Jaal:Engineering a high quality
all-quadrilateral mesh generator

Chaman Singh Verma! and Tim Tautges?

! Department of Computer Sciences, University of Wisconsin, Madison, 53706
csverma@cs.wisc.edu

2 Argonne National Laboratory, Argonne IL, 60439
tautges@mcs.anl.gov

Summary. In this paper, we describe the implementation of an open source code
(Jaal) for producing a high quality, isotropic all-quadrilateral mesh for an arbi-
trary complex surface geometry. Two basic steps in this process are: (1) Triangle to
quad mesh conversion using Suneeta Ramaswamy’s tree matching algorithm and (2)
Global mesh cleanup operation using Guy Bunin’s one-defect remeshing to reduce
irregular nodes in the mesh.

These algorithms are fairly deterministic, very simple, require no input param-
eters, and fully automated yet produce an extremely high quality all-quadrilateral
mesh (with very few 3 and 5 valence irregular nodes) for large class of problems.

1 Introduction

There are many applications where an all-quadrilateral and all-hexahedral mesh is
preferred over a triangle mesh (non-linear structural mechanics, higher order spectral
methods, texture mapping etc). While many provably robust, high-quality triangle
mesh generators have been described and are available as open source software (e.g.
the Triangle package from [9]), to our knowledge, there are no provably robust
all-quadrilateral mesh generation algorithms available in open source form. In this
paper, we describe a robust, high-quality quadrilateral mesh generation algorithm
freely available in source code form.

We seek to implement a robust, high-quality all-quadrilateral mesh generation al-
gorithm capable of meshing 3D, non-simply-connected surfaces. This algorithm must
be theoretically sound, to support robustness for a wide class of input domains. The
algorithm must be capable of working from a pre-defined list of bounding edges,
with the only constraint being that the number of edges is even (note, we do not
constrain the evenness of intervals on bounding loops, only on the total number of
bounding edges). The resulting meshes should have relatively few “defects” (internal
nodes with degree other than four), and where possible, should be boundary-sensitive
(with lower-quality elements located relatively far from boundaries). The algorithm
should operate on 3D surfaces, possibly with multiple bounding loops, without re-

2 Chaman Singh Verma and Tim Tautges

liance on an underlying 2D parameterization. Finally, the algorithm should be robust
even for large relative size transitions in the bounding edges.

Quadrilateral meshing algorithms (if not unstructured meshing algorithms in
general) can be classified in two groups. Indirect methods generate some other in-
termediate decomposition of the domain, e.g. a triangle mesh or a medial surface
decomposition, afterwards converting the pieces to quadrilaterals through recombi-
nation or further decomposition. In contrast, direct methods generate quads directly,
often using advancing fronts. When deciding which approach to use, two key obser-
vations guide us. First, we observe that geometric computations often interfere with
the initial generation of quadrilaterals. This occurs frequently in advancing front
methods, usually by missing the intersections of the advancing fronts, especially for
problems with rapid size transitions. Second, virtually all unstructured meshing al-
gorithms finish with a cleanup phase, where local topological modifications are used
to improve the regularity of the mesh, sometimes making extensive changes to the
initial mesh. This reduces the impact of poor initial mesh quality, and guides us
to focus more on “closing” the initial mesh, no matter the initial quality. Hence,
the approach we take is to generate the initial quadrilateral mesh using an indirect
method, by converting triangles to quads. As we show later, this is a provably reliable
method for obtaining the initial mesh. This mesh is subsequently cleaned up using
topological transformations. The result is an algorithm with provable robustness
that in practice generates high-quality all-quadrilateral meshes.

This paper is organized as follows. In section 3.1, we describe a tree matching
algorithm and in sections 4 and 5, we describe some local and global operations for
mesh cleanup. In section 6, we show results for several input problems, followed by
conclusions of this work.

2 Previous work

The Q-Morph algorithm [22] transforms a given triangle mesh into a quadrilateral
mesh using an advancing front method. In this approach, quadrilaterals are formed
using existing edges in the triangulation, by inserting additional nodes, or by per-
forming local transformations to the triangles. The final mesh quality is improved by
topological clean-up and local smoothing operations. This approach has been imple-
mented by several commercial meshing packages, but is not available in open-source
form.

