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CS 640: Introduction to 
Computer Networks

Aditya Akella

Lecture 1
Introduction

http://www.cs.wisc.edu/~akella/CS640/F07
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Goals of This Class
• Understand principles and practice of networking

• How are modern networks designed? Operated? 
Managed?

• Performance and design trade-offs in network 
protocols and applications

• How do network applications work? How to write 
applications that use the network?
– Hands-on approach to understand network internals

• How will different aspects of networking evolve in 
the future?
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Goal of Networking
• Enable communication between network applications on different 

end-points
– End-points? computers, cell phones….
– Application? Web, Peer to Peer, Streaming video, IM
– Communication? transfer bits or information across a “network”

• Network must understand application needs/demands
– What data rate?
– Traffic pattern? (bursty or constant bit rate)
– Traffic target? (multipoint or single destination, mobile or fixed)
– App sensitivity? (to delay, “jitter”, loss)
– Difficulty: Network may not know these in the first place!

• How does the application “use” the network?
– Peer to peer: how to find nearest host
– Web: how to modulate sending rate? Coexist with other users/apps? 
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Defining a “Network”
• Network = nodes + links

– Will build on this soon

• Intentionally vague. There are several different 
networks:
– The Internet

– Wisc CS network

– Telephone network

– Home wireless networks

– Others – sensor nets, “On Star”, cellular networks

• Our focus on Internet
– Also explore important common issues and challenges
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Challenges for Networking

• Accommodate different geographic scopes
– The Internet vs. home network

• Enable scale
– CS network vs. the Internet

• Seamlessly integrate different application types
– Email vs. video conferencing

• Independent administration and Trust
– Corporate network – owned by one entity
– Internet owned and managed by 17,000 network providers

• Independent, conflicting interests
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Network Building Block: Links

• “Physical”-layer questions
– Wired or wireless
– Voltage (Electrical) or wavelength (optical)

• “Link”-layer issues:  How to send data? 
– Medium access – can either side talk at once?
– Data format?

Node Link Node
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• … But what if we want more hosts?

• How many additional wires per host?

• Scalability?

Basic Building Block: Links

Wires for everybody?

How many wires?

8

Key Idea: Multiplexing
• Multiplex: share network resources

– Resources need “provisioning”
– Grow at slower rate than number of nodes

• How to share?  Switched network
– Party “A” gets resources sometimes
– Party “B” gets them sometimes

• Interior nodes act as “Switches”

A

B

9

Circuit Switching
• Source first establishes a circuit to destination

– Switches along the way stores info about connection
• Possibly allocate resources
• Different srs-dst’s get different paths

• Source sends the data over the circuit
– No address required since path is established beforehand

• The connection is explicitly set up and torn down

• Switches use TDM (digital) or FDM (analog) to 
transmit data from various circuits
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Switching in the Telephone Network

11

Circuit Switching Discussion
• Positives

– Fast and simple data transfer, once the circuit has been 
established

– Predictable performance since the circuit provides isolation
from other users

• E.g. guaranteed max bandwidth

• Negatives
– How about bursty traffic

• Circuit will be idle for significant periods of time
• Also, can’t send more than max rate

– Circuit set-up/tear down is expensive
– Also, reconfiguration is slow

• Fast becoming a non-issue
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Packet Switching
• Source sends information as self-contained packets 

– Packets have an address.
– Source may have to break up single message in multiple 

packets

• Packets travel independently to the destination host
– Switches use the address in the packet to determine how to 

forward the packets
– “Store and forward”

• Analogy: a letter in surface mail
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Benefits of
Statistical Multiplexing

Packets

Better Link Utilization

TDM: Flow gets chance in fixed time-slots

SM: Flow gets chance on demand; no need to wait for slot

14

Packets vs. Circuits
• Efficient 

– Can send from any input that is ready
– No notion of wastage of resources that could be used otherwise

• Contention (i.e. no isolation)
– Congestion
– Delay

• Accommodates bursty traffic
– But need packet buffers

• Address look-up and forwarding
– Need optimization

• Packet switching pre-dominant
– Circuit switching used on large time-scales, low granularities

15

Internet[work]

Internetwork
• A collection of interconnected 

networks

• Networks: Different depts, 
labs, etc.

• Router: node that connects 
distinct networks

• Host: network endpoints 
(computer, PDA, light switch, 
…)

• Together, an independently 
administered entity

– Enterprise, ISP, etc.

EE ME

CS
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Internetwork Challenges
• Many differences 

between networks
– Address formats
– Performance –

bandwidth/latency
– Packet size
– Loss 

rate/pattern/handling
– Routing

• How to translate and 
inter-operate?
– Routers are key to many 

of these issues

Internet[work]

802.3 Frame 
relay

ATM

17

“The Internet”
• Internet vs. internet 

• The Internet: the interconnected set of 
networks of the Internet Service Providers 
(ISPs) and end-networks, providing data 
communications services.
– Network of internetworks, and more

– About 17,000 different ISP networks make up the 
Internet

– Many other “end” networks

– 100,000,000s of hosts

18

• Extra Slides…
– We will cover these topics in greater detail 

in future lectures

Internet Design Issues
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Internet

Computer 1 Computer 2

Need:
(1) naming, 
(2) addressing and 
(3) routing
(4) …

Some Key “Internet”
Design Issues

20

Key Issues:
Naming/Addressing

What’s the address for www.wisc.edu?

It is 144.92.104.243

Translates human readable names to logical endpoints

Local DNS ServerComputer 1

21

Key Issues:
Routing

R

R

R

RRH

H

H

H

R

RH

R

Routers send packet 
towards destination

H: Hosts

R: Routers
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Key Issues:
Network Service Model

• What is the service model?
– Defines what to expect from the network
– Best-effort: packets can get lost, no guaranteed 

delivery

• What if you want more?
– Performance guarantees (QoS)
– Reliability

• Corruption
• Lost packets

– In-order delivery for file chunks
– Etc…

23

What if the Data gets 
Corrupted?

Internet
GET inrex.htmlGET index.html

Solution: Add a checksum

Problem: Data Corruption

0,9 9 6,7,8 21 4,5 7 1,2,3 6
X

24

What if the Data gets Lost?

Internet
GET index.html

Problem: Lost Data

Internet
GET index.html

Solution: Timeout and Retransmit

GET index.html
GET index.html
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Solution: Add Sequence Numbers

Problem: Out of Order

What if Data is Out of Order?

GETx.htindeml

GET x.htindeml

GET index.html

ml 4 inde 2 x.ht 3 GET 1

26

Meeting Application Demands
• Sometimes network can do it 

– E.g., Quality of Service
• Benefits of circuit switching in packet-switched net

• Hard in the Internet, easy in restricted contexts

• Lecture 20

• OR hosts can do it 
– E.g., end-to-end Transport protocols

• TCP performs end-to-end retransmission of lost packets 
to give the illusion of a reliable underlying network.

• Lectures 16-19

27

To Summarize…
Networks implement many functions

• Links

• Sharing/Multiplexing 

• Routing

• Addressing/naming

• Reliability

• Flow control

• Fragmentation

• Etc….
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CS 640: Introduction to 
Computer Networks

Aditya Akella

Lecture 2
Layering, Protocol Stacks,

and Standards

2

Today’s Lecture

• Layers and Protocols

• A bit about applications

3

Network Communication:
Lots of Functions Needed

• Links
• Multiplexing 
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation

How do you implement these functions?
Key: Layering and protocols
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What is Layering?
• A way to deal with complexity

– Add multiple levels of abstraction

– Each level encapsulates some key functionality

– And exports an interface to other components

– Example?

• Layering: Modular approach to implementing 
network functionality by introducing 
abstractions

• Challenge: how to come up with the “right”
abstractions?

5

Example of Layering
• Software and hardware for communication 

between two hosts

• Advantages:
– Simplifies design and implementation
– Easy to modify/evolve

Link hardware

Host-to-host connectivity

Application-to-application channels

Application semantics

6

What is a Protocol?

• Could be multiple abstractions at a given level 
– Build on the same lower level
– But provide diferent service to higher layers

• Protocol: Abstract object or module in layered 
structure

Link hardware

Host-to-host connectivity

Request-Reply

Application

Message stream
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1. Protocols Offer Interfaces

• Each protocol offers interfaces 
– One to higher-level protocols on the same end 

hosts
• Expects one from the layers on which it builds
• Interface characteristics, e.g. IP service model

– A “peer interface” to a counterpart on destinations
• Syntax and semantics of communications
• (Assumptions about) data formats

• Protocols build upon each other
– Adds value, improves functionality overall

• E.g., a reliable protocol running on top of IP

– Reuse, avoid re-writing
• E.g., OS provides TCP, so apps don’t have to rewrite

8

2. Protocols Necessary for 
Interoperability

• Protocols are the key to interoperability.
– Networks are very heterogenous:

– The hardware/software of communicating parties are often 
not built by the same vendor

– Yet they can communicate because they use the same 
protocol

• Actually implementations could be different 
• But must adhere to same specification

• Protocols exist at many levels.
– Application level protocols
– Protocols at the hardware level

Hardware/link

Network

Application

Ethernet:  3com, etc.

Routers:  cisco, juniper etc.

App:  Email, AIM, IE etc.

9

OSI Model

• One of the first standards for layering: OSI

• Breaks up network functionality into seven 
layers

• This is a “reference model”
– For ease of thinking and implementation

• A different model, TCP/IP, used in practice
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The OSI Standard: 7 Layers
1. Physical:  transmit bits (link)

2. Data link: collect bits into frames and transmit frames 
(adaptor/device  driver)

3. Network: route packets in a packet switched network

4. Transport: send messages across processes end2end

5. Session: tie related flows together

6. Presentation: format of app data (byte ordering, video 
format)

7. Application: application protocols (e.g. FTP)

• OSI very successful at shaping thought

• TCP/IP standard has been amazingly successful, and it’s not 
based on a rigid OSI model

11

OSI Layers and Locations

Bridge/
Switch

Full fledged
packet switch:
use dst addr
to route

Router/
Gateway

Forward using
network layer
addresses

Host Host

Application

Transport

Network

Data Link

Presentation

Session

Physical

Repeater/
Hub

Simply copy
packets out

12

The Reality: TCP/IP Model

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn… Network protocols implemented by a 
comb of hw and sw.

Interconnection of n/w technologies 
into a single logical n/w

Two transport protocols: provide logical 
channels to apps

App protocols

Note: No strict layering.

App writers can define apps that run on any lower level protocols.
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The Thin Waist

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist: minimal, carefully chosen functions. 
Facilitates interoperability and rapid evolution

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

14

TCP/IP vs OSI

Application
(plus

libraries)

TCP/UDP
IP

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

15

TCP/IP Layering

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical
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Layers & Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

Header

17

Protocol Demultiplexing
• Multiple choices at each layer

• How to know which one to pick?

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP
Many

Networks

18

Multiplexing & Demultiplexing

• Multiple implementations 
of each layer
– How does the receiver know 

what version/module of a 
layer to use?

