
ELSEVIER Finite Elements in Analysis and Design 20 (1995) 1-37

FINITE ELEMENTS
IN ANALYSIS
AND DESIGN

Meshing by successive superelement decomposition (MSD) - A
new approach to quadrilateral mesh generation

C.S. Krishnamoorthy*, B. Raphael, S. Mukherjee
Department of Civil Enoineering, Indian Institute of Technology, Madras 600036, India

Abstract

An automatic two-dimensional mesh generation scheme based on superelement decomposition technique is presented. The
proposed approximate skeletal method (ASM) uses shape interrogation techniques on simplified geometric representation
of the shape boundary to generate non-intersecting, topologically simple and mappable superelements. A recursive mesh
generation scheme, meshing by successive decomposition, is introduced which uses edge-based hierarchical data structures to
successively create parent-child edge relations and possible transitions based on the nodal spacing on these edges. Individual
edge segments are obtained by transfinite mapping techniques. The use of a structured background grid is suggested to
ensure full control of the mesh in case of transitions and grading. Finally, application to plane adaptive FEA problems
demonstrates that the proposed mesh generator (MSD) results in good mesh grading and convergence characteristics.

1. Introduction

The integration of FE analysis with geometric design models has usually been a time-consuming
task which depends mostly on the expertise of the analyst or the modeller. Over the last few years this
problem has been addressed by the creation of separate preprocessor modules which create the geometric
model of the problem domain by using computational geometry and other standard techniques in CAD.
The output of these modules are externally linked to the input of FE programs which subsequently carry
out the analysis. However, with the advent of large computers and more demand from the users in the
full automation of ~the modelling-analysis systems it has been felt that only a full integration of CAD
systems with FE systems could provide a solution [1]. A major part of this effort is concentrated on
mesh generation techniques. Good reviews of general mesh generation schemes are available in Refs.
[2-5]. The available mesh generators now in use can be generally categorized into two groups [6]:
• mapped mesh generators;
• automatic mesh generators.

* Corresponding author.

0168-874X/95/$09.50 Q 1995 Elsevier Science B.V. All rights reserved
SSDIO 1 6 8- 8 7 4 X (9 5) 0 0 0 0 5 - 4

2 c.s. Krishnamoorthy et al./Finite Elements in Analysis and DeMon 20 (1995) 1~7

In mapped mesh generation methods the problem domain is manually decomposed into mappable,
topologically simple patches which are necessarily non-intersecting and whose union results in the
parent domain. The mapping techniques, usually isoparametric or transfinite procedures, employ either
in implicit or explicit form, a set of geometric representations within each individual patch. These
representations are defined in terms of the information available on the boundary of the mesh patch. These
schemes produce structured meshes if only one mesh patch is used to decompose the domain. However,
if several patches are to be discretized then semi-structured meshes are created. These are structured
within each patch; however, the topology of the patches themselves is unstructured. Computationally
these mesh generators are easy to handle as only the grid coordinates need to be stored and the mappable
patches are created manually. However, control on mesh density requirements is poor and badly shaped
meshes result if the patch itself is skewed or has a large aspect ratio. Automatic mesh generators
generally produce unstructured meshes and are boundary based, i.e. the boundary discretization is the
starting point of the generation process. These procedures are computationally more intensive, as, at
every step of element generation, the geometry of the unmeshed domain needs to be evaluated. Although
user interaction is minimal and better control of generation parameters is possible, both connectivity
and coordinate data of the elements need to be stored rendering them computationally expensive.

From the observations made above, it can be stated that the motivation for the development of a new
mesh generator is basically twofold:

1. The full automation of the domain decomposition into superelements based on the boundary
information of the problem domain;

2. The integration of computational efficiency of mapping techniques and the versatility of unstruc-
tured mesh generators.

In view of the characteristics of the mesh generator stated above, a new method of quadrilateral
mesh generation, meshing by successive superelement decomposition (MSD), is presented. This gener-
ator comprises two major operations: decomposition of the domain into superelements by the approxi-
mate skeletal method (ASM), followed by meshin9 by successive decomposition, which is a recursive
quadrilateral element generation scheme within individual superelements.

2. Skeleton-based domain decomposition

2.1. Background on skeleton and skeletal curves

The skeleton-based method is used to create a set of non-intersecting superelements whose union
gives the problem domain. The technique of skeletal curve generation as presented in this paper is based
on the medial axis transform (MAT) technique which was first proposed by Blum [7] as a method to
recognize biological shapes. Subsequently Tam et al. [8] and Nebi Gursoy et al. [9] have applied this
method to automate finite element mesh generation.

In MAT, an intrinsic coordinate system is used to define any two-dimensional object. Given a closed
boundary A of a domain t2, the Euclidean distance d(x, A) from any point x to a set of boundary points
A is

d (x , A) = min[d(x ,y) : y C A]. (1)

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1 37 3

A B C D = P R O B L E M D O M A I N .

I t = R A D I U S O F M A X I M A L D I S K .

S l , S 2 = S K E L E T O N N O D E S .

I 8 1 S 2 = S K E L E T / ~ L A R C . • i /
/

/
/

/
/

/

C

\
\

\
\

\
\

\

= E X T E R N A L B O U N D A R Y .

• i S P L I T L I N E .

m m - - m I N T E g N A L B O U N D A R Y .

(~ = B o u N D A R Y N O D E .

Q - I N T E ~ . N A L N O D E .

Fig. 1. Basic definitions.

For some points, more than one boundary point satisfies this property of the minimum distance. The
locus o f such points defines the medial axis or the skeleton of the system. Blum [7] defines the medial
axis of a domain f2 bounded by a closed curve A in the Euclidean plane to be the union of the centers of
all maximal disks which fit into A. Thus, on the skeleton S generated by the set of boundary points A, a
function f (x) can be defined, where f (x) maps A into the set of non-negative real number space R as:

f (x) = d(x, A). (2)

• This function f (x) is called the radius function or the disk function of the domain; this is shown in
Fig. 1 [9]. It is evident that the skeleton of the domain is composed of a set of discontinuous curves
each of which can be associated to a certain set of boundary points. Such individual curve segments are
called skeletal curves. If the set of skeletal curves of the domain is given together with the associated
disk functions, then it can be shown that such data are sufficient for the extraction of all the features
of the parent domaJin. Thus the MAT technique is basically a shape interrogation-extraction procedure.
It may also be noticed that the medial axis o f any object is closely related to its Voronoi diagram.
In fact, the medial axis and the Voronoi diagram of a convex polygonal domain are identical to each
other. However, in non-convex domains, i.e. in cases where the problem domain is characterized by the
presence of one or several reentrant vertices (comers at domain boundary where the angle measured

4 c.s. Krishnamoorthy et al./Finite Elements in Analysis and Desion 20 (1995) 1-37

from a position exterior to the domain is less than 180 °), the medial axis diagram differs markedly from
the Voronoi diagram in the proximity of these vertices.

The construction of the skeleton is a computationally intensive task. Currently three construction
methods are in vogue, as referred to in the report by Turkiyyah et al. [10]:

(a) Transformation of the original spatial domain into a bitmap and subsequently applying thinning
algorithms which erode the shape boundary in layers.

(b) A point is said to be within e distance from the skeleton if its minimum distances from any two
boundary points differ by at most e. Hence geometric search techniques could be employed to locate
points on the skeleton to any degree of accuracy. The points thus located are then connected into arcs
to form the skeleton. All points on a given skeletal curve are then associated with a distinct set of
boundary segments.

(c) If the boundary segments have simple analytical descriptions, then it is possible to compute the
equations of the skeletal curve segments in simple parametric form. This ensures an explicit computation
of the medial axis branches.

2.2. Approximate skeletal method (A S M) - a simplified process to generate skeletal curves
for creation o f superelements

A mathematically accurate derivation of the skeleton is not of critical importance to the generation
of superelements since an accurate extraction of the domain characteristics is not pertinent in FEA.
In the proposed technique approximations are introduced in the mathematical representation of the
boundary segments as well as the skeletal curves. These cause minor perturbations in the skeleton of the
domain - which however produce no major shape distortion in the generated superelements. All curved
boundary edges are approximately represented as a union of a series of straight lines. This ensures
simpler mathematical computations since skeletal curves for straight boundaries have simple analytical
descriptions, i.e. curves of first or second degree. The skeletal curve itself is accurately represented
by a fourth-degree polynomial if the boundary definition consists of second-degree curves, but in
the proposed set of algorithms the skeletal curves are shown to be adequately handled by piecewise
continuous second-degree polynomials, which is consistent with the simplified boundary representations.
This ensures a minimization of the computational efforts required for the generation of the skeleton.

The skeletal curves and the corresponding radial lines (discussed in later sections) together with
the boundary of the domain constitute the set of non-intersecting superelements. The procedure for
generating the superelements can be shown as a four-step process - namely generation of the equidistant
curve, generation of the skeletal curve from the equidistant curve, tracing of radial lines to demarcate
superelements and merging to check and correct for distorted superelements. Detailed descriptions of
these steps follow in the next sections.