Marcelo’s [23] CQMesh software converts a given triangulated mesh into an
all-convex quadrilateral mesh, but the resulting mesh has many irregular nodes.
QMPP is an extension to CQMesh that improves the quality at the boundaries, but
topological improvements in the interior are limited. The first part of our work is
greatly influenced by this approach.

Betul et al. [24] developed a direct quadrangulation algorithm with guaranteed
angle bounds (18.43-171.86 degrees). A circle packing algorithm by Bern et al. [19]
constructs quadrilaterals in a polygonal domain with an upper bound of 120 degrees
in the interior, but provides no bounds on the smallest angle. These two theoreti-
cally proven algorithms are direct algorithms and work only for 2D planar surfaces.
To the best of our knowledge, theoretically, nothing is proven for 3D surface quad-
rangulation.

Jaal:Engineering a high quality all-quadrilateral mesh generator 3

Spectral methods[20] provide a novel approach for quadrangulating a manifold
polygonal mesh using Laplacian eigenfunctions which are the natural harmonics
of the surface. The surface Morse functions distribute their extrema evenly across
a mesh, which connect via gradient flow into a quadrangular base mesh (known
as a Morse-Smale Complex). An iterative relaxation algorithm refines this initial
complex to produce a globally smooth parameterization of the surface. From this,
well-shaped quadrilateral mesh with very few defects are generated. Although very
elegant, this approach has many implementation problems: (1) The quality of mesh
depends on an appropriate morse function, whose choice is often heuristic and, if
poor, leads to high numbers of critical points; (2) calculations of the first few (about
40) eigenvectors are very expensive and sometimes impractical for a large mesh. (3)
Tracing the curves from maxima to minima via saddle points may have geometric
robustness issues.

Felix et al. [7] generate a high quality quadrilateral mesh using global parameter-
ization which is guided by a user-defined frame field (often the principal curvature
directions). These frame fields simplify to vector fields on the covering spaces, so that
the problem of parameterization with frame fields reduces to the problem of finding
a proper integrable vector field on the covering surface. Similarly, Bommes et al. [4]
formulated the quadrangulation problem as two step process (cross field generation
and global parameterization), both formulated as a mixed-integer problems. This
scheme allows placement of singularities at geometrically meaningful locations, and
produces meshes with favorable orientation and alignment properties. However, the
method still requires the solution of a numerical problem, which can be expensive.

Bommes et al. [5] developed an algorithm that optimizes high-level structure of
a given quadrilateral mesh, especially for helical structures. Their algorithm is able
to detect helical structures and remove most of them by applying grid preserving
operators.

Hormann et al. [10] presented an algorithm that converts an unstructured trian-
gle mesh with boundaries into a regular quadrilateral mesh using global parameter-
ization that minimizes geometric distortion. The second part of our work to reduce
irregular nodes is also based on remeshing patches, but we do this on topologically
convex patches instead of using global parameterization.

In the area of topological cleanup operations, many methods have been pre-
sented. Canann [2] and Kinney [18] present ever-growing numbers of operations,
usually applied using an isomorphism approach. In contrast to those, Bunin [§]
presents a very elegant technique for removing defect vertices based on patch re-
placement, whose results are better than those of the isomorphism approach while
also being vastly simpler to implement. We make heavy use of this technique in the
present work.

3 The JAAL All-Quadrilateral Meshing Algorithm

We describe an open source, all-quadrilateral mesh generator that uses an indirect
approach. The input to the algorithm is any triangulated surface; the output is an
all-quadrilateral mesh with the following features:

1. The mesh may have very few or no irregular nodes.
2. All the quad elements are convex.

4 Chaman Singh Verma and Tim Tautges

Step-1 Step-11 Step-II1

Input . Global

Triangle Mesh [™| Tri->Quads F’ QuadCleanup Alighment

| i

- N |
| Doublets Singlets Diamoends Edges L One-Defect i
3 Removal Removal Removal Flipping E i— Remeshing | |
Local Operations Global Operation

Fig. 1. Flowchart of Jaal Quadrilateral Mesh Generation

3. All the interior nodes have degree range [3-5]. The boundary nodes have degree
range [1-4].

The flowchart of this algorithm is shown in Figure 1. In the step-I, triangles are
combined to form quadrilaterals and in the step-II and III, geometric and topological
improvements are carried out on a topologically valid quadrilateral mesh.