• Packet header includes a 
demultiplexing field
– Used to identify the right 

module for next layer
– Filled in by the sender
– Used by the receiver

• Multiplexing occurs at 
multiple layers.  E.g., IP, 
TCP, …

IP

TCP

IP

TCP

V/HL TOS Length

ID Flags/Offset

TTL Prot. H. Checksum

Source IP address

Destination IP address

Options..
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Layering vs Not
• Layer N may duplicate layer N-1 functionality 

– E.g., error recovery

• Layers may need same info (timestamp, MTU)

• Strict adherence to layering may hurt performance

• Some layers are not always cleanly separated
– Inter-layer dependencies in implementations for performance 

reasons
– Many cross-layer assumptions, e.g. buffer management

• Layer interfaces are not really standardized.
– It would be hard to mix and match layers from independent 

implementations, e.g., windows network apps on unix (w/o 
compatibility library)

20

Applications; 
Application-Layer Protocols

• Application: communicating, 
distributed processes

– Running in network hosts in 
“user space”

– N/w functionality in kernel 
space

– Exchange messages to 
implement app

– e.g., email, file transfer, the 
Web

• Application-layer protocols
– One “piece” of an app

– Define messages exchanged by 
apps and actions taken

– Use services provided by lower 
layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

21

Writing Applications: Some 
Design Choices

• Communication model:
– Client-server or peer-to-peer

– Depends on economic and usage models

• Transport service to use?
– “TCP” vs “UDP”

– Depends on application requirements
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Client-Server Paradigm vs. P2P

Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
• Initiates contact with server 

(“speaks first”)

• Typically requests service from 
server, 

• For Web, client is implemented in 
browser; for e-mail, in mail reader

Server:
• Provides requested service to client

• e.g., Web server sends requested 
Web page, mail server delivers e-
mail

• P2P is a very different model
– No notion of client or server

request

reply

23

Choosing the Transport 
Service

Data loss
• Some applications (e.g., 

audio) can tolerate some 
loss

• Other applications (e.g., 
file transfer, telnet) 
require 100% reliable data 

transfer

Timing
• Some applications (e.g., 

Internet telephony, 
interactive games) 
require low delay to be 
“effective”

Bandwidth
• Some applications (e.g., multimedia) require a minimum 

amount of bandwidth to be “effective”

• Other applications (“elastic apps”) will make use of whatever 

bandwidth they get

24

Transmission Control 
Protocol (TCP)

TCP
• Reliable – guarantee delivery
• Byte stream – in-order 

delivery
• Connection-oriented – single 

socket per connection
• Setup connection followed 

by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented 
• Setup connection followed 

by conversation

Example TCP applications
Web, Email, Telnet
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User Datagram Protocol (UDP)

Example UDP applications
Multimedia, voice over IP

UDP
• No guarantee of delivery
• Not necessarily in-order 

delivery
• Datagram – independent 

packets; connectionless
• Must address each packet

Postal Mail
• Unreliable
• Not necessarily in-order 

delivery
• Letters sent independently         
• Must address each reply

26

Transport Service Requirements 
of Common Applications

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above 
few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

file transfer
e-mail

web documents
real-time audio/

video
stored audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive
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Yu-Chi Lai

Lecture 3
Network Programming

CS 640: Computer Networking

• Client-server model
• Sockets interface
• Socket primitives
• Example code for echoclient and 
echoserver

• Debugging With GDB
• Programming Assignment 1 (MNS)

Topics

Client/server model
• Client asks (request) – server provides (response)
• Typically: single server - multiple clients 
• The server does not need to know anything about the 

client
– even that it exists

• The client should always know something about the 
server
– at least where it is located

Client
process

Server
process

1. Client sends request

2. Server 
handles
request

3. Server sends response4. Client 
handles
response

Resource

Note: clients and servers are processes running on hosts 
(can be the same or different hosts).
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Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

• Address the machine on the network
– By IP address 

• Address the process
– By the “port”-number

• The pair of IP-address + port – makes up a “socket-address”

Note: 3479 is an
ephemeral port allocated

by the kernel 

Note: 80 is a well-known port
associated with Web servers

Clients
• Examples of client programs

– Web browsers, ftp, telnet, ssh

• How does a client find the server?
– The IP address in the server socket address identifies the 

host

– The (well-known) port in the server socket address identifies 
the service, and thus implicitly identifies the server process 
that performs that service.

– Examples of well known ports
• Port 7: Echo server

• Port 23: Telnet server

• Port 25: Mail server

• Port 80: Web server

Using Ports to Identify 
Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client
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Servers
• Servers are long-running processes (daemons).

– Created at boot-time (typically) by the init process 
(process 1)

– Run continuously until the machine is turned off.

• Each server waits for requests to arrive on a 
well-known port associated with a particular 
service.
– Port 7: echo server
– Port 23: telnet server
– Port 25: mail server
– Port 80: HTTP server

• Other applications should choose between 1024 and 
65535

See /etc/services for a 
comprehensive list of the 
services available on a 
Linux machine.

The interface that the OS provides to its networking 
subsystem

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

physical layer

application layer

transport layer (TCP/UDP)

network layer (IP)

link layer (e.g. ethernet)

physical layer

OS network

stack

Sockets as means for inter-process 
communication (IPC)

Client Process Server Process

Socket

OS network

stack

Socket

Internet

Internet

Internet

Sockets

• What is a socket?
– To the kernel, a socket is an endpoint of communication.
– To an application, a socket is a file descriptor that lets the 

application read/write from/to the network.
• Remember: All Unix I/O devices, including networks, are 

modeled as files.

• Clients and servers communicate with each by reading 
from and writing to socket descriptors.

• The main distinction between regular file I/O and 
socket I/O is how the application “opens” the socket 
descriptors.
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Socket Programming Cliches
• Network Byte Ordering

– Network is big-endian, host may be big- or little-endian

– Functions work on 16-bit (short) and 32-bit (long) values 

– htons() / htonl() : convert host byte order to network byte order

– ntohs() / ntohl(): convert network byte order to host byte order

– Use these to convert network addresses, ports, …

• Structure Casts
– You will see a lot of ‘structure casts’

struct sockaddr_in serveraddr; 
/* fill in serveraddr with an address */
…
/* Connect takes (struct sockaddr *) as its second argument */ 
connect(clientfd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr)); 
…

Socket primitives
• SOCKET: int socket(int domain, int type, int 

protocol);
– domain := AF_INET (IPv4 protocol) 
– type := (SOCK_DGRAM or SOCK_STREAM )
– protocol := 0 (IPPROTO_UDP or IPPROTO_TCP)
– returned: socket descriptor (sockfd), -1 is an error

• BIND: int bind(int sockfd, struct sockaddr 
*my_addr, int addrlen);
– sockfd - socket descriptor (returned from socket())
– my_addr: socket address, struct sockaddr_in is used
– addrlen := sizeof(struct sockaddr)

struct sockaddr_in { 

unsigned short  sin_family;  /* address family (always AF_INET) */ 

unsigned short  sin_port;    /* port num in network byte order */ 

struct in_addr sin_addr;    /* IP addr in network byte order */ 

unsigned char   sin_zero[8]; /* pad to sizeof(struct sockaddr) */ 

}; 

• LISTEN: int listen(int sockfd, int backlog); 
– backlog: how many connections we want to queue

• ACCEPT: int accept(int sockfd, void *addr, int *addrlen);
– addr: here the socket-address of the caller will be written
– returned: a new socket descriptor (for the temporal socket)

• CONNECT: int connect(int sockfd, struct sockaddr 
*serv_addr, int addrlen); //used by TCP client
– parameters are same as for bind()

• SEND: int send(int sockfd, const void *msg, int len, int 
flags);
– msg: message you want to send
– len: length of the message
– flags := 0
– returned: the number of bytes actually sent

• RECEIVE: int recv(int sockfd, void *buf, int len, unsigned int 
flags);
– buf: buffer to receive the message
– len: length of the buffer (“don’t give me more!”)
– flags := 0
– returned: the number of bytes received
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• SEND (DGRAM-style): int sendto(int sockfd, const void *msg, 
int len, int flags, const struct sockaddr *to, int tolen);
– msg: message you want to send
– len: length of the message
– flags := 0
– to: socket address of the remote process
– tolen: = sizeof(struct sockaddr)
– returned: the number of bytes actually sent

• RECEIVE (DGRAM-style): int recvfrom(int sockfd, void *buf, 
int len, unsigned int flags, struct sockaddr *from, int 
*fromlen);
– buf: buffer to receive the message
– len: length of the buffer (“don’t give me more!”)
– from: socket address of the process that sent the data
– fromlen:= sizeof(struct sockaddr)
– flags := 0
– returned: the number of bytes received

• CLOSE: close (socketfd);

Client+server: connectionless

CREATE

BIND

SEND

SEND

CLOSE

RECEIVE

Client+server: connection-oriented

Concurrent server

SOCKET

BIND

LISTEN

CONNECT

ACCEPT

RECEIVE

RECEIVE

SEND

SEND

CLOSE

TCP three-way 
handshake
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Echo Client-Server

#include’s

#include <stdio.h>      /* for printf() and fprintf() */
#include <sys/socket.h> /* for socket(), connect(),          

sendto(), and recvfrom() */
#include <arpa/inet.h>  /* for sockaddr_in and 

inet_addr() */
#include <stdlib.h>     /* for atoi() and exit() */
#include <string.h>     /* for memset() */
#include <unistd.h>     /* for close() */

#include <netdb.h> /* Transform the ip address 

string to real uint_32 */

#define ECHOMAX 255     /* Longest string to echo */

EchoClient.cpp -variable declarations

int main(int argc, char *argv[])
{

int sock;                        /* Socket descriptor */
struct sockaddr_in echoServAddr; /* Echo server address */
struct sockaddr_in fromAddr;     /* Source address of echo */
unsigned short echoServPort =2000;     /* Echo server port */
unsigned int fromSize;           /* address size for recvfrom() */
char *servIP=“172.24.23.4”;   /* IP address of server */
char *echoString=“I hope this works”;    /* String to send to 
echo server */
char echoBuffer[ECHOMAX+1];      /* Buffer for receiving 
echoed string */
int echoStringLen;               /* Length of string to echo */
int respStringLen;               /* Length of received response */
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EchoClient.c - creating the socket

/* Create a datagram/UDP socket and 
error check */ 

sock = socket(AF_INET, SOCK_DGRAM, 
0);

if(sock <= 0){ 

printf("Socket open error\n");

exit(1);

}

/* Construct the server address structure */ 
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out 

structure */
echoServAddr.sin_family = AF_INET; /* Internet addr family */ 
inet_pton(AF_INET, servIP, &echoServAddr.sin_addr); /* Server IP 

address */ 
echoServAddr.sin_port = htons(echoServPort); /* Server port */

/* Send the string to the server */ 
echoStringLen = strlen(echoString);
sendto(sock, echoString, echoStringLen, 0, (struct sockaddr *) 

&echoServAddr, sizeof(echoServAddr);

EchoClient.cpp – sending

EchoClient.cpp – receiving and printing

/* Recv a response */ 
fromSize = sizeof(fromAddr); 
recvfrom(sock, echoBuffer, ECHOMAX, 0, (struct sockaddr *) 

&fromAddr, &fromSize);

/* Error checks like packet is received from the same server*/
…

/* null-terminate the received data */ 
echoBuffer[echoStringLen] = '\0'; 
printf("Received: %s\n", echoBuffer); /* Print the echoed arg */
close(sock); 
exit(0);
} /* end of main () */
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EchoServer.cpp – creating socket
int main(int argc, char *argv[])
{

int sock;                        /* Socket */
struct sockaddr_in echoServAddr; /* Local address */
struct sockaddr_in echoClntAddr; /* Client address */
unsigned int cliAddrLen;         /* Length of incoming message */
char echoBuffer[ECHOMAX];        /* Buffer for echo string */
unsigned short echoServPort =2000; /* Server port */
int recvMsgSize;                 /* Size of received message */

/* Create socket for sending/receiving datagrams */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if(sock <= 0){ 

printf("Socket open error\n");
exit(1);

}

/* Construct local address structure*/
memset(&echoServAddr, 0, sizeof(echoServAddr));  /* Zero out structure 
*/
echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr =htonl(INADDR_ANY); 
echoServAddr.sin_port = htons((uint16_t) echoServPort); /* Local port */

/* Bind to the local address */
int error_test = bind(sock, (struct sockaddr *) &echoServAddr, 
sizeof(echoServAddr));
if(error_test < 0){
printf("Binding error\n");
exit(1);

}

EchoServer.cpp – binding

for (;;) /* Run forever */
{

cliAddrLen = sizeof(echoClntAddr);

/* Block until receive message from a client */
recvMsgSize = recvfrom(sock, echoBuffer, ECHOMAX, 0,

(struct sockaddr *) &echoClntAddr, &cliAddrLen);

printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));

/* Send received datagram back to the client */
sendto(sock, echoBuffer, recvMsgSize, 0, 

(struct sockaddr *) &echoClntAddr, sizeof(echoClntAddr);
}

} /* end of main () */

Error handling is must

EchoServer.cpp – receiving and echoing
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Socket Programming Help
• man is your friend

– man accept

– man sendto

– Etc. 