Step 1: Generation o f the equidistant curve. The equidistant curve for a pair of line segments is
defined as the locus of all the points which are equidistant from those segments. In Fig. 2, the line
segments el and e2 are used to generate the equidistant curve given by five distinct segments RS, ST,
TU, UVand VWwhose points of transition S, T, U, and Vare demarcated by the perpendiculars P1,
P2, P3 and P4. The equation of the equidistant curve changes in these five different segments and in

CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 5

R

P1

c

D N

V

/ ~ " ~ U /// ,., \

W

RS, ST, TU, UV, VW = Segments of equidistant curve.

P1, P2, P3, P4 = Perpendiculars from ends of e l and e2.

NQ = BQ = Euclidean ditance from point Q to e l and e2.

MQ = Euclidean distance from point Q to e3.

Fig. 2. Equidistant Curve.

any given segment the exact equation of the curve in parametric form is given as

x (t) = ao + al * t + a2 * t 2, (3)

y (t) = bo + bl * t + b2 * t 2, (4)

where t is a local parametric variable defined in this curve segment whose limits are given by to < t <
t2, to being the first control po in t (i.e. the site of the initiation of the generation of the current curve
segment) and t2 the last control point (i.e. where the current curve segment terminates). The global
parametric coordinate system of the equidistant curve is obtained by combining the local parametric
systems of the successive segments after shifting the origin of the local systems using the following
transformation:

to*(i) = to*(i-l) + t2 (i-1) (5)

for i ~> 2, where * denotes the global parametric system and the superscript i denotes the segment number.
to *(;) is the starting global parametric value for the ith segment of the equidistant curve, to *(i-1) is the
global parametric value for the previous segment and t2 (~-l) is the limiting value of the local parameter
for the previous segment, to *(l) is taken as 0. The transformation equation between the local and global
parameters for subsequent segments is given by:

t *i : to *i q- t i. (6)

6 c.s. Krishnamoorthy et al./Finite Elements in Analysis and Design 20 (1995) 1-37

It is of primary interest to identify the region in which the first control point of a particular equidistant
curve segment lies with respect to the generating line segments. In Fig. 2, two local coordinate systems,
(xl, Yl; x2, Y2) are defined on the two line segments for this purpose. The local xi direction is chosen
to be parallel to the ith line segment. A simple orthogonal transformation links these local coordinate
systems to the global Cartesian system of coordinates and is given as

{ X g } = [cos0 sinOo]{xi } (7)
yg - s in 0 cos y,- "

The subscript i indicates local variables pertaining to the ith edge, g indicates global variables and 0 is
the angle the segment i makes anticlockwise with the global x axis.

After the transformation the local xi coordinate is scaled by dividing by the length of the edge Li as
shown below:

where 5 and)3 are the normalized local coordinates.
Hence, let the coordinates of the first control point of any curve segment in the two coordinate

systems defined with respect to the two edges el and e2 be Xl, Yl and x2,)32 respectively. In Fig. 2,
the perpendicular at the point A of el corresponds to £1 = 0, and that at point B corresponds to £~ = 1.
The perpendicular at point C at e2 corresponds to £2 = 0, and that at point D corresponds to £2 -- 1.
The position of the first control point of any equidistant curve segment may be in any one of the four
regions given below:

Region on the backside of an edge: For any edge, the region defined by £ < 0 is its backside. In
Fig. 2, the region to the left of perpendicular P1, denoted by RB, is the backside of the edge el.

Region on thefrontside of an edge: For any edge, the region defined by £~> 1.0 is its frontside. In
Fig. 2, the region to the right of perpendicular P2, denoted by RF, is the frontside of the edge el.

Region on the leftside of an edge: For any edge, the region defined by 0 ~<£ ~< 1.0,)3 i> 0 is its leflside.
In Fig. 2, the region between the perpendiculars P1 and P2, denoted by RL, is the leftside of the edge el.

Region on the rightside of an edge: For any edge, the region defined by 0-,.<£~< 1.0, ~-,.<0 is its
rightside. In Fig. (2), the region denoted by RR is the rightside of the edge el. By virtue of the ordering
of the boundary edges, the meshable regions of the domain lie exterior to the rightside of the edges.

As stated earlier, the location of the first control point is of critical importance to the segment of the
equidistant curve generated from it. In Table 1 and Fig. 3, three such typical cases are shown where
the position of the first control point influences the equidistant curve segment. The location of the first
control point is expressed in the two sets of coordinates with respect to the two edges as given by:

xl, Yl - coordinates of first control point in normalized local coordinate system of edge 1 (el).
x2, y2 - coordinates of first control point in normalized local coordinate system of edge 2 (e2).

Step 2: Generation of skeletal curves. The skeletal curve of two boundary elements is a subset of the
equidistant curve generated by these elements. In the present work, a boundary element is considered to
be a straight line, a chain of straight line segments representing a curved edge or a reentrant vertex. The
skeletal curve is generated from the equidistant curve by the truncation of those points on the equidistant
curve which are more proximal to some boundary element distinct from the pair of generating elements.

CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 7

Table 1

Position of initial point w.r.t. Conditions Position of Degree of Figure. no.

Edge 1 Edge 2 next control point equation

Back Front Xl < 1 Pa or Pb 1 3(a), 3(b)
x 2 > l

Left Xl < 0 Pa or Pc 2 3(c), 3(d)
0 < x2~<l

Back Xl < 0 Pa 1 3(e)
X240

Left Front 0~Xl < 1 Pd or Pb 1 3(f), 3(g)

Left 0~<xl < 1 Pc or Pb 1 3(h), 3(i)
0 < x2~<l

Back 0~<Xl < 1 Pb 2 3(j)
x2~<0

Front Front Xl/> 1 Pd 1 3(k)
X2> 1

Left xl i> 1 Pc 2 3(1)
0 < x2~<l

Back Xl/> 1 - 1 3(m)
x2~<l

Pa C Pb

D ~ Pc

$2

S1 A B
(a)

Pc Pd ~, Pa Pb

DoA
S1

Pa Pb

C

(all

(b)

Pa
C

b S l ~ ''~Pc
$2,

l, j

Pd A

Pb ,k

B

(c)
Pa Pb
~L , k

D•A
~$2

~'~Pc

Pd

(e)

Fig. 3. Influence of initial point (Control point: Case 1)

8 C.S. Krishnamoorthy et al. /Finite Elements in Analysis and Desiyn 20 (1995) 1 ~ 7

Pa C

~' D ~

A

Pb

B ' ~ p d
(13

Pa Pb
, L ~L C

• S1 Pc

1 - - J Pd
A B

Pa

c

D Pc

$1[~'~pd
A

Pb

B

(h)
Pa

C Pb
L

A B (i)

Pa Pb

D ~ S2

""~Pd

A B

(J)

Fig. 3. Influence of initial point (Control point: Case 2)

Pa Pb
C

S1 Pc
Pd

A B
(k)

Pa Pb

A

C

"~Pd
B

(I)

Pa

c

" ~ P d
A

Pb
/ / /

X ~ P c

Fig. 3. Influence of initial point (Control point: Case 3)

(m)

Let D(t) indicate the Euclidean distance from either boundary element to a point on the equidistant
curve generated by them whose parametric coordinate value is t. D(t) may be called the distance
function of the equidistant curve and is given as a polynomial function of t and is evaluated along with
the generation of the equidistant curve. In order to represent the distance function accurately, a

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 9

polynomial of degree four is required since D(t) is handled in squared form. However, to ease compu-
tational efforts, D(t) is represented as a piecewise continuous quadratic polynomial.

In Fig. 2, let R(t) be the distance from an arbitrary point Q on the equidistant curve to a point M on a
line segment e3. The degree of the square of this function R(t) is also, in general, four. This implies that
the solution of D(t) = R(t) involves the computation of a fourth-degree polynomial especially when
the corresponding segment of the equidistant curve is quadratic. Thus, to ease computational efforts,
the curved segrnen~Is of the equidistant curve are treated as a union of straight line segments during the
computation of R(t).

For all t > to, the solution of D(t) = R(t) yields a family of points on the equidistant curve, the
Euclidean distances of which to el, e2 and e3 are equal; to being the parametric coordinate of the
point from where l:he generation of the equidistant curve commences. Since, both D(t) and R(t) are
approximated to second-degree polynomials, let tl be the smaller of the two roots; then for to < t < tn
the points on the equidistant curve are closer to the el and e2 than to e3. Considering all such tl for
all e3 the smallest value of t~ is selected which is designated as t2. Then, the portion of the equidistant
curve delimited by to and t2 is called the medial axis branch or the skeletal curve of the edges el and
e2. The delimiting points given by the parametric coordinates as to and tz are called skeleton nodes or
branch points of the medial axis.