This algorithm relies on two fundamental ideas, tree matching and patch remesh-
ing, which are described in following sections. When combined with other freely
available components for triangle meshing, geometric evaluation, and mesh smooth-
ing, the result is an open-source, all-quadrilateral meshing algorithm for 2D/3D
surfaces of arbitrary topology. We refer to this algorithm using the name JAAL.

3.1 Tree Matching Algorithm (TMA)

Converting triangles into quadrilaterals essentially involves combining adjacent pairs
of triangles to form a single quadrilateral. Greedy algorithms, although simple, may
leave many unmatched triangles in the mesh, therefore some heuristics are used to
maximize number and quality of the quads. For an example, QMorph uses advancing
front method to combine triangles into quads[22].

One of the most important algorithms in combinatorial graph theory is Edmond’s
perfect matching algorithm [6]. Presently, the fastest known implementation of Ed-
mond’s algorithm is from Micali and Vazirani [17] that runs in O(EV?'/?) time com-
plexity. For binary trees (derived from the dual graph of a triangulation), Suneeta
[23] proposed the Q-percolation algorithm that has time complexity of O(n). For
many theoretical results, algorithms, and complete analysis, we recommend her orig-
inal paper [23]. The simplicity in the Q-percolation is achieved by inserting Steiner
points in the triangle mesh to allow perfect tree matching. In Table 1, we have com-
pared the efficiency of general graph matching (available in the Boost library [1])
with our own implementation of the Q-percolation algorithm. These times clearly
demonstrate that Q-percolation significantly outperforms the general algorithm for
trees originating from a triangulated mesh. Table 2 shows that @Q-percolation also
introduces fewer than four percent steiner points.

Suneeta describes two algorithms for tree matching, a simple but non-optimal
tree matching algorithm that considers local matching rules, and a theoretically

Jaal:Engineering a high quality all-quadrilateral mesh generator 5

optimal but complex algorithm that uses non-local patches to generate all convex
quadrilaterals. We use the non-optimal approach for three reasons:

e Even with the optimal tree matching solution, in most cases, the resulting mesh
will still be far from optimal in terms of defect vertices. For 3D surfaces, rules
for obtaining a geometrically optimal quadrangulation may be difficult to pose,
and expensive to evaluate.

e Experiments have shown that a non-optimal tree matching produces fewer than
four percent steiner points, which is not a significant increase in the total number
of vertices.

e The non-optimal solution is extremely fast, very easy to implement, and requires
no geometric information (which is important for 3D surfaces).

Table 1. Boost Graph Matching v/s Jaal Q-Percolation Performance

Input triangles| Graph Matching(sec)|Jaal Tree Matching (sec)
108 9.73E-03 5.95E-03
10% 1.88E-01 9.8E-02
10° 25.36 1.44
10° 2423.23 25.64

Table 2. Experiments show that TMA introduces few steiner points

Nodes/Triangles| Nodes/Quads |# Steiner Points|% Nodes
542/1031 562/535 20 3.69
5106/10043 5306/5221 200 3.91
50433/100436 | 52346/52131 1913 3.79
501611/1001611{520419/519613 18808 3.74

4 Local Mesh Cleanup Operations

Although many different local mesh cleanup operations have been described [2, 18,
15, 13], we use only four local operations: Singlet Removal, Doublet Removal, Di-
amond Removal, and Edge Flipping (Figure 4). Unlike previous work, we do not
attempt to order or prioritize these operations, as in our case, the main quality
improver will be the patch-based defect removal described in the next section. We
apply local mesh cleanup operations only as a means for removing well-known con-
figurations that are always unacceptable, e.g. two quadrilaterals sharing two edges
(a doublet). Although these local operations are simple, checks must be done so that
(1) inverted elements are not created (2) doublets are not introduced. These opera-
tions are fairly inexpensive, as shown in Table 3. Among the four operations, Fdge
flipping is the most expensive for two reasons:

6 Chaman Singh Verma and Tim Tautges

e The operation requires checking for inverted elements.
e Number of successful operations is, in general, very large and many sweeps over
the entire mesh are essential to exhaust all the possibilities of flipping.