• The manual page will tell you:
– What #include<> directives you need at the 
top of your source code

– The type of each argument

– The possible return values

– The possible errors (in errno)

Debugging with gdb
• Prepare program for debugging

– Compile with “-g” (keep full symbol table)
– Don’t use compiler optimization (“-O”, “–O2”, …)

• Two main ways to run gdb
– On program directly

• gdb progname

• Once gdb is executing we can execute the program with:
– run args

– On a core (post-mortem)
• gdb progname core

• Useful for examining program state at the point of crash

• Extensive in-program documentation exists
– help (or  help <topic> or  help <command> )

More information…

• Socket programming
– W. Richard Stevens, UNIX Network Programming 
– Infinite number of online resources
– http://www.cs.rpi.edu/courses/sysprog/sockets/sock.html

• GDB
– Official GDB homepage: 

http://www.gnu.org/software/gdb/gdb.html
– GDB primer: http://www.cs.pitt.edu/~mosse/gdb-note.html
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Project Partners

• If you don’t have a partner
– Stay back after class

• Now…
– Overview of PA 1
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Lecture 4 -
Application Protocols, Performance

Applications
FTP: The File Transfer Protocol

• Transfer file to/from remote host

• Client/server model

– Client: side that initiates transfer (either to/from remote)

– Server: remote host

• ftp: RFC 959

• ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user 
at host

FTP: Separate Control, Data 
Connections

• Ftp client contacts ftp server 
at port 21, specifying TCP as 
transport protocol

• Two parallel TCP connections 
opened:
– Control: exchange commands, 

responses between client, 
server.

“out of band control”

– Data: file data to/from server

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

• Server opens data connection to client
– Exactly one TCP connection per file requested.

– Closed at end of file

– New file requested � open a new data connection

• Ftp server maintains “state”: current directory, earlier 
authentication
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HTTP Basics
• HTTP layered over bidirectional byte stream

– Almost always TCP

• Interaction
– Client sends request to server, followed by response from 

server to client
– Requests/responses are encoded in text

• Contrast with FTP
– Stateless

• Server maintains no information about past client requests
– There are some caveats

– In-band control
• No separate TCP connections for data and control

Typical HTTP Workload 
(Web Pages)

• Multiple (typically small) objects per 
page 
– Each object a separate HTTP session/TCP 
connection

• File sizes
– Why different than request sizes?
– Heavy-tailed (both request and file sizes)

• “Pareto” distribution for tail
• “Lognormal” for body of distribution

Non-Persistent HTTP

1. Client initiates TCP connection
2. Client sends HTTP request for index.html
3. Server receives request, retrieves object, sends 

out HTTP response
4. Server closes TCP connection
5. Client parses index.html, finds references to 10 

JPEGs
6. Repeat steps 1—4 for each JPEG

(can do these in parallel)

http://www.cs.wisc.edu/index.html
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Issues with Non-Persistent HTTP

• Two “round-trip times” per object
– RTT will be defined soon

• Server and client must maintain state per 
connection
– Bad for server
– Brand new TCP connection per object

• TCP has issues starting up (“slow start”)
– Each object face to face these performance issues

• HTTP/1.0

The Persistent HTTP Solution
• Server leaves TCP connection open after first 
response
– W/O pipelining: client issues request only after 
previous request served
• Still incur 1 RTT delay

– W/ pipelining: client sends multiple requests back 
to back
• Issue requests as soon as a reference seen
• Server sends responses back to back

– One RTT for all objects!

• HTTP/1.1

HTTP Request
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HTTP Request
• Request line

– Method
• GET – return URI

• HEAD – return headers only of GET response

• POST – send data to the server (forms, etc.)

– URL
• E.g. /index.html if no proxy

• E.g. http://www.cs.cmu.edu/~akella/index.html with a 
proxy

– HTTP version

HTTP Request
• Request header fields

– Authorization – authentication info

– Acceptable document types/encodings

– From – user email

– If-Modified-Since

– Referrer – what caused this page to be requested

– User-Agent – client software

• Blank-line

• Body

HTTP Request Example
GET /~akella/index.html HTTP/1.1

Host: www.cs.wisc.edu

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; 
Windows NT 5.0)

Connection: Keep-Alive
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HTTP Response
• Status-line

– HTTP version
– 3 digit response code

• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase

HTTP Response
• Headers

– Location – for redirection
– Server – server software
– WWW-Authenticate – request for authentication
– Allow – list of methods supported (get, head, etc)
– Content-Encoding – E.g x-gzip
– Content-Length
– Content-Type
– Expires
– Last-Modified

• Blank-line

• Body

HTTP Response Example
HTTP/1.1 200 OK
Date: Thu, 14 Sep 2006 03:49:38 GMT
Server: Apache/1.3.33 (Unix) mod_perl/1.29 PHP/4.3.10 

mod_ssl/2.8.22 OpenSSL/0.9.7e-fips
Last-Modified: Tue, 12 Sep 2006 20:43:04 GMT
ETag: “62901bbe-161b-45071bd8"
Accept-Ranges: bytes
Content-Length: 5659
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

<data data data>



Page 6

Cookies: Keeping “state”

Four components:
1) Cookie header line in the 

HTTP response message

2) Cookie header line in 
HTTP request message

3) Cookie file kept on user’s 
host and managed by 
user’s browser

4) Back-end database at 
Web site

Example:
– Susan accesses Internet 

always from same PC

– She visits a specific e-
commerce site for the 
first time

– When initial HTTP 
requests arrives at site, 
site creates a unique ID 
and creates an entry in 
backend database for ID

Many major Web sites use cookies 
� keep track of users

� Also for convenience: personalization, passwords etc.

Cookies: Keeping “State” (Cont.)

client Amazon server

usual http request msg

usual http response +
Set-cookie: 1678 

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

entry in backend 

database

acce
ss

ac
ce
ss

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Performance Measures
• Latency or delay

– How long does it take a bit to traverse the 
network

• Bandwidth
– How many bits can be crammed over the network in 
one second?

• Delay-bandwidth product as a measure of 
capacity
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Packet Delay: One Way and Round Trip

• Sum of a number of different delay components.

• Propagation delay on each link.
– Proportional to the length of the link

• Transmission delay on each link.
– Proportional to the packet size and 1/link speed

• Processing delay on each router.
– Depends on the speed of the router

• Queuing delay on each router.
– Depends on the traffic load and queue size

• This is one-way delay
– Round trip time (RTT) = sum of these delays on forward and 

reverse path

Ignoring processing and queuing…�� ���� �� �� Prop + xmit

2*(Prop + xmit) 

2*prop + xmit

Aside: When does cut-through matter?

Routers have finite speed  (processing delay)

Routers may buffer packets (queueing delay)

�� �� ��Store & 
Forward

Cut-through

Delay of
one packet

Average 
sustained
throughput

Delay* +
Size

Throughput

* For first bit to arrive

Units: seconds +
bits/(bits/seconds)

Ignoring processing and queuing…
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0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

Some Examples
• How long does it take to send a 100 Kbit file? 
10Kbit file?

Throughput
Latency 100 Kbit/s

500 µsec

10 msec

100 msec

1 Mbit/s

1.0005 0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

100 Mbit/s

0.1005 0.0105

0.11 0.02

0.2 0.11

0.0006

0.0101

0.1001

Bandwidth-Delay Product

• Product of bandwidth and delay (duh!)
– What is it above?

• What does this indicate?
– #bytes sender can xmit before first byte reaches receiver
– Amount of “in flight data”

• Another view point
– B-D product == “capacity” of network from the sending 

applications point of view
– Bw-delay amount of data “in flight” at all time � network 

“fully” utilized

50ms latency

1 Gbps bandwidth

TCP’s view of BW-delay product

• TCP expects receiver to acknowledge 
receipt of packets

• Sender can keep up to RTT * BW bytes 
outstanding
– Assuming full duplex link
– When no losses:

• 0.5RTT * BW bytes “in flight”, unacknowledged
• 05RTT * BW bytes acknowledges, acks “in 
flight”
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Extra slides

Internet Architecture
• Background

– “The Design Philosophy of the DARPA Internet Protocols”
(David Clark, 1988).

• Fundamental goal:  “Effective techniques for 
multiplexed utilization of existing interconnected 
networks”

• “Effective” � sub-goals; in order of priority:
1. Continue despite loss of networks or gateways
2. Support multiple types of communication service
3. Accommodate a variety of networks
4. Permit distributed management of Internet resources
5. Cost effective
6. Host attachment should be easy
7. Resource accountability

Survivability
• If network disrupted and reconfigured

– Communicating entities should not care!
– This means:

• Transport interface only knows “working” and “not working”
• Not working == complete partition.
• Mask all transient failures

• How to achieve such reliability?
– State info for on-going conversation must be protected
– Where can communication state be stored?

• If lower layers lose it � app gets affected
• Store at lower layers and replicate

– But effective replication is hard
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Fate Sharing

• Lose state information for an entity if (and 
only if?) the entity itself is lost
– Protects from intermediate failures

– Easier to engineer than replication

– Switches are stateless

• Examples:
– OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots

Connection 
State State

No State
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Encoding and Data Link Basics

Signals, Data and Packets

Analog Signal

“Digital” Signal

Bit Stream 0   0   1   0   1   1   1   0   0   0   1

Packets
0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

Binary data to Signals
• Modulation: changing attributes of 
signal to effect information 
transmissions

• Encoding
– How to convert bits to “digital” signals

– Very complex, actually

– Error recovery, clock recovery,…
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Modulation Schemes

Data

Amplitude
Modulation

Frequency
Modulation

Phase 
Modulation

Why Do We Need Encoding?
• Meet certain electrical constraints.

– Receiver needs enough “transitions” to keep track of the transmit 
clock

– Avoid receiver saturation

• Create control symbols, besides regular data symbols.
– E.g. start or end of frame, escape, ...
– Important in packet switching

• Error detection or error corrections.
– Some codes are illegal so receiver can detect certain classes of

errors
– Minor errors can be corrected by having multiple adjacent signals 

mapped to the same data symbol

• Encoding can be very complex, e.g. wireless.

Encoding
• Use two signals, high and low, to encode 0 and 1.

• Transmission is synchronous, i.e., a clock is used to 
sample the signal.
– In general, the duration of one bit is equal to one or two 

clock ticks

– Receiver’s clock must be synchronized with the sender’s 
clock

• Encoding can be done one bit at a time or in blocks of, 
e.g., 4 or 8 bits.
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Non-Return to Zero (NRZ)

• 1 -> high signal; 0 -> low signal

• Long sequences of 1’s or 0’s can cause problems:
– Hard to recover clock

– Difficult to interpret 0’s and 1’s

V 0

.85

-.85

0 0 0 11 0 1 0 1

Non-Return to Zero Inverted (NRZI)

• 1 -> make transition; 0 -> signal stays the same

• Solves the problem for long sequences of 1’s, but 
not for 0’s.

V 0

.85

-.85

0 0 0 11 0 1 0 1

Ethernet Manchester Encoding

• Positive transition for 0, negative for 1

• XOR of NRZ with clock

• Transition every cycle communicates clock (but need 2 transition times 
per bit)

• Problem: doubles the rate at which signal transitions are made
– Less efficient
– Receiver has half the time to detect the pulse

V 0

.85

-.85

0 1 1 0

.1µs
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4B/5B Encoding
• Data coded as symbols of 5 line bits => 4 data 
bits, so 100 Mbps uses 125 MHz.
– Uses less frequency space than Manchester 
encoding

• Each valid symbol has no more than one 
leading zero and no more than two trailing 
zeros
– At least two 1s � Get dense transitions

• Uses NRZI to encode the 5 code bits
– What happens if there are consecutive 1s?