Step 3: Decomposition into superelements - use o f region graphs. The Euclidean distance function,
D(t), represents peqoendiculars of specified lengths directed into the problem domain from the points on
the associated bourLdary element onto the corresponding points on the equidistant curve. As the skeletal
curve is defined as the union of the centers of a set of maximal disks which fit into the boundary elements
of a domain, D(t)may be defined as the locus of the point of tangency of a set of disks whose center
lies on the boundary contour and which fits maximally to the skeletal curve. In this context, the skeleton
nodes can be identified as those points in the domain where at least three D(t) disks are coincident. In a
given domain, if the loci of the point of coincidence of two D(t) disks whose centers lie on non-adjacent
boundary elements are combined with the skeleton nodes in the domain, then the resulting diagram is
called the shape pr~mitive. Thus, unlike skeletal curve branches which are bounded by skeleton nodes as
well as boundary points, shape primitive branches are bounded by skeleton nodes only. Fig. 4 (adapted
from [9]) illustrates the relationship between the Voronoi diagram, shape primitive, and the medial
axis of an arbitrary domain. It is seen that the shape primitive is a subset of the skeletal diagram and
the Voronoi diagram is a superset of the skeletal diagram. In Fig. 5, six typical cases encountered in
generating the shape primitive branches are shown. In case (1), where three boundary segments are
adjacent, the shape primitive reduces to the skeleton node unlike the skeletal curve which is shown in
dotted lines. In case (2.A), where two of the boundary segments are adjacent and the generation of the
equidistant curve s~Larts from their common vertex, the situation is identical to the previous case. In all
other cases the skeletal diagram is identical to the shape primitive. The shape primitive branches of
a region, together with the radial lines (perpendiculars from the skeleton nodes to the most proximal
boundary segments) and the boundary elements form the basis for the subdivision of the domain into
superelements. The: skeleton nodes are classified in this respect into four groups based on the number of
radial lines that can be drawn from them. Fig. 5 also shows some typical examples of this classification.
In case (1) three boundary segments are adjacent; here three radial lines can be traced from the skeletal
node to the segments giving two quadrilateral superelements D1 and D2. Cases (2.A) and (2.B) deal
with situations where two boundary segments are adjacent; here too, three radial lines can be drawn to

10 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

VORONOI DIAGRAM MEDIAL AXIS DIAGRAM SHAPE PRIMITIVE

Fig. 4. Shape primitive-definition.

give one and three quadrilateral superelements, respectively. Case (3) is a more general situation where
none of the edge segments share a common vertex; in this case also three radial lines can be drawn
from the skeleton node to give two quadrilateral superelements D 1 and D2. All of the cases mentioned
so far show the effect of triple-ray type skeleton nodes on the superelement generation process. In case
(4), two double-ray type skeleton nodes are shown; here two quadrilateral superelements, D1 and D2,
are generated. Case (5) deals with the reentrant vertex; here, as shown in Fig. 5, the shape primitive is
a finite arc segment and is bounded by two skeleton nodes. To tackle this concavity and generate valid
superelements, cuts are introduced (as done in Voronoi diagrams) between the skeleton nodes and the
reentrant comer, perpendicular to the boundary segments. Subsequently, the arc segment is projected
on to the opposing edge segment by radial lines giving rise to a triangular superelement D1 and a
quadrilateral superelement D2. Both these skeleton nodes are pseudo-double-ray type nodes. Case (6)
illustrates the effect of a convex circular boundary segment on the generated superelements. From the
junctions of the arc to the adjacent boundary segments two radial lines are drawn to the skeleton node.
If the included angle between the radial lines is greater than 1500 then a third radial line is drawn from
the skeleton node to bisect the circular boundary. Thus, either one or two superelements are generated
depending on whether the skeleton node is pseudo-double-ray type or pseudo-triple-ray type.

The Voronoi diagram of a 2-D shape is composed of non-intersecting cells such that each cell is
associated to a boundary element and all domain points in a given cell are most proximal to the associated
boundary element. This implies that each Voronoi cell is composed of a single boundary element and
several skeletal curves inclusive of Voronoi edges and cuts in the presence of reentrant vertices. In the
present technique, individual superelements, in contrast to the Voronoi cells, consist of a single shape
primitive branch, partial or full boundary elements and radial lines or cuts. However, the union of either
the Voronoi cells or the generated superelements independently give the parent domain.

In the implementation of the superelement decomposition, the following data structures are used:
1. binary trees;
2. linked lists;

The edoe tree, as shown in Fig. 6, is used for the edge-splitting operations during ray-tracing from
the skeleton nodes to the boundary edges. The domain tree is implemented as a stack to ensure
piecewise decomposition. The generated superelements are placed in a queue for subsequent processing
and the skeleton nodes and superelement nodes are placed in linked lists. The algorithm for domain
decomposition is given below. The decomposition strategy of a rectangular domain is shown in Fig. 7
and the macro flowchart of ASM is shown in Fig. 8.

C S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 11

SHAPE

PRIMITIVE

TYPES

o

CASE 1 CASE 2.A CASE 2.B CASE 3 CASE 4 CASE 5 CASE 6

SKELETON

NODE

TYPES

Fig. 5. Skeleton node-definition.

[EDGE TYPE~ RooTLEvEL

T

] SECOND PROGE

[EDGE TYPE, LEVEL 2

Fig. 6. Edge tree.

12 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

e3

e2 D ez

el
(a)

A

r3 iJJ
/ / / D 1

D2

r3

D1

rl

3s]
r2

D4

. . . . r 1 $2

D4

D6

r6

D5

(c)

D2

D1

Fig. 7. Decomposition of a rectangular domain.

$1 D3

(b)

D8 D6

D7 D5

(d)

Algorithm decompose-domain(L; E,N,B)
begin

first-node := boundary-node-with-included-acute-angle(L);
put-first-node-in-node-list ;
while (domain-stack is not empty)

get-generating-boundary-edge-pair;
trace-equidistant-curve-for(first-node, boundary-edges);
for (all other edges)

solve-D-R-eqns(edge-3, boundary-edges);
endfor
select-minimum-node(second-node);
if (boundary-edges are adjacent)

if (edge-3 is adjacent)
trace-3-rays(second-node, edge-3, boundary-edges);
split-edges(edge-3, boundary-edges);
append-children-to-edge-tree;
append-radial-lines(radial-list);
create-2-superelements-append(superlement list);
chop-2-superelements-from-domain;
push-modified-domain-to-domain-stack;

endif
else

trace-3-rays(second-node, edge-3, boundary-edges);
split-edges(edge-3, boundary-edges);

C S Krishnamoorthy et al./Finite Elements in Analysis and Desion 20 (1995) 1-37 13

!

J: o b ~ i m d in

Fig. 8. ASM flowchart.

append-children-to-edge-tree;
append-radial-lines(radial-list);
create-l-superelement-append(superelement list);
chop-l-superelement-from-domain;
split-modified-domain-left-right-child;
push-right-domain-child-to-domain-stack;
push-left-domain-child-to-domain-stack;

endif
else

if (edge-3 is adjacent to either boundary edge)
trace-3-rays(second-node, edge-3, boundary-edges);
split-edges(edge-3, boundary-edges);
append-children-to-edge-tree;
append-radial-lines(radial-list);
create-3-superelements-append(superelement-list) ;
chop-3-superelements-from-domain;

14 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

push-modified-domain-to-domain-stack;
endif
else

trace-3-rays(second-node, edge-3, boundary-edges);
split-edges(edge-S, boundary-edges) ;
append-children-to-edge-tree;
append-radial-lines(radial-list);
create-2-superelements-append(superelement list);
chop-2-superelements-from-domain;
split-modified-domain-left-right-child;
push-right-domain-child-to-domain-stack;
push-left-domain-child-to-domain-stack;

endif
endif
put-second-node-in-node-list;
first-node := second-node;

endwhile
end

Step 4: Control and correction of superelements - the mergin9 technique. If the set of boundary
elements of a domain include reentrant vertices or short boundary segments, distorted superelements
are generated, which, in turn are responsible for large element distortions within them. Also, for convex
vertices with large included angles, superelements with considerable taper distortions are generated.
The meroin9 process rectifies this anomaly by moving skeleton nodes toward one another either to
eliminate or to modify the geometry of these distorted superelements. Fig. 9 illustrates some examples
of distorted superelements. Case (1) shows where one of the two adjacent edges are short and a tapered
superelement D 1 is generated. Case (2) shows a similar type of distortion for a large angle at a convex
corner. Case (3) demonstrates the occurrence of a skewed superelement D1 generated by a short
boundary segment when all three boundary segments are disconnected. In case (4) two superelements
with large aspect ratios are formed. Case (5) deals with a reentrant vertex with a large included angle;
here a skewed triangular D1 is formed. In case (6) the tapered superelement D1 is formed due to two
nearly parallel closely spaced edges in combination with a convex circular arc with a large radius of
curvature. The aspect ratio (AR) of a superelement is defined as the ratio of the length of the shape
primitive associated with it to the length of its largest radial line. Limiting values of 4 and 3 are set
as allowable limits of aspect ratios for quadrilateral and triangular superelements, respectively, and
corrections are made according to this limit unless there is some user-supplied value of merge-distance
which is the allowable minimum value of any superelement edge.