Experiments have shown that these local operations are quite effective and in a
quadrilateral mesh generated from the Delaunay triangulation, as much as half of the
irregular nodes are removed from the mesh. Also with the edge flipping operations,
we can ensure that the output mesh with the lower bound of vertex degree three and
an upper bound of vertex degree five is achieved. For the boundary nodes, interior
angle is used to enforce degree.

Table 3. Performance of local operations

Quads |Singlets|Doublets| Diamonds|Edge Flipping

65000 5 500 3000 3327
0.128s | 0.0725s | 0.1772s 2.651s

701193 1 4450 32443 36034
1.494s | 0.5460s | 2.2503s 32.44s

Boundary
i @/'
\

Fig. 2. Removal of a boundary singlet (top left), doublet (top right), diamond
(bottom left), and edge flipping (bottom right).

—P

Jaal:Engineering a high quality all-quadrilateral mesh generator 7
5 Defect Removal by Patch Replacement

Although Bunin described algorithms for a variety of defect types, we have found
that considering of only 3-, 4-, and 5-sided patch regions to be sufficient, while also
being straightforward to implement.

5.1 3- and 5-sided patch remeshing

3- and 5-sided patches are broken into three and five quadrilateral regions, respec-
tively, as shown in Figure 3, with one irregular node of degree three or five at the
intersection. Since the number of intervals on the patch boundary is fixed, the defects
in a given patch can be replaced by a single defect if there is an everywhere-positive
solution to the corresponding interval matching problem for the patch. For a 3-sided
patch, the corresponding matrix problem is

ad
at+hi=1

b4

b3
a3 +hb3 =13
&

a2 +h2 =12 al+hl=11

b2

a2+ b2 =12
/az

Fig. 3. Template of 3-sided (left) and 5-sided (right) patches.

a3 o

Jk: o
a3 +h3=13 al+bl=11

0 0-11007 (a 0
~1 0 0010| | as 0
0-1 0001 | Jas| |0
10 0100 Ybu [|k
0 1 0010[|bo Iy
0 0 1001 |bs ls

The problem for 5-sided patches is similar (see [8] for details). Note that the inverse
matrix for this problem can be pre-computed, since it is always the same for 3- and
5-sided patches. Figure 4 shows examples of 3- and 5-sided patch replacement.

5.2 4-sided patch remeshing

For 4-sided patches, there are two possibilities, shown in Figure 5. In a regular
patch, opposite sides have equal number of nodes, and the patch can be replaced
with a simple structured mesh. In an irregular patch, sides have unequal number of
nodes; the patch can be broken into two quadrilateral patches and one 3-sided patch.

8 Chaman Singh Verma and Tim Tautges

Fig. 4. Remeshing 3-sided (top) and 5-sided (bottom) patches.
The resulting quadrilateral patches are remeshed using a regular 4-sided algorithm,
with the 3-sided region replaced using the algorithm described in Section 5.1. 4-
sided patches can be remeshed only if the interior 3-sided patch is remeshable, as

described in Section 5.1. An example of this type of patch replacement is shown in
Figure 6.

al al a?

A

al al ad a2

Fig. 5. Remeshing a 4-sided loop. Regular quad patch (left); irregular quad patch
(right).

5.3 Patch Identification

Therefore, the crux of the problem is to identify all the remeshable patches. We now
present pseudo-codes to explain the entire one-defect remeshing.

Jaal:Engineering a high quality all-quadrilateral mesh generator 9

-

Fig. 6. Remeshing 4 Sided loop

void remesh_defective_patches(Mesh *mesh)
begin

1. identify_boundary_nodes(mesh);

2. for(i=4;1<12;i++)

3. max_faces_allowed = pow(2,i);

4. while(1)

5. ncount = 0;

6. IR = build_irregular_nodeset(mesh);

7. while(IR.empty())

8. Vertex *vertex = IR.top();

9. IR = IR - vertex;

10. patch = build_one_defect_patch(mesh, vertex)
11. if(patch)

12. if(patch.remesh() == 0)

13. IR = IR - patch.get_all_irregular_nodes();
14. IR = IR + patch.get_new_defective_node();
15. ncount—+-+;

16. if(ncount == 0) break;

17. end

Line 1: Here we identify all the boundary nodes and tag them as boundary.
Global operations are valid only for the internal nodes.