• Example: FDDI.

4B/5B Encoding

0000
0001
0010
0011
0100
0101
0110
0111

11110
01001
10100
10101
01010
01011
01110
01111

Data Code

1000
1001
1010
1011
1100
1101
1110
1111

10010
10011
10110
10111
11010
11011
11100
11101

Data Code

•16 data symbols, 8 control symbols 
–Control symbols: idle, begin frame, etc.
–Remaining 8 are invalid

Other Encodings
• 8B/10B: Fiber Channel and Gigabit 
Ethernet
– DC balance

• 64B/66B: 10 Gbit Ethernet

• B8ZS:  T1 signaling (bit stuffing)
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Datalink Protocol Functions
1. Framing: encapsulating a network layer 

• Add header, mark and detect frame boundaries, …

2. Error control: error detection and correction to deal with bit 
errors.

• May also include other reliability support, e.g. retransmission

3. Error correction: Correct bit errors if possible

4. Flow control: avoid sender outrunning the receiver.

5. Media access: controlling which frame should be sent over the 
link next

– Easy for point-to-point links
• Half versus full duplex

– Harder for multi-access links
• Who gets to send?

6. Switching: How to send frames to the eventual destination?

Preamble                                                       Postamble

Framing

• A link layer function, defining which bits have which function

• Minimal functionality: mark the beginning and end of packets (or 
frames).

• Some techniques:
– frame delimiter characters with character stuffing
– frame delimiter codes with bit stuffing
– synchronous transmission (e.g. SONET) out of band delimiters 

Body

Byte Stuffing

• Mark end of frame with special character
– BISYNC uses “ETX”
– What happens when the user sends this character?

• Use escape character when controls appear in data

– Very common on serial lines; old technique
– View frame as a collection of bytes

Body

S
Y
N

S
Y
N

S
O
H

Header

S
T
X

E
T
X

C
R
C
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Byte Counting

• An alternative is to include a count of number of 
bytes
– Next to the start of frame
– E.g. DDCMP
– Corruptions of count field may cause receiver to receive 

incorrectly
– Include an error-check to help receiver realize this

BodyHeader

S
Y
N

S
Y
N

C
la
ss

Count

C
R
C

Bit Stuffing

• Treat frames as a sequence of bits

• Mark frames with special bit sequence
– Example, HDLC: 01111110 is a special sequence or “flag”

• Used at the beginning and end of frame
– But, must ensure data containing this sequence can be transmitted

• Flag can cross byte boundaries
– transmitter inserts a 0 when this is likely to appear in the data:

• 111111 -> 1111101
• must stuff a zero any time five 1s appear:

– receiver unstuffs.

• Problem with stuffing techniques: frame size depends on data
– Frames can be of different size
– Could lead to some inefficiencies

BodyHeader

C
R
CBeginning

Sequence
Ending

Sequence
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Aditya Akella

Lecture 6 -
Error/Flow Control

&
Intro to Switching

and Medium Access Control

Error Coding
• Transmission process may introduce errors into a 
message.
– Single bit errors versus burst errors

• Detection: e.g. CRC
– Requires a  check that some messages are invalid

– Hence requires extra bits

– “redundant check bits”

• Correction
– Forward error correction: many related code words map to 
the same data word

– Detect errors and retry transmission

Parity
• Even parity

– Append parity bit to 7 bits of data to make an even number 
of 1’s

– Odd parity accordingly defined.

• 1 in 8 bits of overhead?
– When is this a problem?

• Can detect a single error

• But nothing beyond that

1010100

1001011

1

0

1010101

1000010

1

0
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2-D Parity
• Make each byte even parity

• Finally, a parity byte for all bytes of the packet

• Example: five 7-bit character packet, even parity 

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

1000110 1

Effectiveness of 2-D Parity

• 1-bit errors can be detected, corrected

• Example with even parity per byte:

0110100

1011010

0000110

1110101

1001011

1

0

1

1

0

1000110 1

error bit
odd number of 1’s

• 2-bit errors can also be detected
• Example:

• What about 3-bit errors? >3-bit errors?

0110100

1011010

0000111

1110101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s

Effectiveness of 2-D Parity

even number of 1’s - Ok



Page 3

Cyclic Redundancy Codes
(CRC)

• Commonly used codes that have good error 
detection properties
– Can catch many error combinations with a small number 
or redundant bits

• Based on division of polynomials
– Errors can be viewed as adding terms to the polynomial
– Should be unlikely that the division will still work

• Can be implemented very efficiently in hardware

• Examples:
– CRC-32: Ethernet
– CRC-8, CRC-10, CRC-32: ATM

Link Flow Control and Error Control

• Dealing with receiver overflow: flow control.

• Dealing with packet loss and corruption: error control.

• Actually these issues are relevant at many layers.
– Link layer: sender and receiver attached to the same “wire”

– End-to-end: transmission control protocol (TCP) - sender and 
receiver are the end points of a connection

• How can we implement flow control?
– “You may send” (windows, stop-and-wait, etc.)

– “Please shut up” (source quench, 802.3x pause frames, etc.)

Flow Control: A Naïve Protocol
• Sender simply sends to the receiver whenever it has 
packets.

• Potential problem: sender can outrun the receiver.
– Receiver too slow, small buffer overflow, ..

• Not always a problem: receiver might be fast enough.

Sender Receiver
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Adding Flow Control
• Stop and wait flow control: sender waits to send the 
next packet until the previous packet has been 
acknowledged by the receiver.
– Receiver can pace the sender

• Drawbacks: adds overheads, slowdown for long links.

Sender Receiver

Window Flow Control
• Stop and wait flow control results in poor throughput 
for long-delay paths:  packet size/ roundtrip-time.

• Solution: receiver provides sender with a window that 
it can fill with packets.
– The window is backed up by buffer space on receiver
– Receiver acknowledges the a packet every time a packet is 
consumed and a buffer is freed

Sender Receiver

Window Limitations

Sender

Receiver
Time

Throughput = 
Window Size

Roundtrip Time

RTT

Window Size = 4pkts
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Error Control: Stop and Wait Case
• Packets can get lost, corrupted, or duplicated. 

• Duplicate packet: use sequence numbers.

• Lost packet: time outs and acknowledgements.
– Positive versus negative acknowledgements
– Sender side versus receiver side timeouts

• Window based flow control: more aggressive use of sequence 
numbers (see transport lectures).

Sender Receiver

What is Used in Practice?
• No flow or error control.

– E.g. regular Ethernet, just uses CRC for error 
detection

• Flow control only.
– E.g. Gigabit Ethernet

• Flow and error control.
– E.g. X.25 (older connection-based service at 64 
Kbs that guarantees reliable in order delivery of 
data)

Switching and Media Access Control

• How do we transfer packets between two hosts 
connected to the a switched network?

• Switches connected by point-to-point links -- store-
and-forward.
– Multiplexing and forwarding
– Used in WAN, LAN, and for home connections
– Conceptually similar to “routing”

• But at the datalink layer instead of the network layer

• Multiple access networks -- contention based.
– Multiple hosts are sharing the same transmission medium
– Used in LANs and wireless
– Need to control access to the medium
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A Switch-based Network
• Switches are connected by “point-to-point” links.

• Packets are forwarded hop-by-hop by the switches towards the 
destination.
– Many forms of forwarding

• Many datalink technologies use switching.
– Virtual circuits: Frame-relay, ATM, X.25, ..
– Packets: Ethernet, MPLS, …

PC at
Home

Switch
Point-Point

link

PCs at
Work

Three techniques for switching

• Global addresses  - connection-less
– Routers keep next hop for destination

– Packets carry destination address

• Virtual circuits – connection oriented
– Connection routed through network to set 
up state

– Packets forwarded using connection state 

• Source routing
– Packet carries path

Global Address Example

Receiver

Packet

R

Sender

2

3
4

1

2

3
4

1

2

3
4

1

S2

S3

S1

R

RR � 3

R � 4

R � 3

R
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Global Addresses

• Advantages
– Stateless – simple error recovery

• Disadvantages
– Every switch knows about every destination

• Potentially large tables

– All packets to destination take same route

– Need special approach to fill table

Simplified Virtual Circuits
Example

Receiver

Packet

conn 5 � 3

Sender

2

3
4

1 conn 5 � 4

2

3
4

1

2

3
4

1

conn 5 � 3

S2

S3

S1

5 5

5

5

Virtual Circuits
• Advantages

– Efficient lookup (simple table lookup)
– Can reserve bandwidth at connection setup
– Easier for hardware implementations

• Disadvantages
– Still need to route connection setup request
– More complex failure recovery – must recreate 
connection state

• Typical use � fast router implementations
– ATM – combined with fix sized cells
– MPLS – tag switching for IP networks
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Source Routing Example

Receiver

Packet

R1, R2, R3, R

Sender

2

3
4

1

2

3
4

1

2

3
4

1

S2

S3

S1

R2, R3, R

R3, R

R

Source Routing
• Advantages
– Switches can be very simple and fast

• Disadvantages
– Variable (unbounded) header size
– Sources must know or discover topology 
(e.g., failures)

• Typical uses
– Ad-hoc networks (DSR)
– Machine room networks (Myrinet)

Comparison

Source Routing Global Addresses

Header Size Worst OK – Large address

Router Table Size None Number of hosts

Forward Overhead Best Table lookup

Virtual Circuits

Best

Number of circuits

Pretty Good

Setup Overhead None None

Error Recovery Tell all hosts Tell all switches

Connection Setup

Tell all switches 
and Tear down 

circuit and re-route
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Most Popular:
Address Lookup-based Approach 

• Address from header.
– Absolute address (e.g. Ethernet)

– (IP address for routers)

– (VC identifier, e.g. ATM))

• Next hop: output port for packet.

• Info: priority

• We will see how this table is 
filled (learning bridges)

B31123812508 3

Switch

38913C3C2137 3

A21023C90590 0

128.2.15.3 1

Address Next Hop

13

-

-

(2,34)

Info

Multiple Access Protocols
• Prevent two or more nodes from transmitting 
at the same time over a broadcast channel.
– If they do, we have a collision, and receivers will 
not be able to interpret the signal

• Several classes of multiple access protocols.
– Partitioning the channel, e.g. frequency-division or 
time division multiplexing
• With fixed partitioning of bandwidth – not flexible

– Taking turns, e.g. token-based, reservation-based 
protocols, polling based

– Contention based protocols, e.g. Aloha, Ethernet
• Next lecture

Fiber Distributed Data 
Interface (FDDI)

• One token holder may send, 
with a time limit. 
– known upper bound on delay.  

• Optical version of 802.5 
token ring, but multiple 
packets may travel in train: 
token released at end of 
frame.

• 100 Mbps, 100km.
• Optional dual ring for fault 
tolerance.

• CDDI: FDDI over unshielded 
twisted pair, shorter range
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Other “Taking Turn”
Protocols

• Central entity polls stations, inviting them to 
transmit.
– Simple design – no conflicts

– Not very efficient – overhead of polling operation

• Stations reserve a slot for transmission.
– For example, break up the transmission time in 
contention-based and reservation based slots
• Contention based slots can be used for short messages or 
to reserve time 

• Communication in reservation based slots only allowed 
after a reservation is made

– Issues: fairness, efficiency 
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Lecture 7 -
Ethernet, Bridges, 
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Multiple Access Protocols

• Prevent two or more nodes from transmitting 
at the same time over a broadcast channel.
– If they do, we have a collision, and receivers will 
not be able to interpret the signal

• Several classes of multiple access protocols.
– Partitioning the channel, e.g. frequency-division or 
time division multiplexing

– Taking turns, e.g. token-based, reservation-based 
protocols, polling based

– Contention based protocols, e.g. Aloha, Ethernet

Desirable MAC Properties

Broadcast channel of capacity R bps.