Corrections to distorted superelements are effected by two techniques, parallel shift and anoular shift.
These procedures are illustrated in Fig. 10. In Figs. 10(a) and 10(b) parallel shift is shown. Let S1S2 be
a small shape primitive branch which makes the superelements V1 and V2 distorted. SIA and S~D are the
two radials from $1. Let $1 move toward $2, then SIA, S1D (moving radials) move to SzB, $2C (fixed
radials) parallely; the domains E1 and E2 (expanding domains) move to V1 and V2 (vanishing domains)
and edges GA, FD (expanding edges) move to AB, DC (vanishing edges). Fig. 10(c) shows a typically
taper distorted superelement which can be corrected by angular shifts. Angular shifts can occur in two

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 15

Fig. 9. Superelement distortion.

c~ s2

G A (a)

C . $2

E ~G ~B (b)

A
(c)

D B

A (d)

B
D ~ C 1

\N\ //t" XX\xxX~///t"t"/
A (e)

sl (f) (g)

Fig. 10. Merging.

ways, the skeleton node A is moved to A 1 thus making the taper distortion less as shown in Fig. 10(d).
In Fig. 10(e), the boundary nodes C and D move outward to produce the same effect. Thus, to correct
the superelement distortions, node movements are of prime importance. A node is termed movable if
the following conditions are satisfied:

1. Expanding and vanishing edges must be part of the same parent edge. This is because the end
points of an edge are the control points of the domain and cannot be moved. Hence the expanding edge
cannot be on an edge which is connected to the vanishing edge by a boundary node.

2. No distortion of the neighboring domains is allowed. Consider the case shown in Figs. 10(f) -
(g). When S1 moves to $2 to merge V1 and V2, the domain D3 gets distorted.

3. Local or global symmetry of the skeleton should not be disturbed. Symmetry is recognized as a
feature of the decomposed topology if there exists a mirror image of a diametrically opposite skeletal
node to a given skeleton node and identical rays can be drawn from these mirror images.

16 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1~7

2.3. Decomposition of multiply connected domains

In order to define multiply connected domains, split lines are created connecting the outer and inner
boundaries so that the domain boundary is represented as a single closed curve as shown in Fig. 1.
Split lines are not considered as boundary segments, and thus, the region on one side of the split line is
physically separated from the other side. This causes the non-coincidence of skeletal curves cutting the
split lines from either side. To handle this problem, it is ensured that as the decomposition process reaches
the split line, the subdomains are divided about the midpoint of the split line. The inner boundaries
are represented as an inner loops and the outer boundary as a, outer loop. A search procedure is used
to determine the nearest boundary node of the outer loop from the starting node of a particular inner
loop. The boundary segments associated to this outer loop node are identified and Euclidean distances
from the inner loop node to these segments are evaluated. The locus of the minimum of these distances
becomes the split line and a new outer loop node is placed at the site of intersection of the split line
and the segment. This procedure, however, ensures that split lines can only join an inner loop to the
outer loop; two inner loops cannot be joined.

3. Rectangular background grid

Element node spacings should be known at every point within the superelements for the generation
of fully controlled finite element meshes. In this paper, such node spacing information is obtained by
interpolating from known node spacings at the grid points of a proposed rectangular background grid.
In more traditional techniques, especially in remeshing applications, the initial finite element mesh is
used to interpolate the nodes of a new mesh by using the element shape functions. The inverse Jacobian
is computed and a Newton search technique is employed to determine the node spacing of the new node.
In the case of higher order elements, quite often the number of iterations in one search computation
exceeds one. In the present technique, the total number of operations is lesser than the traditional
techniques and the storage requirements are also low as a structured grid is used for interpolation and
connectivity information need not be stored. In contrast to the Newton search procedures, the local
coordinates r and s of a point within a rectangular cell are given by the following equations:

(x -)

r - - (x 2 _ Xl) , (9)

(y - y l)

s -- (Y2 - Yl)' (10)

where x and y are the global coordinates of the point, x~, y~ are the coordinates of the bottom left-hand
comer of the cell and x2, Y2 are the coordinates of the upper right-hand comer of the cell.

3.1. Algorithm for generation of rectangular baekoround grid

The background grid is a closed grid of horizontal and vertical lines which completely cover the
problem domain. The x and y grid lines are placed in ascending order and a node spacing value is
assigned to each grid point. Thus, from the physical analogy of the distribution of the grid points, a

CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 17

rectangular matrix can be formed where the node spacing values can be arranged in a two-dimensional
array. The row indicates the position of the grid point on the x-lines and the column indicates its position
on the y-lines. The input to the algorithm are the coordinates of a set of points in the problem domain
and the node spacing values associated to them. In a typical adaptive mesh generation scheme, the
node spacing values at the centroid of the elements (based on error estimates) are used to create the
background grid for the next refined mesh. The initial mesh is created by a user-specified target node
spacing which is automatically assigned to the centroid of the superelements. However, if a graded
initial mesh is desired, separate target node spacings may be assigned to individual superelements
which are automatically assigned to their respective centroids.

The algorithm consists of two parts, viz. grid generation and node spacing assignment to generated
grid points from lalown node spacing data. Ideally, to assign node spacing values to a point, three
closest points with imown node spacing which form a triangle about this point are located and the node
spacing value is intc:rpolated from them. However, to enhance the speed and efficiency of the algorithm,
only the known grid point closest to the point is found and the node spacing value of the former is
allotted to the latter. The procedure to locate this nearest point is a binary search problem; however,
a modified search technique is presented here which accelerates the process by using a lesser search
space. The modified procedure is described below.

The nodes are sorted in ascending order of x as they are read. In order to locate the nearest node to
a grid point, first, the node lying closest to the point in the x-direction is located and sorted first. Let
this node be called the central node and the search is centered around this node. Let the distance from
the central node to the grid point be called the search distance and nodes having x-coordinate values
greater than the search distance are ignored. Starting from the central node, the nodes lying on either
side of it in the list are considered successively and the Euclidean distance from the node to the grid
point is evaluated. If this distance is less than the search distance, the search distance is reduced to
the new distance and thus the search is narrowed down to a few nodes lying around the central node
instead of the full list of nodes as it is done in traditional binary search algorithms. Figs. 11 (a) and (b)
show the flowchart of the grid generation process.

4. Meshing by successive decomposition

Conventional superelement meshing techniques use isoparametric or transfinite mapping methods to
create structured meshes by the intersection of two sets of curves which move from one superelement
boundary to the opposite one. Thus, mesh controlling parameters like node spacing are largely ineffective
within the domain of the superelement. Thus for adaptive FEA applications which are characterized by
local mesh refinements, mapped mesh generators are not much useful.

In this context it is relevant to discuss some of the existing quadrilateral mesh generation schemes.
The advancing front method by Zhu and Zienkiewicz [11] uses a background mesh to discretize the
boundary in one closed loop of straight line segments. Then a layer of offset elements are generated
which are as square as possible. Then the meshing progresses layer by layer. Talbert and Parkinson [12]
used the splitting line technique which is based on the idea that the subsequent splitting of a domain
into convex parts will finally result in an all-quadrilateral mesh. The paving method of Blacker and
Stevenson [13] can also be used to generate all quadrilateral meshes. This method layers or "paves"

18 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and DeMon 20 (1995) 1 ~ 7

(a)

T

T

N,
+ e ~ m m + nomm mw

!,

NO

,omz.+Gmat+~--+ Smxr,omtz:mmDm,.+

NO

(b)

qlF

YES

II . I

Fig. 11. (a) Flowchart for grid generation; (b) Flowchart for gridline generation.

c.s. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 19

the geometry of the object with rows of quadrilateral elements from the boundary to the interior of the
domain.

The proposed technique overcomes the shortcomings of conventional mapping techniques like
isoparametric mapping and the computational complexity of the unstructured mesh generation tech-
niques mentioned ~bove. In MSD, the superelements are divided recursively using discrete curve seg-
ments, generated by transfinite interpolations, on which the required node spacings are interpolated
from the background grid to ensure a complete control of the mesh density. Multiple splitting methods
like 2:1 and 3:1 splitting are introduced to create the transitions leading to mesh gradation within the
subdomain. The sa]Jent features of the proposed meshing technique are described in the later sections.

1. Computation of the number of nodes on the superelement edges. Let ns be the number of segments
into which a super,element edge should be divided consistent with node spacing distribution, 5(t) the
node spacing function along the length of the edge in terms of the arc-length parameter t and L the
Length ofthe edge. Then ns is chosen as a nearest integer to:

fL 1.0 Ai = ~(~ dt. (11)

6(t) is obtained by interpolating from the background grid and ns is computed independent of the
superelements they bound. The discretization of the superelement boundaries prior to the commencement
of splitting and the subsequent discretization of the splitting lines are carried out by this method.

2. Adjustment fi~r the number of nodes on the edges. Given any superelement, the prerequisite for
any quadrilateral mesh to be generated in it is that the total number of segments on the boundary curves
defining the superelement must be even [14].