Line 2: In this loop we set the maximum number of faces that a patch can have.
We start with small number of faces, and once all the possibilities have exhausted,
we increase the patch size. Many experiments have shown that 5000 elements are
more than sufficient for reasonably good quality mesh. Large patches are generally
avoided on highly curved 3D surfaces.

Line 4: We start the loop of global operation. This while loop exit only when
no global operation is performed inside the loop. For this, ncount is initialized to
zero at line 5 and checked at line 16.

Line 6: We build all the irregular nodes (internal) having valency of 3 or 5. (
Assuming that the input nodes have valency 3,4 or 5).

Line 7: Loop starts for every irregular node in the set.

Line 10: Try to build a remeshable patch at the given irregular node. (This is
explained in the next pseudo code).

Line 12: Try to remesh the patch. Remeshing may fail, if it results in any
inverted element.

10 Chaman Singh Verma and Tim Tautges

Line 13: A successful patch may contain many irregular nodes, remove all of
them from the set.

Line 14: There will be at the most one irregular node in the remeshed region,
insert it into the set and continue.

Patch build_one_defect_patch(Mesh *mesh, Vertex *v)
begin

1. initPath = dijkstra_shortest_path(mesh,v);

2. faces = initial_blob(initPath);

3. while(1)

4. if(faces.size() > max_faces_allowed) return NULL;
5. bn = get_boundary_nodes(faces);

6. topo_convex_region = 1;

7. for(i=0;1 < bn.size(); i++)

8. if(is_internal_node(bnl[i])

9. topo_angle = get_topological_outer_angle(bnli])
10. if(topo_angle < 0)

11. expand_blob(bnli])

12. topo_convex_region = 0

13. if(topo_convex_region)

14. if patch345_meshable(bn) == 0)

15. return new Patch(faces, bn);

16. for(i=0;1i < bn.size(); i++)

17. expand_blob(bnli])

Line 1: Starting from a given irregular node, search for another irregular node
in the mesh using Dijkstra’s shortest path algorithm and record all the nodes in the
path. This initial path is the skeleton from where expansion will start.

Line 2: Collect all the faces around the skeleton, these form an initial blob.

Line 3: Blob expansion loop starts.

Line 4: If the blob size is more than specified, we just return with no patch
found.

Line 5: Collect all the outer nodes of the boundary of the current patch.

Line 9: For each boundary node, topological outer angle (as defined in Guy
Bunin’s paper) is calculated, and if it is negative (line 10), more outer elements
surrounding the vertex are added to the blob (line 11). The continues till all the
boundary nodes of the patch have valid topological angle.

Line 14: Identify the corners of the valid patch. We support patches having 3,
4 or 5 sides only. If a valid patch is found, check if is remeshable by solving linear
equations. If the patch is remeshable, return the patch with all the faces, boundary
nodes and corners. This patch will be remeshed by the callee program.

Line 15: If the patch is not remeshable (i.e. no integer solution to the linear
equations) then expand the blob by including more elements at the boundary and
continue.

Jaal:Engineering a high quality all-quadrilateral mesh generator 11
6 Results

All the development, testing, and evaluation were done on Ubuntull.04 running
on Intel Quad-Core processors with 4GM RAM. For mesh quality [11], we plotted
Min-Max angles and aspect ratio distribution. We used the Delaunay triangulation
as an input triangle mesh using Triangle [9] software. Experiments have shown that
the Delaunay triangulation generate approximately half irregular nodes. In most of
the cases, local operations are capable of reducing irregular nodes to almost half as
shown in the table . After the global operation, very few irregular nodes remain in
the mesh. Some experimental results are shown in 9, 10, 11, and 12.