• 1 node � throughput = R bps

• N nodes � throughput = R/N bps, on 
average

• Decentralized

• Simple, inexpensive
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Contention-Based Protocols
• Idea: access the channel in a “random” fashion - when 
collisions occur, recover.
– Each node transmits at highest rate of R bps

– Collision: two or more nodes transmitting at the same time
• Each node retransmits until collided packet gets through

– Key: don’t retransmit right away
• Wait a random interval of time first

• Examples
– Aloha

– Ethernet – focus today

Ethernet Physical Layer
• 10Base2 standard based on thin 

coax � 200m
– Nodes are connected using thin 

coax cables and BNC “T” connectors 
in a bus topology

– Thick coax no longer used

• 10BaseT uses twisted pair and hubs 
� 100m
– Stations can be connected to each 

other or to hubs

– Hub acts as a concentrator
• Dumb device

• The two designs have the same 
protocol properties.
– Key: electrical connectivity 

between all nodes

– Deployment is different

host host host host

host host host host

Hub

Host

Ethernet Frame Format

• Preamble marks the beginning of the frame.
– Also provides synchronization

• Source and destination are 48 bit IEEE MAC addresses.
– Flat address space

– Hardwired into the network interface

• Type field is a demultiplexing field.
– What network layer (layer 3) should receive this packet?

• Max frame size = 1500B; min = 46B
– Need padding to meet min requirement

• CRC for error checking.

Preamble Type PadDest Source Data CRC

8 6 6 2 4
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Ethernet host side

• Transceiver: detects when the medium is idle and 
transmits the signal when host wants to send
– Connected to “Ethernet adaptor”
– Sits on the host

• Any host signal broadcast to everybody
– But transceiver accepts frames addressed to itself
– Also frames sent to broadcast address
– All frames, if in promiscuous mode

• When transmitting, all hosts on the same segment, or 
connected to the same hub, compete for medium
– Said to “share same collision domain”
– Bad for efficiency!

Sender-side: MAC Protocol
• Carrier-sense multiple access with collision detection 
(CSMA/CD).  
– MA = multiple access

– CS = carrier sense

– CD = collision detection

CSMA/CD Algorithm Overview
• Sense for carrier.

– “Medium idle”?

• If medium busy, wait until idle.
– Sending would force a collision and waste time

• Send packet and sense for collision.

• If no collision detected, consider packet delivered.

• Otherwise, abort immediately, perform exponential 
back off and send packet again.
– Start to send after a random time picked from an interval
– Length of the interval increases with every collision, 
retransmission attempt
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Collision Detection

T
im

e

A B

10
bit times

500 
bit times

Collision Detection: Implications 

• All nodes must be able to 
detect the collision.
– Any node can be sender

• => Must either have short 
wires, long packets, or both

• If A starts at t, and wirelength
is d secs, 
– In the worst case, A may 

detect collision at t+2d

�Will have to send for 2d secs.

� d depends on max length of 
ethernet cable

A B
d secs

Minimum Packet Size
• Give a host enough time to detect a collision.

• In Ethernet, the minimum packet size is 64 bytes.
– 18 bytes of header and 46 data bytes

– If the host has less than 46 bytes to send, the adaptor pads 
bytes to increase the length to 46 bytes

• What is the relationship between the minimum packet 
size and the size of LAN?

• How did they pick the minimum packet size?

LAN size = (min frame size) * light speed / (2 * bandwidth)
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CSMA/CD: Some Details
• When a sender detects a collision, it sends a “jam 
signal”.
– Make sure that all nodes are aware of the collision
– Length of the jam signal is 32 bit times
– Permits early abort - don’t waste max transmission time

• Exponential backoff operates in multiples of 512 bit 
times.
– RTT= 256bit times � backoff time > Longer than a roundtrip 
time

– Guarantees that nodes that back off will notice the earlier 
retransmission before starting to send

• Successive frames are separated by an “inter-frame”
gap.
– to allow devices to prepare for reception of the next frame
– Set to 9.6 µsec or 96 bit times

LAN Properties
• Exploit physical proximity.

– Often a limitation on the physical distance 
– E.g. to detect collisions in a contention based network

• Relies on single administrative control and some level 
of trust.
– Broadcasting packets to everybody and hoping everybody 
(other than the receiver) will ignore the packet

• Broadcast: nodes can send messages that can be 
heard by all nodes on the network.
– Almost essential for network administration
– Can also be used for applications, e.g. video conferencing

• But broadcast fundamentally does not scale.

Building Larger LANs: Bridges

• Hubs are physical level devices
– Don’t isolate collision domains � broadcast issues

• At layer 2, bridges connect multiple IEEE 802 LANs
– Separate a single LAN into multiple smaller collision domains

• Reduce collision domain size

host host host host host

host host host host host

host

host

Bridge
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Basic Bridge Functionality

• Bridges are full fledged packet switches

• Frame comes in on an interface
– Switch looks at destination LAN address
– Determines port on which host connected
– Only forward packets to the right port
– Must run CSMA/CD with hosts connected 
to same LAN
• Also between bridge and host connected to a 
LAN

“Transparent” Bridges
• Design features:

– “Plug and play” capability
– Self-configuring without hardware or software 
changes

– Bridge do not impact the operation of the 
individual LANs

• Three components of transparent bridges:
1) Forwarding of frames
2)Learning of addresses
3)Spanning tree algorithm

Address Lookup/Forwarding Example

• Address is a 48 bit IEEE MAC address.

• Next hop: output port for packet

• Timer is used to flush old entries

• Size of the table is equal to the number 
of hosts

• Flat address � no aggregation

• No entry � packets are broadcasted

Bridge

8711C98900AA 2

Address Next Hop

A21032C9A591 1

99A323C90842 2

301B2369011C 2

695519001190 3

8:15

Info

8:36

8:01

8:16

8:11

1

3 2
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Learning
• Bridge tables can be filled in manually (flush out old entries etc)

– Time consuming, error-prone

– Self-configuring preferred
• Bridges use “learning”

• Keep track of source address of packet (S) and the arriving 
interface (I).
– Fill in the forwarding table based on this information

– Packet with destination address S must be sent to interface I!

host host host host host

host host host host host

host

host

Bridge

Spanning Tree Bridges
• More complex topologies can provide 
redundancy.
– But can also create loops.

• E.g. What happens when there is no table entry?

– Multiple copies of data 

� Could crash the network � has happened often!

host host host host host

host host host host host

host

host

Bridge Bridge

Spanning Tree Protocol Overview

Embed a tree that provides a single 
unique default path to each destination:

Bridges designate ports over which they 
will or will not forward frames

By removing ports, extended LAN is 
reduced to a tree
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Spanning Tree Algorithm
• Root of the spanning tree is 

elected first � the bridge with 
the lowest identifier.
– All ports are part of tree

• Each bridge finds shortest path 
to the root.
– Remembers port that is on the 

shortest path

– Used to forward packets

• Select for each LAN a 
designated bridge that will 
forward frames to root
– Has the shortest path to the 

root.

– Identifier as tie-breaker

B3

B7

B5

B2

B1

B4B6

1

2

1
1

1 1

Spanning Tree Algorithm
• Each node sends configuration message to 

all neighbors.
– Identifier of the sender
– Id of the presumed root
– Distance to the presumed root

• Initially each bridge thinks it is the root.
– B5 sends (B5, B5, 0)

• When B receive a message, it decide 
whether the solution is better than their 
local solution.
– A root with a lower identifier?
– Same root but lower distance?
– Same root, distance but sender has lower 

identifier?

• Message from bridge with smaller root ID
– Not root; stop generating config messages, 

but can forward

• Message from bridge closer to root 
– Not designated bridge; stop sending  any 

config messages on the port

B3

B7

B5

B2

B1

B4B6

1

2

1
1

1 1

Spanning Tree Algorithm
• Each bridge B can now select 

which of its ports make up the 
spanning tree:
– B’s root port
– All ports for which B is the 

designated bridge on the LAN

• States for ports on bridges
– Forward state or blocked state, 

depending on whether the port 
is part of the spanning tree

• Root periodically sends 
configuration messages and 
bridges forward them over 
LANs they are responsible for

B3

B7

B5

B2

B1

B4B6

1

2

1
1

1 1



Page 9

Spanning Tree Algorithm
Example

• Node B2:
– Sends (B2, B2, 0)

– Receives (B1, B1, 0) from B1

– Sends (B2, B1, 1) “up”

– Continues the forwarding forever

• Node B1:
– Will send notifications forever

• Node B7:
– Sends (B7, B7, 0)

– Receives (B1, B1, 0) from B1

– Sends (B7, B1, 1) “up” and “right”

– Receives (B5, B5, 0) - ignored

– Receives (B5, B1, 1) – suboptimal

– Continues forwarding the B1 
messages forever to the “right”

B3

B7
B5

B2

B1

B4B6

1

2

1
1

1 1

Ethernet Switches
• Bridges make it possible to increase LAN capacity.

– Packets are no longer broadcasted - they are only forwarded 
on selected links

– Adds a switching flavor to the broadcast LAN
– Some packets still sent to entire tree (e.g., ARP)

• Ethernet switch is a special case of a bridge: each 
bridge port is connected to a single host.
– Can make the link full duplex (really simple protocol!)
– Simplifies the protocol and hardware used (only two stations 
on the link) – no longer full CSMA/CD

– Can have different port speeds on the same switch
• Unlike in a hub, packets can be stored 

A Word about 
“Taking Turn” Protocols

• First option: Polling-based 
– Central entity polls stations, inviting them to transmit.

• Simple design – no conflicts

• Not very efficient – overhead of polling operation

• Still better than TDM or FDM

• Central point of failure

• Second (similar) option: Stations reserve a slot for transmission.
– For example, break up the transmission time in contention-based 

and reservation based slots
• Contention based slots can be used for short messages or to reserve 
time 

• Communication in reservation based slots only allowed after a 
reservation is made

– Issues: fairness, efficiency 



Page 10

Token-Passing Protocols

• No master node
– Fiber Distributed Data Interface 

(FDDI)

• One token holder may send, 
with a time limit. 
– known upper bound on delay.  

• Token released at end of 
frame.
– 100 Mbps, 100km

• Decentralized and very 
efficient
– But problems with token 
holding node crashing or not 
releasing token
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From the previous lecture…

• We will cover spanning tree from the 
last lecture

3

Spanning Tree Bridges
• More complex topologies can provide 
redundancy.
– But can also create loops.

• E.g. What happens when there is no table entry?

– Multiple copies of data 

� Could crash the network � has happened often!

host host host host host

host host host host host

host

host

Bridge Bridge
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Spanning Tree Protocol Overview

Embed a tree that provides a single 
unique default path to each destination:

Bridges designate ports over which they 
will or will not forward frames

By removing ports, extended LAN is 
reduced to a tree

5

Spanning Tree Algorithm
• Root of the spanning tree is 

elected first � the bridge with 
the lowest identifier.
– All ports are part of tree

• Each bridge finds shortest path 
to the root.
– Remembers port that is on the 

shortest path

– Used to forward packets

• Select for each LAN a 
designated bridge that will 
forward frames to root
– Has the shortest path to the 

root.

– Identifier as tie-breaker

B3

B7

B5

B2

B1

B4B6

1

2

1

1

1 1

6

Spanning Tree Algorithm
• Each node sends configuration message to 

all neighbors.
– Identifier of the sender
– Id of the presumed root
– Distance to the presumed root

• Initially each bridge thinks it is the root.
– B5 sends (B5, B5, 0)

• When B receive a message, it decide 
whether the solution is better than their 
local solution.
– A root with a lower identifier?
– Same root but lower distance?
– Same root, distance but sender has lower 

identifier?