In the previous step such a check was not implemented. Here, all the subdomains are now checked
for this condition, and for any violation a suitable edge is selected where the nodes can be incremented
to conform to an even division.

Criteria for the selection of a suitable edge
(a) Since an edge is shared by two subdomains, any nodal increment on this edge must conform to an

even division in either subdomain. If more than one edge of a superelement satisfies this condition then
the priority is given to the edge which already has the largest number of divisions. The node spacings
of such edges are not much affected as already a large number of divisions exist there.

(b) Any superelement edge lying on the domain boundary may be selected as it does not affect any
other superelements.

(c) If the set of superelements is such that neither of the two strategies given above works then
an iterative strategy is evolved. The edge with the largest nodal density is selected and the nodes are
incremented. The perturbations on the neighboring superelements are computed and similar readjustment
of the edge nodal density is done. This process is repeated till all superelements have an even number
of segments on their boundary.

3. Placement of" internal nodes on the edges. Let the position of a node Nk on the boundary curve
be given by sk(k =: 0, 1,2 , ns). Then, if t is the arc-length parameter the following equation may be

20 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

used to find the position of the nodes on the edge after readjustments:

n~ ~ 1.0

where Ai is given from Eq. (11) and n~ is the nearest integer to Ai.

(12)

4. Splittin 9 techniques for quadrilateral superelements. A quadrilateral superelement is split into
two, three, or four children superelements in one given sweep of the recursion procedure depend-
ing on the nodal distribution on the edges. The three different splitting procedures are illustrated
below:

Case 1 - direct splitting. If any opposite edge pairs have at least more than two segments, then the
superelement is split into two subregions by a single splitting line. In Fig. 12(d), ABCD is the parent
superelement with nodes E and F on AB and CD which split the parent edges AB and CD into the
children edges AE, EB and CF, FD respectively. EF is drawn by transfinite interpolation which splits
the parent domain ABCD into the first level offsprings AEFD and EBCF. Nodes are interpolated on EF
from the background grid and they are adjusted for an even number of segments on the edges of the
children superelements.

Case 2 - 2 : 1 splittin9. If two adjacent edges have only one segment each (i.e. no internal nodes),
then three splitting lines divide the parent superelement into three progeny. In Fig. 12(e), ABCD is the
parent superelement, AD and DC are parent edges with only one segment each, but AB and BC may
have several segments. Let F and G be typical nodes on edges AB and BC closest to their respective
midpoints. The point E is generated by taking the average of the six points A,B, C ,D,F and G. DE
is plotted as a straight line. To generate EF as a transfinite curve, the midpoint M of the edge AD
is computed, and blending is done on AM and GB. Similarly EG is obtained by transfinite mapping
between FB and NC where N is the midpoint of CD. The nodes on EF, EG and DE are interpolated
from the background grid and they are adjusted to satisfy the criteria of an even number of segments
on the boundaries of children superelements.

Case 3 - 3 : 1 splitting. In this case the number of segments on the three edges of the superelement
is one and the fourth edge has more than one segment. The minimum number of segments on the fourth
must be three to keep the total number of segments even. In Fig. 12(f), let ABCD be the parent domain,
AB being the side which has more than one segment. The points E and F are internal nodes which lie
on AB nearest to its points of trisection. The points G and H are computed so that the included angles
are close to 120 °. DG, CH, GE, and HF are plotted as straight lines but GH is obtained using transfinite
interpolation between EF and DC. As in the other cases, nodes are generated on the edges DG, GH,
HC, GE and HF from the background grid and adjustment to the number is made to satisfy the criteria
of an even number of segments on the boundaries of children superelements.

5. Splittin9 techniques for triangular superelements (a) If any of the included angles, as shown
in Fig. 12(g), is greater than 150 °, then a single splitting line is traced as shown. ABC is the parent
superelement where A is the vertex with an angle greater than 150 °. Point D is a node lying closest to
the midpoint of BC. AD is plotted by transfinite interpolation between AB and AC.

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 21

! !! ,I,;

i

]W

B l (s ~ B2(s)

C

i B A E

(a) '

A B

Q1 (~ ~ Q2

+
D

(b) '

C D

~B

(d) (e)',

(e)

A

B

M
G

' D N C A

(t3

A

D (g)
i

A

(h)

F i g . 12. M S D - P r o c e d u r e s .

(b) Any topolog',ieally correct triangular superelement as shown in Fig. 12(h) is split into one quadri-
lateral element and two children quadrilateral superelements as shown. ABC is the parent superelement.
AEFG is the quadrilateral element while EBDG and FGDC are quadrilateral superelements. BC is the
smallest edge in ABC and E and F are nodes on AB and AC that lie closest to A. The coordinates of
G are computed by taking the average of the coordinates of A to F. The splitting lines EG and FG are
straight line segments while GD is traced by transfinite interpolation between EB and FC. The number
of subsequent internal nodes on the child edge GD must also be adjusted to accommodate the even
number of segments on superelement edges.

6. Discrete transfinite mappin9 techniques. Once the splitting nodes have been selected, the splitting
edge is traced as a transfinite curve by blending the boundaries of the region R in a smooth manner.
Transfinite mapping techniques [15-17] are used to generate meshes in topologically regular regions by
blending the boundaries of the region in a smooth manner. The mappable domain is defined by two sets
of parametric curves, which are parametrized in orthogonal directions. Each such set contains all curves
in one direction and is called a projector. Each projector interpolates all curves of the corresponding
set exactly. The product projector, which is composed from all curves of both sets, interpolates all
intersection points .of orthogonally parametrized curves and maps the four comers of the computational
domain to the four corresponding comers of the physical domain. Finally, the Boolean sum projector
which maps both curve sets exactly, represents the parametric interpolant of the two dimensional
domain.

22 CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 137

A region bounded by any four curves, (Fig. 12(a)), Al(r), A2(r), Bl(s), B2(s), - 1 < r < 1,
- 1 < s < 1, can be interpolated using a bilinear projector as

~(r,s) = PI(F) + Pz(F) - PIP2(F). (13)

The projector P1(F) interpolates between Al(r) and Az(r) and the projector P2(F) interpolates
between B1 (s) and B2(s):

P1(F) = Nl(s) * Al(r) + N2(s) * A2(r), (14)

P2(F) = Nl(r) * Bl(s) + Uz(r) * B2(s), (15)

where

Nl(r) - (1 + r) (16)
2 '

(1 - r) (1 7)
Nz(r) = 2

Let

Gl = N2(r) * N2(s) * ct(1, 1) + N2(r) * Nl(s) * ~(1 , -1) , (18)

G2 = N1 (r) * Nz(s) * ~(-1 , 1) + N1 (r) * Nl(s) * oc(--1,- 1). (19)

Thus the product of the projectors P~ and Pz is given by

P1 • Pz(F) = GI + G2, (20)

where ~(1, 1), ~(1, - 1), ~ (- 1, 1), off- 1, - 1) are the corners of the region bounded by curves.
Consider a case shown in Fig. 12(b). In order to generate a curve from the point Q1 to the point Q2,

that is an average of the two curves Cl(r) and C2(r), the following procedure is adopted. Two fictitious
curves C3(s) and C4(s) are assumed to pass through the points QI and Q2, forming a closed region with
the curves G (r) and C2(r) as shown in Fig. 12(c) . It is also assumed that the points Q1 and Qz are
obtained by substituting s = 0 in the equations for C3 and C4. Now, a curve that starts at Q~ and ends
at Q2 is obtained by substituting s = 0 in Eq. (13). This curve ~(r,0) will be an average of the curves
C1 and C2.

To use the expressions cited above, a parametric representation of the curves C~(r) and Cz(r) must
be available. In the current application, where the exact equation of these curves is not available, the
following procedure is adopted. The curve is approximated as a series of broken straight lines between
the control points, and in this way the total length of the curve is evaluated. From the total length, the
arc length parameters of the control points are determined by mapping into a straight line in the range
(- 1, 1). In order to evaluate the coordinate of a given point t, the control points between which the
point lies are fixed and a linear interpolation is made.

4.1. Recursive division o f superelements - implementation aspects

The recursive superelement division is based on a modified "splitting transfinite curve" technique.
In the traditional splitting line techniques, it is conjectured that the superelement being a convex

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Desion 20 (1995) 1-37 23

quadrilateral, any recursive subdivision also results in convex, non-overlapping, quadrilateral subre-
gions. If such a procedure is thus allowed to terminate naturally, the superelement is finally broken into
a set of quadrilateral finite elements. In the modified technique, in contrast to the traditional methods
where the domain is split into two subregions at any level of subdivision, the domain can be split into
two, three or four subregions depending on the relative nodal distribution on the four edges. Thus, the
domain tree may have upto four progeny at a given level and the edge tree may have upto three chil-
dren. In the process of creation of the new edges, the old edges are recursively divided about the point
of generation of the new edge. Thus, at the creation of every new edge, the old parent edge splits into
children edges which form the topology of the newly created children subdomains. When an edge is
divided, the nodes lying on the parent edge are copied onto the corresponding children edges. When
new edges are created, the number of nodes on them are computed from node spacing requirement
on the background grid. Again, these are modified as children superelements must also have an even
number of segments on their boundary.