6.1 Mesh smoothing

Our implementation is conservative in the sense, that we do not allow creation of
any inverted element and then use expensive untangling algorithms. Convex regions
increases the chances of successful operations. Experiments have shown that stan-
dard Laplacian smoothing is less effective in correcting concave regions as shown in
Figure 8, therefore we use Quasi-Newton non-linear mesh optimization supported
by Mesquite software.

o
r/ﬁ\‘ "
i
it

Fig. 7. (A) Mesh after one global operation (B) Standard Laplacian smoothing (C)
Non-linear smoothing by Mesquite software

6.2 Power of simple global operation

Converting a triangle into three quadrilateral is probably the simplest algorithm
for quadrangulation (known as Berg’s algorithm). Although this has complexity of
O(n), in literature, this approached has been shunned because it (1) increases the
mesh complexity by three times (2) createas large number of irregular nodes. We
used this algorithm for stress testing for both local and global operations.

12

Fig. 8. (A) Quadrangulation using Berg’s

Chaman Singh Verma and Tim Tautges

i
&
o AT
ettt
S RIS LTI TATC,
‘.:.’::o:o:::‘é:f;’.&'}#‘.’f.‘"f:::.""
S
SO
e

eI
o, A 85
S, O RN
e, T RN
TS S s R
B LSS e SRR
e A o T o S M I R A,
e e S SS i T
R TS ShaN
e o A e S o
B O N T NS B e R
e O e A I LNy
L o A S K M N
T, S CH T
AR e B S T
G e O
G R e
R e

meaaieed
o
s

algorithm(B) Meshclean up using JAAL

Table 4. Performance results of Quadrangulation operations(F:#faces, I:# irregular
nodes)

Operations

Quads/Irregular nodes

Dataset 1

Dataset 11 Dataset III

Local Operations

F:5088 1:2535

F:10316 1:5097|F:51323 1. 25317

Doublet Removal 1.68E-03 9.993E-03 5.24E-02
Singlet Removal 3.44E-03 1.073E-02 9.71E-02
Diamonds Removal 1.91E-03 4.032E-03 2.05E-01
Edge Flipping 2.38E-01 3.014E-03 2.9296
Shape Optimization 0.2407 1.0 33.0
Quads/Irregular nodes F:4732 1: 1091| F:9596 1:2280 |F:48093 I: 11262
Global Operations
3-Sided Patches 273 441 25875
4-Sided Patches 57 104 5507
5-Sided Patches 88 195 11305
Time for searching Patches 3.363 9.9462 800
Time for remeshing patches| 8.80E-03 1.9E-02 30.0
Shape Optimization Time 2.92E-02 0.50 120.0
Quads/Irregular nodes F:4144 1:4 F:9779 1:4 F:38036 1:4

7 Software Implementation

The entire software is written in C++ and part of the MeshKit software. (Toolkit
for mesh generation) which can be freely downloaded from:

https://trac.mcs.anl.gov/projects/fathom/wiki/MeshKit. In addition, we used the
following modules (all source codes are freely available).

Jaal:Engineering a high quality all-quadrilateral mesh generator 13

o
WA IS
i LR,
Pt b A AP AP
S bt g e
il R
e s
ER e e s
s b N .
At fieayeal I v >
i o S g e S S P A s A L
e s e) AT R e sy
K S D AR B o L T R TS A T TR SRS
R R A R P A e ST RN AR E R
A e Ay e RS ST e
R e N o] P R T
(S S e e Ao O RO A A 2 T
D e A r s T N A e e e A
e A S R et gl 7 i N
P A e vt ATANA o ST ottt NSNSy ol oo sy o5 G ot
S e i L AR el N R S e 27 i 27
e A 2 RS o A RS T S AT, ERL eSS S
T A SR e S e s & PN N, L vas
eI e e e LR b P
EK] o b AV By
S T e e A ey
e R -"'A%‘%"'?‘i;‘%‘-‘-ﬂ% LT
i RN e g Ve v R Tty
S e Ny e
s LR ng,l‘ WS 5005
SRS AR
2 2R

QuadMesh Quality: MinAngle QuadMesh Quality: MaxAngle QuadMesh Quality: AspectRatio
so00gr01

L800E400

5500 .
1500E400
B000F+01
14008400

7 500E 0L
7000F+01

MinAngle

13008400

MaxAngle

65000

AspectRatio

5000E 10

12006400

1100100
5 000z

10008+ 00
o 0 500 600 700 800 900

iad Elements

© 100 200 30 400 500 500 700 0 00
Quad Elements

Fig. 9. Result-I: Quadrangulation in a disk produces 4 irregular nodes. (A) Initial

triangulation (B) Quadrangulation after tree matching (C) Quadrilateral mesh after
mesh cleanup.