• Message from bridge with smaller root ID
– Not root; stop generating config messages, 

but can forward

• Message from bridge closer to root 
– Not designated bridge; stop sending  any 

config messages on the port

B3

B7

B5

B2

B1

B4B6

1

2

1

1

1 1
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Spanning Tree Algorithm
• Each bridge B can now select 

which of its ports make up the 
spanning tree:
– B’s root port
– All ports for which B is the 

designated bridge on the LAN

• States for ports on bridges
– Forward state or blocked 

state, depending on whether 
the port is part of the spanning 
tree

• Root periodically sends 
configuration messages and 
bridges forward them over 
LANs they are responsible for

B3

B7

B5

B2

B1

B4B6

1

2

1

1

1 1

8

Spanning Tree Algorithm
Example

• Node B2:
– Sends (B2, B2, 0)

– Receives (B1, B1, 0) from B1

– Sends (B2, B1, 1) “up”

– Continues the forwarding forever

• Node B1:
– Will send notifications forever

• Node B7:
– Sends (B7, B7, 0)

– Receives (B1, B1, 0) from B1

– Sends (B7, B1, 1) “up” and “right”

– Receives (B5, B5, 0) - ignored

– Receives (B5, B1, 1) – suboptimal

– Continues forwarding the B1 
messages forever to the “right”

B3

B7

B5

B2

B1

B4B6

1

2

1

1

1 1

9

Ethernet Switches
• Bridges make it possible to increase LAN capacity.

– Packets are no longer broadcasted - they are only forwarded 
on selected links

– Adds a switching flavor to the broadcast LAN
– Some packets still sent to entire tree (e.g., ARP)

• Ethernet switch is a special case of a bridge: each 
bridge port is connected to a single host.
– Can make the link full duplex (really simple protocol!)
– Simplifies the protocol and hardware used (only two stations 

on the link) – no longer full CSMA/CD
– Can have different port speeds on the same switch

• Unlike in a hub, packets can be stored 
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A Word about 
“Taking Turn” Protocols

• First option: Polling-based 
– Central entity polls stations, inviting them to transmit.

• Simple design – no conflicts

• Not very efficient – overhead of polling operation

• Still better than TDM or FDM

• Central point of failure

• Second (similar) option: Stations reserve a slot for transmission.
– For example, break up the transmission time in contention-based 

and reservation based slots
• Contention based slots can be used for short messages or to reserve 

time 

• Communication in reservation based slots only allowed after a 
reservation is made

– Issues: fairness, efficiency 

11

Token-Passing Protocols

• No master node
– Fiber Distributed Data Interface 

(FDDI)

• One token holder may send, 
with a time limit. 
– known upper bound on delay.  

• Token released at end of 
frame.
– 100 Mbps, 100km

• Decentralized and very 
efficient
– But problems with token 

holding node crashing or not 
releasing token

12

This Lecture: IP addressing and 
Forwarding
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Simple Internetworking
• Focus on a single internetwork

– Internetwork = combo of multiple physical networks

• How do I designate hosts?
– Addressing

• How do I send information to a distant host?
– Underlying service model

• What gets sent?

• How fast will it go? What happens if it doesn’t get there?

– Routing/Forwarding
• Global addresses-based forwarding is used

• What path is it sent on?

• How is this path computed?

14

Addressing in IP: Considerations
• Uniquely designate hosts

– MAC addresses may do, but they are useless for scalable routing

• Hierarchical vs. flat
– Wisconsin / Madison / UW-Campus / Aditya

vs.     
Aditya:123-45-6789

– Ethernet addresses are flat
– IP addresses are hierarchical

• Why Hierarchy?
– Scalable routing
– Route to a general area, then to a specific location

15

IP Addresses
• Fixed length: 32 bits

• Total IP address size: 4 billion

• Initial class-ful structure (1981)
– Class A: 128 networks, 16M hosts
– Class B: 16K networks, 64K hosts
– Class C: 2M networks, 256 hosts
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IP Address Classes
(Some are Obsolete)

Network ID Host ID

Network ID Host ID

8 16

Class A
32

0

Class B 10

Class C 110

Multicast AddressesClass D 1110

Reserved for experimentsClass E 1111

24

17

Original IP Route Lookup
• Address would specify prefix for forwarding table

– Simple lookup

• www.cmu.edu address 128.2.11.43
– Class B address – class + network is 128.2
– Lookup 128.2 in forwarding table
– Prefix – part of address that really matters for routing

• Forwarding table contains
– List of class+network entries
– A few fixed prefix lengths (8/16/24)

• Large tables
– 2 Million class C networks

18

Example
• Host: Get n/w number for destination: Nd � compare 

with sending host n/w number

N/W number Outgoing Interface
N Eth0
Default R1

• Router: Compare dest n/w number with n/w number 
of each interface � either put on interface, or send 
to next hop router

N/W number Outgoing Interface
N0 Eth0
N1 Eth1
N2 R2
N3 R3
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Subnet Addressing: RFC917 (1984)

• Original goal: network part would uniquely identify a 
single physical network

• Inefficient address space usage
– Class A & B networks too big

• Also, very few LANs have close to 64K hosts
• Easy for networks to (claim to) outgrow class-C

– Each physical network must have one network number

• Routing table size is too high

• Need simple way to reduce the number of network 
numbers assigned
– Subnetting: Split up single network address ranges
– Fizes routing table size problem, partially

20

Subnetting
• Add another “floating” layer to hierarchy

• Variable length subnet masks
– Could subnet a class B into several chunks

Network Host

Network HostSubnet

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Subnet
Mask

21

Subnetting Example
• Assume an organization was assigned address 
150.100 (class B)

• Assume < 100 hosts per subnet (department)

• How many host bits do we need?
– Seven

• What is the network mask?
– 11111111 11111111 11111111 10000000
– 255.255.255.128
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Forwarding Example
• Host configured with IP adress and subnet mask

• Subnet number = IP (AND) Mask

• (Subnet number, subnet mask) � Outgoing I/FD = destination IP addressD = destination IP addressD = destination IP addressD = destination IP addressFor each forwarding table entry (SN, SM For each forwarding table entry (SN, SM For each forwarding table entry (SN, SM For each forwarding table entry (SN, SM ���� OI)OI)OI)OI)D1 = SM & DD1 = SM & DD1 = SM & DD1 = SM & Dif (D1 == SN)if (D1 == SN)if (D1 == SN)if (D1 == SN)if if if if nexthopnexthopnexthopnexthop is interfaceis interfaceis interfaceis interfaceDeliver on INTERFACEDeliver on INTERFACEDeliver on INTERFACEDeliver on INTERFACEElseElseElseElse Forward to default routerForward to default routerForward to default routerForward to default router

23

Inefficient Address Usage

• Address space depletion
– In danger of running out of classes A and B

– Why?
• Class C too small for most domains

• Very few class A – very careful about giving 
them out

• Class B poses greatest problem

– Class B sparsely populated 
• But people refuse to give it back

24

Classless Inter-Domain Routing
(CIDR) – RFC1338

• Allows arbitrary split between network & host part of 
address 
– Do not use classes to determine network ID
– Use common part of address as network number
– Allows handing out arbitrary sized chunks of address space
– E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in 

common. Thus, we use these 20 bits as the network number �
192.4.16/20

• Enables more efficient usage of address space (and 
router tables)
– Use single entry for range in forwarding tables
– Combine forwarding entries when possible
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CIDR Example
• Network is allocated 8 contiguous chunks of 
256-host addresses 200.10.0.0 to 
200.10.7.255
– Allocation uses 3 bits of class C space
– Remaining 21 bits are network number, written as 
201.10.0.0/21

• Replaces 8 class C routing entries with 1 
combined entry
– Routing protocols carry prefix with destination 
network address

26

CIDR Illustration

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider

27

CIDR Implications
• Longest prefix match

– 7 contiguous Class C’s given to network A:
• 200.10.0.0 – 200.10.6.255
• N/w number – 200.10.0.0/21

– 8th class C given to network B:
• 200.10.7.0 – 200.10.7.255
• N/w number – 200.10.7.0/24

– Packet with destination address 200.10.7.1 
matches both networks
• Must pick the most specific match!
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Finding a Local Machine

• Routing Gets Packet to Correct Local Network
– Based on IP address
– Router sees that destination address is of local machine

• Still Need to Get Packet to Host
– Using link-layer protocol
– Need to know hardware address

• Same Issue for Any Local Communication
– Find local machine, given its IP address

host host host

LAN 1

...

router
WAN

128.2.198.222

128.2.254.36

Destination = 128.2.198.222

3

Address Resolution Protocol 
(ARP)

– Diagrammed for Ethernet (6-byte MAC addresses)

• Low-Level Protocol
– Operates only within local network
– Determines mapping from IP address to hardware (MAC) 

address
– Mapping determined dynamically

• No need to statically configure tables
• Only requirement is that each host know its own IP address

op

Sender MAC address

Sender IP Address

Target MAC address

Target IP Address

• op: Operation
– 1: request

– 2: reply

• Sender
– Host sending ARP message

• Target
– Intended receiver of 

message
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ARP Request

• Requestor
– Fills in own IP and MAC address as “sender”

• Why include its MAC address?

• Mapping
– Fills desired host IP address in target IP address

• Sending
– Send to MAC address ff:ff:ff:ff:ff:ff

• Ethernet broadcast

op

Sender MAC address

Sender IP Address

Target MAC address

Target IP Address

• op: Operation
– 1: request

• Sender
– Host that wants to 

determine MAC address of 
another machine

• Target
– Other machine

5

ARP Reply

• Responder becomes “sender”
– Fill in own IP and MAC address

– Set requestor as target

– Send to requestor’s MAC address

op

Sender MAC address

Sender IP Address

Target MAC address

Target IP Address

• op: Operation
– 2: reply

• Sender
– Host with desired IP 

address

• Target
– Original requestor

6

IP Delivery Model
• Best effort service

– Network will do its best to get packet to destination

• Does NOT guarantee:
– Any maximum latency or even ultimate success

– Sender will be informed if packet doesn’t make it

– Packets will arrive in same order sent

– Just one copy of packet will arrive

• Implications
– Scales very well � simple, dumb network; “plug-n-play”

– Higher level protocols must make up for shortcomings
• Reliably delivering ordered sequence of bytes � TCP

– Some services not feasible
• Latency or bandwidth guarantees

• Need special support
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IP Packets
• Low-level communication model provided by Internet

– Unit: “Datagram”

• Datagram
– Each packet self-contained

• All information needed to get to destination
– Analogous to letter or telegram

0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flag Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data

Header

IPv4 
Packet
Format

8

IPv4 Header Fields
• Version: IP Version

– 4 for IPv4
– 6 for IPv6

• HLen: Header Length
– 32-bit words (typically 5)

• TOS: Type of Service
– Priority information

• Length: Packet Length
– Bytes (including header)

• Header format can change with versions
– First byte identifies version
– IPv6 header are very different – will see later

• Length field limits packets to 65,535 bytes
– In practice, break into much smaller packets for network performance 

considerations

0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flags Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data

9

IPv4 Header Fields
• Identifier, flags,  fragment 

offset � used primarily for
fragmentation

• Time to live
– Must be decremented 

at each router
– Packets with TTL=0 

are thrown away
– Ensure packets exit 

the network

• Protocol
– Demultiplexing to higher layer protocols
– TCP = 6, ICMP = 1, UDP = 17…

• Header checksum
– Ensures some degree of header integrity
– Relatively weak – only 16 bits

• Options
– E.g. Source routing, record route, etc.
– Performance issues at routers

• Poorly supported or not at all

0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flags Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data
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IPv4 Header Fields
• Source Address

– 32-bit IP address of 
sender

• Destination Address
– 32-bit IP address of 

destination

• Like the addresses on an envelope

0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flags Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data

11

IP Fragmentation

• Every Network has Own Maximum Transmission Unit 
(MTU)
– Largest IP datagram it can carry within its own packet frame

