6,E7); 

endif 

4. The binary~ee c ~ i o n  algorithm used ~ r  directand 2:1 spli~ingisshownbelow: 

Algorithm create-binary-edge-tree(EI,E2,nl,n2; edge-tree) 

begin 
allocate memory to El-left-child, El-right-child; 

El-left-child-fore-node := nl; 

El-left-child-back-node := El-back-node; 

El-right-child-fore-node := El-fore-node; 

El-right-child-back-node := nl; 

append E1 progeny to El; 
allocate memory to E2-1eft-child, E2-right-child; 

E2-1eft-child-fore-node := n2; 

E2-1eft-child-back-node := E2-back-node; 

E2-right-child-fore-node := E2-fore-node; 

E2-right-child-back-node := n2; 

append E2 progeny to E2; 

end 
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5. The edge-3-m~eis cre~edfor a 3 : 1  edge split andthe algorithm is presented below: 

Algorithm create-edge-3-tree(El,nl,n2; edge-tree) 
begin 

allocate memory to El-left-child, El-center-child, El-right-child; 

El-left-c:hild-back-node := El-back-node; 
El-left-child-fore-node := nl; 
El-center-child-back-node := nl; 
El-center-child-fore-node := n2; 
El-right-child-back-node :=n2; 
El-right-child-fore-node := El-fore-node; 
append E1 progeny to El; 

end 

6. The algorithrn for splitting the domain during the mesh generation process is given below: 

Algorithm split-domain(R) 
begin 

if (direct split) 
allocate memory for left and right children of R; 
append structure order-nodes to left children; 
R-left-child -~ edge1 : = edge-with-nodes (nl ,n2 ; el) ; 

R-left-child -+ edge2 := edge-with-nodes(n2,n3; e2) ; 
R-left--child-+ edge3 := edge-with-nodes(n3,n4; e3); 
R-left-child -~ edge4 := edge-with-nodes (n4,nl; e4) ; 
R-righ~z-child -~ edgel := edge-with-nodes (n2,nl ; el) ; 

R-righ~-child-~ edge2 := edge-with-nodes(nl,n5; e2); 

R-righ~-child -+ edge3 : = edge-with-nodes (n5,n6 ; e3) ; 
R-righ'~-child -+ edge4 := edge-with-nodes(n6,n2; e4) ; 
push R-right-child in domain-stack; 
push R-left-child in domain-stack; 

endif 
if (2:1 split) 

allocate memory for left, center and right children of R; 
append structure order-nodes to the children; 
if (El-right-child-fore-node = E2-1eft-child-back-node) 

R-le.ft-child -+ edgel := El-left-child; 
R-left-child -~ edge2 : = edge-with-nodes (nl, 0 ; e2) ; 
R-le, ft-child -+ edge3 := edge-with-nodes(O,V; e3); 

R-left-child -~ edge4 : = parent-edge (V, El-back-node ; e4) ; 
R-right-child -+ edgel := E2-right-child; 
R-right-child -+ edge2 := parent-edge (E2-fore-node,V; e2) ; 
R-right-child-+ edge3 := edge-with-nodes(V,O; e3); 
R-right-child-+ edge4 := edge-with-nodes(O,n2; e4); 
R-center-child -+ edgel := El-right-child; 
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e n d  

R-center-child-~edge2 := E2-1eft-child; 
R-center-child-~edge3 := edge-with-nodes(n2,0; e3); 
R-center-child-~edge4 := edge-with-nodes(O,nl; e4); 

endif; 
if (E2-right-child-fore-node = El-left-child-back-node); 

R-left-child-+edgel := E2-1eft-child; 
R-left-child-~edge2 := edge-with-nodes(n2,0; e2); 
R-left-child-+edge3 := edge-with-nodes(O,V; e3); 
R-left-child-~edge4 := parent-edge(V,E2-back-node; e4); 
R-right-child-~edgel := El-right-child; 
R-right-child-*edge2 := parent-edge(El-fore-node,V; e2); 
R-right-child-+edge3 := edge-with-nodes(V,O; e3); 
R-right-child-*edge4 := edge-with-nodes(O,nl; e4); 
R-center-child-*edgel := E2-right-child; 
R-center-child-~edge2 := El-left-child; 
R-center-child-~edge3 := edge-with-nodes(nl,O; e3); 
R-center-child-+edge4 := edge-with-nodes(O,n2; e4); 

endif; 
endif 
if (3:1 split) 

R-left-child-~edgel := El-left-child; 
R-left-child-~edge2 := edge-containing-nodes(n1,01; e2); 
R-left-child-+edge3 := edge-containing-nodes(OI,D1; e3); 
R-left-child-*edge4 := parent-edge(D1,El-back-node; e4); 
R-right-child-+edgel := El-right-child; 
R-right-child-~edge2 := parent-edge(El-fore-node,D2; e2); 
R-right-child-~edge3 := edge-with-nodes(D2,02; e3); 
R-right-child-~edge4 := edge-with-nodes(O2,n2; e4); 
R-center-l-child-~edgel := El->center-child; 
R-center-l-child-~edge2 := 
R-center-l-child-*edge3 := 
R-center-l-child-*edge4 := 
R-center-2-child-*edgel := 
R-center-2-child-~edge2 := 
R-center-2-child-+edge3 := 
R-center-2-child-*edge4 := 

endif 

edge-with-nodes(n2,02; e2); 
edge-with-nodes(02,01; e3); 
edge-with-nodes(Ol,nl; e4); 
edge-with-nodes(01,02; el); 
edge-with-nodes(02,D2; e2); 
parent-edge(D2,D1, e3); 
edge-with-nodes(D1,01, e4); 
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