MOAB: This is a component for representing and evaluating mesh data. With
this software, various relationships among the mesh entities can be stored, mod-
ified and queried very efficiently.

CGMA: This software provides all the geometric functionalities that are needed
for mesh generation. We used this software for geometric queries and projecting
vertices on the model.

Mesquite: This software provides sophisticated non-linear algorithms for mesh
shape optimization. This is the most critical component in the Jaal software
pipeline.

4. Verdict: This software is used for measuring various mesh elements qualities.

8 Conclusion

‘We have engineered two algorithms to develop an open-source code for all-quadrilateral
mesh for 2D/3D surfaces using indirect approach. We have done extensive exper-

14 Chaman Singh Verma and Tim Tautges

QuadMesh Quality: MinAngle QuadMesh Quality: AspectRatio

©000E 101 5500100

B000F+0;

7000E 101 30006400

2500100

MinAngle
MaxAngle
AspectRatio

2 000E+00

15000400

1000F 400
50020002500 3000 3300 4000 4500 5000 €500 1000 1500 2000 25002000 3500 4000 4500 5000
Quad Elements Quad Elements

Fig. 10. Result-II: Quadrangulation of Lake Superior model. (A) Initial triangula-
tion (B) Quadrilateral mesh after tree matching (C) Quadrilateral mesh after mesh
cleanup.

iments with the present software and conclude that a large class of surfaces can
be quadrangulated with high quality using very simple operations (four local and
one global). The entire pipeline is fully automatic and require no user’s parameters.
Both geometrically and topologically, the final mesh quality, in all cases, exceeded
our initial expectations. Still, there are scopes for further improvements:

e The biggest performance bottleneck in the pipeline is Patch Searching which is
purely heuristic. It is quite possible that other approaches and data structures
may have less time complexity than what we have presented.

e The present code has no control over spatial distribution of irregular nodes. For
good quality mesh, irregular nodes must be deep inside the domain and evenly
distributed.

e At present, the code does not support constrained quadrangulation, which are
essential for feature preservation.

9 Future Work

We plan to extend the current work in the following directions:

Jaal:Engineering a high quality all-quadrilateral mesh generator 15

e Parallelization : The presented algorithm is inherently parallelizable on both
shared memory and distributed memory architecture machines. In the immediate
future, we will implement this algorithm using Intel Thread Building Blocks(
TBB) library for multi-core machines and Message Passing Interface (MPI)
for large scale problem on distributed memory machines. Transactional memory
paradigm have also been successful in parallelization of incremental Delaunay
triangulation(IDT) [16]. Since our global cleanup algorithm is very similar to
IDT, therefore, scalable implementation will be quite interesting development.

e Non-geometrical models : The present method will be extended to handle arbi-
trary polygonal models where the underlying geometry is not known.

e Feature preservation: Not preserving user defined edges is one of the biggest
weakness of the present algorithm. This can be done in either step-I or step-11,
which we will explore.

References

1. Boost Graph Libary:
http://www.boost.org/doc/libs/1_37_0/libs/graph/doc/maximum_matching.html

2. S. Canann, S. Muthukrishnan, and R. Phillips (1998). Topological Improve-
ment Procedures for Quadrilateral Finite Element Meshes. Engineering with
Computers, 14:168177,

3. J. Daniels, M. Lizier, M. Siqueira, C. T. Silva, and L. G. Nonato. Template
Based Quadrilateral Meshing. Computers and Graphics, Volume 35, Issue 3,
June 2011, Pages 471-482 Shape Modeling International (SMI) Conference 2011

4. David Bommes, Henrik Zimmer, Leif Kobbelt (2009), Mixed-Integer Quadran-
gulation, ACM Transactions on Graphics (TOG), 28(3), Article No. 77.