• E.g., Ethernet is 1500 bytes

– Don’t know MTUs of all intermediate networks in advance

• IP Solution
– When hit network with small MTU, fragment packets

• Might get further fragmentation as proceed farther

host

host

router
router

MTU = 4000

MTU = 1500

MTU = 
2000

12

Fragmentation Related Fields
• Length

– Length of IP fragment

• Identification 
– To match up with other fragments

• Fragment offset
– Where this fragment lies in entire IP datagram

• Flags
– “More fragments” flag
– “Don’t fragment” flag
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IP Fragmentation Example #1

host
router

MTU = 4000

IP
Header

IP
Data

Length = 3820, M=0

14

IP Fragmentation Example #2

router
router

MTU = 
2000

IP
Header

IP
Data

Length = 3820, M=0

3800 bytes

IP
Header

IP
Data

Length = 2000, M=1, Offset = 0

1980 bytes

IP
Data

IP
Header

Length = 1840, M=0, Offset = 1980

1820 bytes

15

IP Fragmentation Example #3

IP
Header

IP
Data

Length = 2000, M=1, Offset = 0

1980 bytes

IP
Data

IP
Header

Length = 1840, M=0, Offset = 1980

1820 bytes

host
router

MTU = 1500

IP
Header

IP
Data

Length = 1500, M=1, Offset = 0

1480 bytes

IP
Header

IP
Data

Length = 520, M=1, Offset = 1480

500 bytes
IP

Header
IP

Data

Length = 1500, M=1, Offset = 1980

1480 bytes
IP

Header
IP

Data

Length = 360, M=0, Offset = 3460

340 bytes
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IP Reassembly
• Fragments might arrive out-of-order

– Don’t know how much memory required 
until receive final fragment

• Some fragments may never arrive
– After a while, give up entire process

IP
Header

IP
Data

Length = 1500, M=1, Offset = 0

IP
Header

IP
Data

Length = 520, M=1, Offset = 1480

IP
Header

IP
Data

Length = 1500, M=1, Offset = 1980

IP
Header

IP
Data

Length = 360, M=0, Offset = 3460 IP
Data

IP
Data

IP
Data

IP
Data

17

Reassembly
• Where to do reassembly?

– End nodes or at routers?

• End nodes -- better
– Avoids unnecessary work where large packets are 
fragmented multiple times 

– If any fragment missing, delete entire packet

• Intermediate nodes -- Dangerous
– How much buffer space required at routers?
– What if routes in network change?

• Multiple paths through network
• All fragments only required to go through to destination

18

Fragmentation and Reassembly
• Demonstrates many Internet concepts

– Decentralized
• Every network can choose MTU

– Connectionless
• Each fragment contains full routing information
• Fragments can proceed independently and along different routes

– Complex endpoints and simple routers 
• Reassembly at endpoints

• Uses resources poorly
– Forwarding, replication, encapsulations costs
– Worst case: packet just bigger than MTU
– Poor end-to-end performance

• Loss of a fragment 

• How to avoid fragmentation?
– Path MTU discovery protocol � determines minimum MTU along 

route
– Uses ICMP error messages
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Internet Control Message Protocol 
(ICMP)

• Short messages used to send error & other control 
information

• Examples
– Echo request / response

• Can use to check whether remote host reachable

– Destination unreachable
• Indicates how far packet got & why couldn’t go further

– Flow control (source quench)
• Slow down packet delivery rate

– Timeout
• Packet exceeded maximum hop limit

– Router solicitation / advertisement
• Helps newly connected host discover local router

– Redirect
• Suggest alternate routing path for future messages

20

IP MTU Discovery with ICMP

• Operation
– Send max-sized packet with “do not fragment” flag 
set

– If encounters problem, ICMP message will be 
returned
• “Destination unreachable: Fragmentation needed”

• Usually indicates MTU encountered

host

host

router
router

MTU = 4000

MTU = 1500

MTU = 
2000

21

MTU = 4000

IP MTU Discovery with ICMP

host

host
router

MTU = 1500

MTU = 
2000

IP
Packet

Length = 4000, Don’t Fragment

router

ICMP
Frag. Needed
MTU = 2000
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MTU = 4000

IP MTU Discovery with ICMP

host

host

MTU = 1500

MTU = 
2000

IP
Packet

Length = 2000, Don’t Fragment

router

ICMP
Frag. Needed
MTU = 1500

router

23

Router Architecture Overview
Two key router functions:
• Run routing algorithms/protocol (RIP, OSPF, BGP)
• Switching datagrams from incoming to outgoing link

1. input port

2. output port

L
in
e
 C
ar
d

L
ine

 C
ard

L
ine

 C
ard

3.

4.

24

Line Card: Input Port

Decentralized switching: 
• Process common case (“fast-path”) packets

– Decrement TTL, update checksum, forward 
packet

• Given datagram dest., lookup output port 
using routing table in input port memory

• Queue needed if datagrams arrive faster 
than forwarding rate into switch fabric

Physical layer:
bit-level reception

Data link layer:
e.g., Ethernet
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Line Card: Output Port

• Queuing required when datagrams arrive from 
fabric faster than the line transmission rate

26

Buffering 
• 3 types of buffering

– Input buffering
• Fabric slower than input ports combined � queuing may occur at 
input queues

– Can avoid any input queuing by making switch speed = N x link speed
– But need output buffering

– Output buffering
• Buffering when arrival rate via switch exceeds output line speed

– Internal buffering
• Can have buffering inside switch fabric to deal with limitations
of fabric

• What happens when these buffers fill up?
– Packets are THROWN AWAY!! This is where (most) packet 

loss comes from

27

Input Port Queuing
• Which inputs are processed each slot –
schedule?

• Head-of-the-Line (HOL) blocking: datagram 
at front of queue prevents others in queue 
from moving forward
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Output Port Queuing

• Scheduling discipline chooses among queued 
datagrams for transmission
– Can be simple (e.g., first-come first-serve) or more 
clever (e.g., weighted round robin)

29

Network Processor
• Runs routing protocol and downloads 
forwarding table to forwarding engines

• Performs “slow” path processing
– ICMP error messages

– IP option processing

– Fragmentation

– Packets destined to router

30

Three Types of Switching Fabrics
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Switching Via a Memory
First generation routers � looked like PCs
• Packet copied by system’s (single) CPU
• Speed limited by memory bandwidth (2 bus crossings 
per datagram)

Input
Port

Output
Port

Memory

System Bus

Most modern routers switch via memory, but…

• Input port processor performs lookup, copy into 
memory

• Cisco Catalyst 8500

32

Switching Via a Bus
• Datagram from input port 

memory to output port 
memory via a shared bus

• Bus contention: switching 
speed limited by bus 
bandwidth

• 1 Gbps bus, Cisco 1900: 
sufficient speed for access 
and enterprise routers (not 
regional or backbone)

33

Switching Via an Interconnection
Network

• Overcome bus and memory 
bandwidth limitations

• Crossbar provides full NxN
interconnect
– Expensive
– Uses 2N buses

• Cisco 12000: switches Gbps
through the interconnection 
network
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From previous lecture….
Three Types of Switching Fabrics

3

Switching Via a Memory
First generation routers � looked like PCs
• Packet copied by system’s (single) CPU
• Speed limited by memory bandwidth (2 bus crossings 
per datagram)

Input
Port

Output
Port

Memory

System Bus

Most modern routers switch via memory, but…

• Input port processor performs lookup, copy into 
memory

• Cisco Catalyst 8500
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Switching Via a Bus
• Datagram from input port 
memory to output port 
memory via a shared bus

• Bus contention: switching 
speed limited by bus 
bandwidth

• 1 Gbps bus, Cisco 1900: 
sufficient speed for access 
and enterprise routers (not 
regional or backbone)

5

Switching Via an Interconnection
Network

• Overcome bus and memory 
bandwidth limitations

• Crossbar provides full NxN
interconnect
– Expensive
– Uses 2N buses

• Cisco 12000: switches Gbps
through the interconnection 
network

6

Routing
• Past two lectures 

– IP addresses are structured

– IP packet headers carry these 
addresses

– When packet arrives at router
• Examine header for  intended 
destination

• Look up next hop in table

• Send packet out appropriate 
port

• This lecture:
– How these forwarding tables 
are built?

– Routing algorithms

Router
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A Model of the Problem
• Network as a Graph:

– Represent each router as node

– Direct link between routers 
represented by edge

– Symmetric links ⇒ undirected 
graph

• Edge “cost” c(x,y) denotes 
measure of difficulty of using link
– delay, $ cost, or congestion level

• Task
– Determine least cost path from 

every node to every other node
• Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

8

Ways to Compute Shortest Paths
• Centralized

– Collect graph structure in one place
– Use standard graph algorithm
– Disseminate routing tables

• Distributed
– Routers perform local computation
– Converge to a globally consistent routing state
– “Global”: Link-state

• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates own routing table

– Local: Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

9

Distance-Vector Method

• Idea
– At any time, have cost/next 
hop of best known path to 
destination

– Use cost ∞ when no path known

• Initially
– Only have entries for directly 
connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for 
A

A0A

B4B

–∞C

–∞D

E2E

F6F

Nex
t 

Hop

CostDest
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Algorithm
Each node x stores:

– c(x,v) for each neighbor v
– Distance vector of node x: estimate of d(x,y) for all y
– Distance vectors heard from each neighbor

Initialization:
1. d(x,y) = c(x,y) for all y.
2. Send distance vector to each neighbor

Repeat: 
Whenever link cost to neighbor changes or distance 
vector received from neighbor
For every neighbor z
For every destination y
d(x,y) ← Update(x,y,z)

If d(x,y) changed for any y, send distance vector to all 
neighbors

11

Distance-Vector Update

Update(x,y,z)
d ← c(x,z) + d(z,y) /* Cost of path from x to y with first hop z */

if d < d(x,y)
/* Found better path */

return d,z /* Updated cost / next hop */

else

return d(x,y), nexthop(x,y) /* Existing cost / next hop */

x

z

y

c(x,z)

d(z,y)

d(x,y)

12

Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

A0A

B4B

–∞C

–∞D

E2E

F6F

HopCstDst

Table for B

A4A

B0B

–∞C

D3D

–∞E

F1F

HopCstDst

Table for C

–∞A

–∞B

C0C

D1D

–∞E

F1F

HopCstDst

Table for D

–∞A

B3B

C1C

D0D

–∞E

–∞F

HopCstDst

Table for E

A2A

–∞B

–∞C

–∞D

E0E

F3F

HopCstDst

Table for F

A6A

B1B

C1C

–∞D

E3E

F0F

HopCstDst

Optimum 1-hop paths
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Iteration #1

Table for A

A0A

B4B

F7C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F7A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

–∞E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

–∞D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3
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Iteration #2

Table for A

A0A

B4B

E6C

B7D

E2E

E5F

HopCstDst

Table for B

A4A

B0B

F2C

D3D

F4E

F1F

HopCstDst

Table for C

F6A

F2B

C0C

D1D

F4E

F1F

HopCstDst

Table for D

B7A

B3B

C1C

D0D

C5E

C2F

HopCstDst

Table for E

A2A

F4B

F4C

F5D

E0E

F3F

HopCstDst

Table for F

B5A

B1B

C1C

C2D

E3E

F0F

HopCstDst

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

15

Distance Vector: Link Cost Changes

Link cost changes:
• Bad news travels slow -

“count to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!
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Distance Vector: Poison Reverse
If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is infinite (so Y 

won’t route to X via Z)

• Will this completely solve count to infinity 
problem? 

X Z
14

50

Y
60

algorithm
terminates

17

Poison Reverse Failures

• Iterations don’t converge

• “Count to infinity”

• Solution
– Make “infinity” smaller

– What is upper bound on 
maximum path length?