Algorithms used for recursive subdivision are discussed below. The first major algorithm is select-
edge-pair, the input to this algorithm are the four edges ei of the superelement R which are ordered
in an anticlockwise sense and the output are the edge pairs E1 and E2 whose sum is maximum. This
algorithm is only valid for a direct splitting case and is given in Appendix A. The splitting edge is
traced between the edges as selected above. To select the splitting nodes, the following algorithm called
find-splitting-nodes is used. The input to this algorithm are the selected edges E1 and E2, the output
are the nodes n 1 and n2 which lie on E1 and E2. For direct splitting cases, n 1 and n2 lie closest to the
forenode of E1 and the backnode of E2, respectively. In the case of the 2:1 split, nl and n2 lie nearest
to the centers of their respective edges. However, for the 3:1 split, nl and n2 lie on the same edge
closest to its points of trisection. This algorithm is also given in Appendix A.

The splitting edge/edges are traced as shown in Fig. 12(d)-(f). The new edge/edges thus created
is/are pushed to the tail of the edge list which consists of the four edges of R at the beginning of
the process. The e, dges E1 and E2 which have been subsequently split give birth to two child edges
which are appended to the corresponding parent edges. Thus, a binary edge tree is created whose roots
constitute the elements of the edge list. In the case of 3:1 transitions, the binary tree becomes a 3-tree.
In that case, the progeny are marked as left, right and central children. The algorithms used to modify
the edge topology as stated above are given in Appendix A.

In the algorithm for 2:1 splitting, O and V indicate the nodes E and A respectively in Fig. 12(e).
The nodes given by O1, 02, D1 and D2 are indicated by G, H, D and C, respectively, in Fig. 12(0.
The algorithm for creating the binary edge tree and the edge-3-tree after every edge splitting operation
is also shown in Appendix A.

The next step in the meshing process is node generation on the new edge and subsequent adjustment
for an even number of segments on the children subdomains. The process is similar to the one followed
during the initial placement of nodes on the superelement boundaries. However, during the recursive
subdivision process, the node adjustment procedure is constrained. At any given level of subdivision,
no node can be created on the progeny of the four superelement boundaries or on those edges which
form parts of the elements themselves. This problem is tackled by using the topology of the edge and
domain trees and is discussed in later sections. In this context, it is pertinent to describe the structure
of the elements of the domain tree. The children of the domain tree are placed in a domain stack to
ensure the recursive subdivision of the left child prior to the right and/or center children. At every level,
the domain to be divided next is kept at the top of the stack. At the completion of the element creation

24 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

process, the domain stack becomes empty. The creation of the domain tree is done in the algorithm
called sp l i t - doma in and this is shown in Appendix A.

The edges of the domain progeny are numbered in an anticlockwise sense as shown in s p l i t -
domain. It is also evident that the domain stack operations ensure that the left child is always subdivided
recursively till a four-noded element is obtained. One important step in these operations which needs to
be considered is node generation and adjustment. As stated earlier, this process, when followed in the
recursive cycles, involves more constraints than when used in the primary stage prior to mesh generation.
In the recursive procedure, no nodes can be generated on the progeny of the four superelement edges
or on those edges which are part of the elements which have been "chopped off' from the domain
tree. These constraints can be achieved from the topology of the edge tree itself. All the progeny of
generated edges are provided with a flag, which changes value only when the associated element is
a valid four-noded finite element. At any level, thus, nodes are generated only on those leaves of the
edge tree whose flag value is unchanged. The element discretization process can thus be presented in
a recursive algorithm as shown below:

Algorithm divide-domain (R)
begin

while (domain-stack is not empty)
pop-domain-from-domain- st ack (R) ;
if (R is four-noded)

push-in-element-stack (R) ;
else

select-edge-pair (R; El, E2) ;
find-closest-nodes (El, E2 ; nl,n2) ;
generate-transfinite-curve (nl ,n2 ; E3) ;
append-new-edge-to-edge-list (E3, nl, n2 ; edge-list) ;
create-edge-tree (El, E2, nl,n2 ; T) ;
generate-nodes-on-edge (E3) ;
adjust-nodes-for-quad-elements (T) ;
split-domain(R) ;

endif
endwhile

end

Fig. 13 shows the recursive subdivision of a quadrilateral superelement and Fig. 14 shows the macro
flowchart of the mesh generation procedure.

4.2. Smooth ing techniques

A smoothing procedure has been adopted to properly condition the individual quadrilateral elements.
Although various element parameters like aspect ratio, skew and taper have been identified for distortion
measures, the current algorithm only relaxes the mesh for angular distortion measures. If an internal
angle value exceeds 150 ° at a particular node then that node is identified for correction. The usual
Laplacian smoothing [18] is adopted whence the coordinates of the node are changed to the average

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 25

(a)

(d) (e)

(g) (h)

(b) (c)

(|)

Fig. 13. MSD example.

of four closest points surrounding it. Fig. 15 shows the speed of mesh generation with and without the
effects of smoothing for the cantilever problem. The plot shows the increase of CPU time (in seconds)
with respect to the mesh generation (increase in number of nodes). It is observed that smoothing takes
approximately hall' the time of the mesh generation process.

5. Applications - adaptive finite element analysis

This section deals with the most important application aspect of the mesh generation scheme- adaptive
finite element analysis of linear elasticity problems. Even though the scheme is quite general, the scope
of the current work: has been kept limited to h-version adaptive analysis of plane-stress, plane-strain and
axisymmetric problems. As in any adaptive FEA module, the main components of the proposed scheme
are, the error estimator, the refinement strategy and the mesh generator. But, in order to automate the
process and to keep the program modules as general as possible, another component was identified -
namely, automatic generation of the problem specific data required for analysis - i.e. loads, boundary
conditions, element material property data, etc. Collectively these data are generally known as attribute
information. A possible approach could be generation of all attribute data during mesh generation itself
but this would restrict the mesh generation module to be specific to certain element classes only.

Another major hurdle are points with analytic/non-analytic singularities. The points of concentrated
loads, points of transition of loads and/or boundary conditions, comers, regions of material or geometric

26 C.S. Krishnamoorthy et aL / Finite Elements in Analysis and Design 20 (1995) 1-37

4

(

;Q

Fig. 14. MSD - flowchart.

O , , , , , , , , , 1 , , , , , , r , , i , , , , , , , , , i , , , , , , , , , i , , , , , , , , , i , , , , , , , , ,

O

~6-
~

ZO #~l~lll~ WIIH OUT SMOOTHING
O" ~,P~" WITH SMOOTHING
~,.

0.00 2.00 4.00 6.00 8.00 I 0.00 12.00
SYSTEM TIME (SECS)

Fig. 15. Mesh generation speed.

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 27

o Thlckuen = I.O

2.0

L.S . -- L E A S T S Q U A R E S M O O T H I N G .
S .C . = S U P E R C O N V E R G E N T E X T R A C T I O N .

N.D. ffi N O D E R E F I N E M E N T .

D.R. = DERF ' ,F INED.

- , , . 0 4

20.0

1_

T t
18,0

A_ _k_

k-~,-o ,I - q

Fig. 16. Loads and boundary conditions of examples.

transition are all examples of these singularities. The mesh generator should ensure that nodes are placed
at these control points and that element boundaries do not cross the regions of discontinuities.

The adaptive procedure that was developed as a part of this work; identifies and provides satisfactory
solutions to all the problems mentioned above. All attribute data are provided on the boundary segments
which are transferred to superelement boundaries after the generation of superelements and are stored as
superelement data that are suitably transferred to the finite element mesh after the mesh generation. The
superelements and the superelement data are generated only once and the analysis data for each mesh
are generated from the superelement data automatically. An adaptive finite element analysis package
called PAFEM ha,~ been developed in ANSI-C on the DOMAIN-3500 system which is capable of
analysis of plane eilasticity problems.

The loading data and boundary conditions of three example problems are shown in Fig. 16. In
Figs. 17-19 the meshes generated by MSD in typical adaptive applications are shown. Fig. 17 shows the
adaptive analysis of a cantilever fixed at one end and loaded by a vertical shear load at the other end. In
Fig. 18, the adaptive analysis of a shear loaded bracket is shown and in Fig. 19 a hook from a weighing
machine is shown. For ease of fabrication the outer boundary of the hook is composed of straight
edges. The machine operates by measuring strains from which the weight can be evaluated using proper
calibration. Slits are introduced in the component to magnify the strains to augment the sensitivity of
the machine. Because of the presence of confined regions and irregular geometry, conventional meshing
techniques are difficult to implement as the mesh generated here would be very sensitive to the shape
of the object. The superelements are shown in Fig. 19(a). The load is distributed over a small length of
the hook at the bottom edge to remove singularities. The boundary conditions are also approximated to
a continuous rigid support over the top horizontal section. The presence of stress concentration zones
is automatically meshed to a finer density progressively as shown in Figs. 19(b)-(f).