5. David Bommes, Timm Lempfer, and Leif Kobbelt(2011), Global Structure Op-
timization of Quadrilateral Meshes, Eurographics 2011

6. Edmonds, Jack (1965). ”Paths, trees, and flowers”. Canad. J. Math. 17: 449467

7. Felix Klberer and Matthias Nieser and Konrad Polthier (2007) QuadCover Sur-
face Parameterization using Branched Coverings. EUROGRAPHICS 2007, Vol-
ume 26, Number 3

8. Guy Bunin (2006) Non-Local Topological Cleanup ,15th International Meshing
Roundtable.

9. Jonathan R. Shewchuk. Triangle: A Two dimensional quality mesh generator
and Delaunay triangulator, http://www.cs.cmu.edu/ quake/triangle.html

10. Kai Hormann, and Gunther Greiner. Quadrilateral Remeshing Proceedings of
Vision, Modeling, and Visualization 2000, pages:153-162, Editors: B. Girod and
G. Greiner and H. Niemann and H.-P. Seidel

11. Knupp, P. (2000): Achieving Finite Element Mesh Quality via Optimization of
the Jacobian Matrix Norm and Associated Quantities. International Journal
for Numerical i Methods in Engineering 48(8), 11651185.

12. Marcin Mucha and Piotr Sankowski (2004), Maximum matchings in planar
graphs via Gaussian elimination. in Algorithmica.

13. Mark W. Dewey, Steven E. Benzley, Jason F. Shepherd, and Matthew L. Staten,
Automated Quadrilateral Coarsening by Ring Collapse.

14. Marshall Bern (1997) Quadrilateral meshing by circle packing, International
Journal of Computational Geometry and Applications,7-20

16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Chaman Singh Verma and Tim Tautges

Matthew Staten and Scott A. Canann (1997) Post Refinement Element Shape
Improvement For Quadrilateral Meshes, 220 Trends in Unstructured Mesh Gen-
eration, ASME,9-16

Milind Kulkarni, L. Paul Chew, Keshav Pingali. Using Transactions in De-
launay Mesh Generation. https://engineering.purdue.edu/ milind /docs/wtw06-
slides.pdf

Micali, Silvio and Vazirani, Vijay V., An O(v|v|c|E|) algoithm for finding max-
imum matching in general graphs, Foundations of Computer Science, 1980.,
21st Annual Symposium on.

Paul Kinney (1997) CleanUp: Improving Quadrilateral Finite Element
Meshes,6th International Meshing Roundtable, 449-461

Marshall Bern, David Eppstein, Quadrilateral Meshing by Circle packing. Inter-
national Journal of Computational Geometry and Applications, 1997, pages7—20
Shen Dong and Peer-timo Bremer and Michael Garland (2006), Spectral surface
quadrangulation, ACM Transaction on Graphics, vol25, 1057-1066

Stefan Arnborg and Jens Lagergren (1991), FEasy Problems
for Tree-Decomposable Graphs. http://www.informatik.uni-
trier.de/ ley/db/journals/jal/jal12.html# ArnborgL.S91

Steven J. Owen and Matthew L. Staten and Scott A. Canann and Sunil Sai-
gal (1998),Advancing Front Quadrilateral Meshing Using Triangle Transforma-
tions,

Suneeta Ramaswami and Pedro Ramos and Godfried Toussaint (1998) Con-
verting triangulations to quadrangulations, Computational Geometry: Theory
and Applications, 9:257-276.

F. Betual Atalay, Suneeta Ramaswami and Dianna Xu (2011) Quadrilateral
Meshes with Provable Angle Bounds.

Tian Zhou and Kenji Shimada (2000) An angle-based approach to two-
dimensional mesh smoothing, In Proceedings, 9th International Meshing
Roundtable, 373-384

Jaal:Engineering a high quality all-quadrilateral mesh generator

Fig. 11. Quadrangulation of 2D regions

17

Chaman Singh Verma and Tim Tautges

18

S o
SRR T
T o
iy

&
iﬂ!‘ffflm

%

o
iy
A L
——'o'.:.o’%%llhll e T
i Ly

i
e
A i

Y

o
u},’f:’::o,

Quadrangulation of 3D surfaces

.12,

1g

F