28 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

] i

R.P.E.= 32.6
N.D.F. = 36

(A)

R.P.E. = 12.28 (B) L.S., N.D.

N.D.F. = 284

R.P.E. = 12.89 (F) S.C., N.D.

N.D.F. = 284

R.P.E. = 4.53 (C) L.S., N.D.

N.D.F. = 2410

R.P.E. = 4.45 (G) S.C., N.D.
N.D.F. ~ 2560

R.P.E. = 12.22 (D) L.S., D.R.
N.D.F. = 204

R.P.E. = 14.53 (H) S.C., D.R.
N.D.F. = 274

R.P.E. = 4.64 (E) L.S., D.R.
N.D.F. = 2340

R.P.E. = 4.54 (1) S.C., D.R.
N:D.F. = 2954

Fig. 17. Adaptive analysis of cantilever.

The error analysis is done by the least squares approach [19] and superconvergent extraction theory
[20, 21]. In the adaptive procedure, if the local error does not exceed the target error, then the
corresponding element size may be increased. This is called derefinement. Usually this technique re-
duces the number of degrees of freedom of the solution for a given error thus making the solution more
economic but element distortions increase which may affect the overall accuracy of the solution. The
convergence characteristics of the three problems are shown in the plots given in Fig. 20 for derefined
meshes and non-derefined meshes.

CS. Krishnamoorthy et al./ Finite Elements in Analysis and Desion 20 (1995) 1-37

S U P E R E L E M E N T S .

t _

(A) (D)

R.P.E. = 6.73
N . D . F . = 1824

29

L.S., N.D.

L.S., N.D.

) (E)

R . P . E . = 1 4 . 8 7 R . P . E . - 1 0 . 6 8

N.D.F. = 342 N.D.F. = 814

L.S., D.R.

L.S., N.D.

(C)
R.P.E. = 10.2 R.P.E. = 7.49
N.D.F. = 888 N.D.F. = 1742

Fig. 18. Adaptive analysis of bracket.

(F)

L.S., D.R.

6. Conclusions

In this paper ASM is presented as a suitable domain decomposition technique which can tackle
multiply connected domains as well. The mesh generation module is shown to be able to create both
fine and coarse meshes. The application of MSD to adaptive finite element analysis is also demonstrated
with the aid of several plane problems of elasticity. It has been shown that graded meshes of well-
shaped elements may be obtained by the proposed method when used in an adaptive environment. The
various advantages offered by this method may be stated as follows:

1. Automatic domain decomposition ensures that at any step the mesh generator handles convex
quadrilateral regions instead of the full domain which may contain reentrant comers.

3 0 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

S.C., N.D.

(G) (I)

R.P.E. = I0.462 R.P,E. = 14.I5

N.D.F. = 942 N.D.F. = 810

S.C., D.R.

(H)

R.P.E. = 7.07
N.D.F. = 1980

S.C., N.D.

(J)

R.P.E. = 8.04

N.D.F. = 2286

S.C., D.R.

Fig. 18. Continued.

2. ASM is ideally suited for automatic superelement generation as the skeletal curves closely follow
the boundary ensuring that the generated superelements preserve the boundary characteristics.

3. MSD is ideally suited for adaptive FEA as the node generation along any direction is guided
by nodal density functions which ensure a greater degree of control over the mesh generation
process.

4. Edge-based data structures are used which make the manipulation of geometric quantities easier
during mesh generation. In [22], edge-based data structures are presented as most efficient in FE
programming.

5. The background grid is shown to control the entire mesh generation process and the error analysis
leads to only a new background grid from which the new mesh parameters may be computed. Thus the
computational expenses of the mesh controlling operations are reasonable.

6. Use of the proposed modified binary search technique to optimize the background grid for the
placement of the gridlines saves a considerable amount of CPU time.

7. Automated attribute modelling from superelement data and hierarchy information and automatic
superelement decomposition from b-rep data, make the process truly automatic with minimal user
interaction.

8. MSD is suitable for parallel computing applications as each superelement can be processed sepa-
rately as the mesh generation process in each is independent of the other superelements.

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Desi#n 20 (1995) 1-37 31

S U P E R E L E M E N T S

(a) (d)

R . E E . "- 4.43
N.D.F. = 11198

L.S. , N.D.

(e) (b)
R . P . E . = 2 4 . 2 4

N . D . F . = 860

L.S . , N.D.
R . E E . = 1 9 . 1 5

N.D.F. = 4720

S.C., N.D.

(c)

R . P . E . = 11.08
N.D.F. = 3788

L.S. , N.D.

Fig. 19. Adaptive analysis of hook.

(f)

R.P.E. = 8.04
N.D.F. = 8184
S.C. , N.D.

32 C.S. Krishnamoorthy et aL / Finite Elements in Analysis and Design 20 (1995) 1-37

_i

, , , , , , ! , , , , , , , , i

it ~LEAST-$QUARE. W.O. OEREFINEMENT. ~ -~U/ .R [. OERERNED, "~,¢SUPER-CONVl~RGENCE. we. DE'REFINEMENT.
~ SUPER-CONV~RG[NCE. DF.REFINED

1oo 1ooo
LOG (NOOF)

t.d

~1o
v

, , , , , ,

LEAST-SOUAR[, W.O. DER£FINEMENT.
LEAST-S(~E, D£R£R/,,~D. ~SUPER-CONVERGENC£. W.O. DEREFtNEMENT.

e e e e e SUPER-CONVERGENCE, DEREFINED.

BRACKET

. 1000
LOG (HOOF)

LEAST-SO.RE ~ ~PER-~NVERCENC£

10 1 , H O O K

lOOO 1oooo
LOG (HOOF)

Fig. 20. Convergence characteristics.

Appendix A

1. The algorithm for selecting the optimal edges for splitting (as done in the direct splitting) is given
below:

Algorithm select-edge-pair (R; El, E2)
begin

find-edge-lengths (R; iI, 12,13,14) ;
if((ll+13) _> (12+14))

El := el;

E2 := e3;

end

CS. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

else
E1 := e'2;
E2 := e4;

33

2. The algofithmusedforthe selection ofthe spliaing nodesis given in thefollowing section:

Algorithm find-splitting-nodes(EI,E2; nl,n2)
begin

if (directsplit)
find-forenode-of(E1);
nl := node-on-El-closest-to-forenode;
find-backnode-of(E2);
n2 := node-on-E2-closest-to-backnode;

endif
if (2:1 split)

find-center-of-El;
for (all nodes on El)

find-distance-from-node-to-center;
endfor
nl := node-with-least-distance;
find-center-of-E2;

for (all nodes on E2)
find-distance-from-node-to-center;

endfor

n2 := node-with-least-distance;
endif
if (3:1 split)

for (all nodes on El);

ml := find-distance-to-onethird-distance-from-backnode;
m2 := find-distance-to-onethird-distance-from-forenode;

endfor
nl := minimum(ml);
n2 := minimum(m2);

endif
end

3. The algorithm which modifies the edge topology of the domain by appending the splitting
edge/edges to the old edge list is given below:

Algorithm append-new-edge-to-edge-list(E,nl,n2; edge-list)
begin

if (direct split)
E-back-node := nl;

34 C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

end

E-fore-node := n2;

push-at-tail(edge-list, E);

endif

if (2:1 split)

E3-back-node := nl;

E3-fore-node := 0;

E4-back-node := n2;

E4-fore-node := 0;

E5-back-node := V;

E5-fore-node := O;

push-at-tail(edge-list, E3,E4,E5);

endif

if (3:1 split)

E3-back-node := nl;

E3-fore-node := 01;

E4-back-node := n2;

E4-fore-node := 02;

E5-back-node := 01;

E5-fore-node := 02;

E6-back-node := DI;

E6-fore-node := 01;

E7-back-node := D2;

E7-fore-node := 02;

push-at-tail(edge-list, E3,E4,E5,E6,E7);

endif

4. The binary~ee c ~ i o n algorithm used ~ r directand 2:1 spli~ingisshownbelow:

Algorithm create-binary-edge-tree(EI,E2,nl,n2; edge-tree)

begin
allocate memory to El-left-child, El-right-child;

El-left-child-fore-node := nl;

El-left-child-back-node := El-back-node;

El-right-child-fore-node := El-fore-node;

El-right-child-back-node := nl;

append E1 progeny to El;
allocate memory to E2-1eft-child, E2-right-child;

E2-1eft-child-fore-node := n2;

E2-1eft-child-back-node := E2-back-node;

E2-right-child-fore-node := E2-fore-node;

E2-right-child-back-node := n2;

append E2 progeny to E2;

end

CS. Krishnamoorthy et el./Finite Elements in Analysis and Design 20 (1995) 1-37 35

5. The edge-3-m~eis cre~edfor a 3 : 1 edge split andthe algorithm is presented below:

Algorithm create-edge-3-tree(El,nl,n2; edge-tree)
begin

allocate memory to El-left-child, El-center-child, El-right-child;

El-left-c:hild-back-node := El-back-node;
El-left-child-fore-node := nl;
El-center-child-back-node := nl;
El-center-child-fore-node := n2;
El-right-child-back-node :=n2;
El-right-child-fore-node := El-fore-node;
append E1 progeny to El;

end

6. The algorithrn for splitting the domain during the mesh generation process is given below:

Algorithm split-domain(R)
begin

if (direct split)
allocate memory for left and right children of R;
append structure order-nodes to left children;
R-left-child -~ edge1 : = edge-with-nodes (nl ,n2 ; el) ;

R-left-child -+ edge2 := edge-with-nodes(n2,n3; e2) ;
R-left--child-+ edge3 := edge-with-nodes(n3,n4; e3);
R-left-child -~ edge4 := edge-with-nodes (n4,nl; e4) ;
R-righ~z-child -~ edgel := edge-with-nodes (n2,nl ; el) ;

R-righ~-child-~ edge2 := edge-with-nodes(nl,n5; e2);

R-righ~-child -+ edge3 : = edge-with-nodes (n5,n6 ; e3) ;
R-righ'~-child -+ edge4 := edge-with-nodes(n6,n2; e4) ;
push R-right-child in domain-stack;
push R-left-child in domain-stack;

endif
if (2:1 split)

allocate memory for left, center and right children of R;
append structure order-nodes to the children;
if (El-right-child-fore-node = E2-1eft-child-back-node)

R-le.ft-child -+ edgel := El-left-child;
R-left-child -~ edge2 : = edge-with-nodes (nl, 0 ; e2) ;
R-le, ft-child -+ edge3 := edge-with-nodes(O,V; e3);

R-left-child -~ edge4 : = parent-edge (V, El-back-node ; e4) ;
R-right-child -+ edgel := E2-right-child;
R-right-child -+ edge2 := parent-edge (E2-fore-node,V; e2) ;
R-right-child-+ edge3 := edge-with-nodes(V,O; e3);
R-right-child-+ edge4 := edge-with-nodes(O,n2; e4);
R-center-child -+ edgel := El-right-child;

36 C S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37

e n d

R-center-child-~edge2 := E2-1eft-child;
R-center-child-~edge3 := edge-with-nodes(n2,0; e3);
R-center-child-~edge4 := edge-with-nodes(O,nl; e4);

endif;
if (E2-right-child-fore-node = El-left-child-back-node);

R-left-child-+edgel := E2-1eft-child;
R-left-child-~edge2 := edge-with-nodes(n2,0; e2);
R-left-child-+edge3 := edge-with-nodes(O,V; e3);
R-left-child-~edge4 := parent-edge(V,E2-back-node; e4);
R-right-child-~edgel := El-right-child;
R-right-child-*edge2 := parent-edge(El-fore-node,V; e2);
R-right-child-+edge3 := edge-with-nodes(V,O; e3);
R-right-child-*edge4 := edge-with-nodes(O,nl; e4);
R-center-child-*edgel := E2-right-child;
R-center-child-~edge2 := El-left-child;
R-center-child-~edge3 := edge-with-nodes(nl,O; e3);
R-center-child-+edge4 := edge-with-nodes(O,n2; e4);

endif;
endif
if (3:1 split)

R-left-child-~edgel := El-left-child;
R-left-child-~edge2 := edge-containing-nodes(n1,01; e2);
R-left-child-+edge3 := edge-containing-nodes(OI,D1; e3);
R-left-child-*edge4 := parent-edge(D1,El-back-node; e4);
R-right-child-+edgel := El-right-child;
R-right-child-~edge2 := parent-edge(El-fore-node,D2; e2);
R-right-child-~edge3 := edge-with-nodes(D2,02; e3);
R-right-child-~edge4 := edge-with-nodes(O2,n2; e4);
R-center-l-child-~edgel := El->center-child;
R-center-l-child-~edge2 :=
R-center-l-child-*edge3 :=
R-center-l-child-*edge4 :=
R-center-2-child-*edgel :=
R-center-2-child-~edge2 :=
R-center-2-child-+edge3 :=
R-center-2-child-*edge4 :=

endif

edge-with-nodes(n2,02; e2);
edge-with-nodes(02,01; e3);
edge-with-nodes(Ol,nl; e4);
edge-with-nodes(01,02; el);
edge-with-nodes(02,D2; e2);
parent-edge(D2,D1, e3);
edge-with-nodes(D1,01, e4);

References

[1] M.S. Shephard and P.M. Finnegan, "Integration of geometric modelling and advanced finite element preprocessing",
Finite Elements in Analysis and Design 4, pp. 147-162, 1988.

[2] W.R. Buell and B.A. Bush, "Mesh generation - a survey", J. Eng. Ind. A S M E 7, pp. 332-338, 1973.

C.S. Krishnamoorthy et al./ Finite Elements in Analysis and Design 20 (1995) 1-37 37

[3] W.C. Thacker, "A brief review of techniques for generating irregular computational grids", Int. J. Numer. Methods
Eng. 15, pp. 1335-1342, 1980.

[4] K. Ho-Le, "Finite element mesh generation methods: a review and classification", Comput. Aid. Des. 20, pp. 27-38,
1988.

[5] M.S. Shephard, "Approaches to the automatic generation and control of finite element meshes", Appl. Mech. Rev.
41, pp. 169-185, 1988.

[6] Johann Seinz, Finite element mesh design with adaptive procedures, M.Sc. Thesis, C/M/259/90, Department of Civil
Engineering, University College of Swansea, Wales, 1990.

[7] H. Blum, in: We.inant Wathen-Dunn(ed.), A Transformation for Extracting New Descriptors of Shape, Models for
the Perception of Speech and Visual Form, MIT Press, Cambridge, MA, 1967.

[8] T.K.H. Tam and C.G. Armstrong, "2D finite element mesh generation by medial axis subdivision", Adv. Eng.
Software 13, pp. 313-324, 1991.

[9] H. Nebi gursoy and N.M. Patrikalakis, "An automatic coarse and fine surface mesh generation scheme based on
medial axis transform: Part 1. Algorithms", Eng. Comput. 8, pp. 121-137, 1992.

[10] G. Turkiyyah and S.J. Fenves, Generation and interpretation of finite element models in a knowledge based
environment, Internal Report, R-90-188, Department of Civil Engineering, Carnegie-Mellon University, 1988.

[11] J.Z. Zhu, O.C. 7ienkiewicz, E. Hinton and J. Wu, "A new approach to the development of automatic quadrilateral
mesh generation", Int. J. Numer. Methods Eng. 32, pp. 849-866, 1991.

[12] J.A. Talbert and A.R. Parkinson, "Development of an automatic finite element two dimensional mesh generator using
quadrilateral elements and Bezier curve boundary definition", Int. J. Numer. Methods Eng. 29, pp. 1551-1567, 1990.

[13] T.D. Blacker and M.B. Stevenson, "Paving: a new approach to automated quadrilateral mesh generation", Int. J.
Numer. Methods Eng. 32, pp. 811-847, 1991.

[14] E.A. Heighway, ~'A mesh generator for automatically subdividing irregular polygons into quadrilaterals", IEEE Trans.
Magnetics 19, pp. 2535-2538, 1983.

[15] C.A. Hall, "Transfinite interpolation and application to engineering problems", Theory of Approximation,
pp. 308-333.

[16] C.A. Hall and W.J. gordon, "Construction of curvilinear coordinate systems and application to mesh generation", Int.
J. Numer. Methods Eng 7, pp. 461-477, 1973.

[17] R. Haber, M.S. Shephard, J.F. Abel, R.H. Gallagher and D.P. Greenberg, "A general two-dimensional, graphical finite
element preprocessor utilizing discrete transfinite mapping", Int. J. Numer. Methods Eng. 17, pp. 1015-1044, 1981.

[18] L.R. Herrmann, "Laplacian-isoparametric grid generation scheme", J. Eng. Mech. Div. ASCE 12, pp. 749-759, 1976.
[19] J.Z. Zhu and O.C. Zienkiewicz, "A simple error estimator and adaptive procedure for practical engineering analysis",

Int. J. Numer. Methods Eng. 24, pp. 337-357, 1987.
[20] O.C. Zienkiewicz and J.Z. Zhu, "The superconvergent patch recovery and a posteriori error estimates. Part 1: The

recovery technique", Int. J. Numer. Methods Eng. 33, pp. 1331-1364, 1992.
[21] O.C. Zienkiewicz and J.Z. Zhu, "The superconvergent patch recovery and a posteriori error estimates. Part 2: Error

estimates and adaptivity', Int. J. Numer. Methods Eng. 33, pp. 1365-1382, 1992.
[22] P.A. Wawrzynek and A.R. Ingraffea, "An edge-based data structure for two dimensional finite element analysis",

Eng. Comput 3, pp. 13-20, 1987.