Table for A

F7C

HopCstDst

Table for B

A8C

HopCstDst

Table for F

C1C

HopCstDst

Table for F

–∞C

HopCstDst

Table for A

–∞C

HopCstDst Forced
Update

Table for B

A14C

HopCstDst
Forced
Update

F C
6

1

1

1

B
D

A

4

∞∞∞∞∞∞∞∞

Table for D

B9C

HopCstDst

Forced
Update

Table for A

D13C

HopCstDst Better
Route

Table for D

B15C

HopCstDst

Table for A

D19C

HopCstDst Forced
Update

•
•
•

Forced
Update

18

Routing Information Protocol (RIP)
• Earliest IP routing protocol (1982 BSD)

– Current standard is version 2 (RFC 1723)

• Features
– Every link has cost 1 � Hop count
– “Infinity” = 16

• Limits to networks where everything reachable within 15 hops

• Sending Updates
– Every router listens for updates on UDP port 520
– Triggered

• When every entry changes, send copy of entry to neighbors
– Except for one causing update (split horizon rule)

– Periodic
• Every 30 seconds, router sends copy of its table to each neighbor
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Link State Protocol Concept
• Every node gets complete copy of graph

– Every node “floods” network with data about its 
outgoing links

• Every node computes routes to every other 
node
– Using single-source, shortest-path algorithm

• Process performed whenever needed
– When interconnections die / reappear

20

Sending Link States by “Flooding”

• X wants to send 
information
– Sends on all outgoing 
links

• When node Y receives 
information from Z
– Resend on all links 
other than Z

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

21

Dijkstra’s Algorithm
• Given

– Graph with source node s and edge costs 
c(u,v)

– Determine least cost path from s to every 
node v

• Single source shortest Path Algorithm
– Traverse graph in order of least cost from 
source
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Dijkstra’s Algorithm

•Node Sets
– Done

• Already have least cost path to it
– Horizon:

• Reachable in 1 hop from node in 
Done

– Unseen:
• Cannot reach directly from node 
in Done

• Label
– d(v) = path cost

• From s to v

• Path
– Keep track of last link in 
path

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon
Unseen

0

2
5

3

∞∞∞∞

∞∞∞∞

Current Path Costs

23

Dijkstra’s Algorithm: Initially

• No nodes “done”

• Source in “horizon”

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon

Unseen

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

Current Path Costs

24

Dijkstra’s Algorithm: Initially

• d(v) to node A shown in red
– Only consider links from done nodes 

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done
Horizon Unseen

0

2
6

3

∞∞∞∞

∞∞∞∞

Current Path Costs
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Dijkstra’s Algorithm

• Select node v in horizon with minimum d(v)
• Add link used to add node to shortest path tree
• Update d(v) information

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon
Unseen

0

2

3

∞∞∞∞

∞∞∞∞

Current Path Costs
5

26

Dijkstra’s Algorithm

• Repeat…

A

C

2

3

6

3

1

1

2

3
Source
Node

Done

Horizon

Unseen

0

2
5

3

∞∞∞∞

∞∞∞∞

Current Path Costs
F

B

D

E

27

Dijkstra’s Algorithm

• Addition of node can add new nodes to horizon

2
6

3

1

1

2

3
Source
Node

Done
Horizon

Unseen

0

2
4

3

∞∞∞∞

6

Current Path Costs

A

C3

D

B

E

F
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Dijkstra’s Algorithm

• Final tree shown in green

2
6

3

1

1

2

3
Source
Node

0

2
4

3

5

6

A

C3

D

B

E

F

29

Link State Characteristics

• With consistent 
LSDBs*, all nodes 
compute consistent 
loop-free paths

• Can still have 
transient loops

A

B

C

D

1

4

6 2

1

Packet from C�A
may loop around BDC
if B knows about failure
and C & D do not

X

*Link State Data Base

30

OSPF Routing Protocol
• Open

– Open standard created by IETF

• More prevalent than RIP
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OSPF Messages
• Transmit link state advertisements

– Originating router
• Typically, IP address for router

– Link ID
• ID of router at other end of link

– Metric
• Cost of link

– Sequence number
• Incremented each time sending new link information

32

OSPF Flooding Operation
• Node X Receives LSA from Node Y

– With Sequence Number q

– Looks for entry with same origin/link ID

• Cases
– No entry present

• Add entry, propagate to all neighbors other than Y

– Entry present with sequence number p < q
• Update entry, propagate to all neighbors other than Y

– Entry present with sequence number p > q
• Send entry back to Y

• To tell Y that it has out-of-date information

– Entry present with sequence number p = q
• Ignore it

33

Flooding Issues
• When should it be performed

– Periodically
– When status of link changes

• Detected by connected node
• Congestion, lack of electric or optical signal

• What happens when router goes down & back up
– Sequence number reset to 0

• Other routers may have entries with higher sequence numbers

– Router will send out LSAs with number 0
– Will get back LSAs with last valid sequence number p
– Router sets sequence number to p+1 & resends
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Adoption of OSPF
• RIP viewed as outmoded

– Good when networks small and routers had 
limited memory & computational power

• OSPF Advantages
– Fast convergence when configuration 
changes

– Full topology map helps

35

Comparison of LS and DV Algorithms

Message complexity
• LS: with n nodes, v 

neighbors, O(nv) messages 
per node

• DV: exchange between 
neighbors only

Speed of Convergence
• LS: Complex computation

– But…can forward before 
computation

– may have oscillations

• DV: convergence time varies

– may be routing loops

– count-to-infinity problem

– (faster with triggered 
updates)

36

Robustness: what happens if router malfunctions?
LS:

• node can advertise incorrect link cost
• each node computes only its own table

DV:
• DV node can advertise incorrect path cost
• each node’s table used by others 

• errors propagate thru network
• Other tradeoffs

• Making LSP flood reliable difficult
• Prioritize routing packets?

Comparison of LS and DV Algorithms
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Intra-domain routing
• The Story So Far…

– Routing protocols generate the forwarding table

– Two styles: distance vector, link state

– Scalability issues: 
• Distance vector protocols suffer from count-to-infinity

• Link state protocols must flood information through network

• Today’s lecture
– How to make routing protocols support large 
networks

– How to make routing protocols support business 
policies

3

Inter-domain Routing: Hierarchy
• “Flat” routing not suited for the Internet

– Doesn’t scale with network size
• Storage � Each node cannot be expected to store routes 
to every destination (or destination network)

• Convergence times increase
• Communication � Total message count increases

– Administrative autonomy
• Each internetwork may want to run its network 
independently
– E.g hide topology information from competitors

• Solution: Hierarchy via autonomous systems
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Internet’s Hierarchy
• What is an Autonomous System (AS)?

– A set of routers under a single technical 
administration
• Use an interior gateway protocol (IGP) and common 
metrics to route packets within the AS

• Connect to other ASes using gateway routers
• Use an exterior gateway protocol (EGP) to route packets 
to other AS’s

– IGP: OSPF, RIP (last class)
– Today’s EGP: BGP version 4
– Similar to an “inter-network”

• Could also be a group of internetworks owned by a single 
commercial entity

5

An example

Intra-AS routing algorithm + Inter-AS 
routing algorithm � Forwarding table

3b 3a

3c 1c

1a

1b

1d

2a

2c

2bAS 2
AS 3

AS 1

6

The Problem
• Easy when only one link leading to outside AS

• Much harder when two or more links to 
outside ASes
– Which destinations reachable via a neighbor?

– Propagate this information to other internal 
routers

– Select a “good route” from multiple choices

– Inter-AS routing protocol
• Communication between distinct ASes

• Must be the same protocol!
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BGP Preliminaries
• Pairs of routers exchange routing info over TCP 
connections (port 179)
– One TCP connection for every pair of neighboring gateway 
routers

– Routers called “BGP peers”
– BGP peers exchange routing info as messages
– TCP connection + messages � BGP session

• Neighbor ASes exchange info on which CIDR prefixes 
are reachable via them

• Primary objective: reachability not performance

8

AS Numbers (ASNs)
ASNs are 16 bit values 64512 through 65535 are “private”

ASNs represent units of routing policy

Currently over 15,000 in use

• Genuity: 1 

• MIT: 3

• CMU: 9

• UC San Diego: 7377

• AT&T: 7018, 6341, 5074, …

• UUNET: 701, 702, 284, 12199, …

• Sprint: 1239, 1240, 6211, 6242, …

• …

9

Distance Vector with Path
• Each routing update carries the entire AS-
level path so far
– “AS_Path attribute”

• Loops are detected as follows:
– When AS gets route, check if AS already in path

• If yes, reject route
• If no, add self and (possibly) advertise route further

– Advertisement depends on metrics/cost/preference etc.

• Advantage:
– Metrics are local - AS chooses path, protocol 
ensures no loops
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Hop-by-hop Model
• BGP advertises to neighbors only those 
routes that it uses
– Consistent with the hop-by-hop Internet 
paradigm

– Consequence: hear only one route from 
neighbor 
• (although neighbor may have chosen this from a 
large set of choices)

• Could impact view into availability of paths

11

Policy with BGP
• BGP provides capability for enforcing various 
policies

• Policies are not part of BGP: they are 
provided to BGP as configuration information

• Enforces policies by 
– Choosing appropriate paths from multiple 
alternatives

– Controlling advertisement to other AS’s

12

Examples of BGP Policies
• A multi-homed AS refuses to act as transit

– Limit path advertisement

• A multi-homed AS can become transit for 
some AS’s
– Only advertise paths to some AS’s

• An AS can favor or disfavor certain AS’s for 
traffic transit from itself
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BGP Messages
• Open

– Announces AS ID

– Determines hold timer – interval between keep_alive or 
update messages, zero interval implies no keep_alive

• Keep_alive
• Sent periodically (but before hold timer expires) to peers to 
ensure connectivity.

• Sent in place of an UPDATE message

• Notification
• Used for error notification
• TCP connection is closed immediately after notification

14

BGP UPDATE Message
• List of withdrawn routes

• Network layer reachability information
– List of reachable prefixes

• Path attributes
– Origin

– Path

– Local_pref � this is set locally

– MED � this is set externally

– Metrics

• All prefixes advertised in message have same path 
attributes

15

Path Selection Criteria
• Attributes + external (policy) information

• Examples:
– Policy considerations

• Preference for AS

• Presence or absence of certain AS

– Hop count

– Path origin
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LOCAL PREF
• Local (within an AS) mechanism to provide 
relative priority among BGP exit points

• Prefer routers announced by one AS over 
another or general preference over routes

R1 R2

R3 R4
I-BGP

AS 256

AS 300

Local Pref = 500 Local Pref =800

AS 100

R5

AS 200

17

AS_PATH
• List of traversed AS’s

AS 500

AS 300

AS 200 AS 100

180.10.0.0/16 300 200 100
170.10.0.0/16 300 200

170.10.0.0/16 180.10.0.0/16

18

Multi-Exit Discriminator (MED)

• Hint to external neighbors about the 
preferred path into an AS 
– Different AS choose different scales

• Used when two AS’s connect to each 
other in more than one place
– More useful in a customer provider setting

– Not honored in other settings
• Will see later why
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MED
• Hint to R1 to use R3 over R4 link

• Cannot compare AS40’s values to AS30’s

R1 R2

R3 R4

AS 30

AS 40

180.10.0.0
MED = 120

180.10.0.0
MED = 200

AS 10

180.10.0.0
MED = 50

20

MED
• MED is typically used in provider/subscriber scenarios

• It can lead to unfairness if used between ISP because 
it may force one ISP to carry more traffic:

SF

NY

• ISP1 ignores MED from ISP2
• ISP2 obeys MED from ISP1
• ISP2 ends up carrying traffic most of the way

ISP1

ISP2

21

Decision Process (First cut)
• Rough processing order of attributes:

– Select route with highest LOCAL-PREF
– Select route with shortest AS-PATH
– Apply MED (to routes learned from same 
neighbor)

• How to set the attributes?
– Especially local_pref?
– Policies in action
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A Logical View of the Internet

Tier 1 Tier 1

Tier 2

Tier 2

Tier 2

Tier 3

• Tier 1 ISP
– “Default-free” with global 
reachability info

• Tier 2 ISP
– Regional or country-wide

– Typically route through 
tier-1
• Customer

• Tier 3/4 ISPs
– Local

– Route through higher tiers

• Stub AS
– End network such as IBM 
or UW-Madison

Stub

23

Inter-ISP Relationships:
Transit vs. Peering

ISP X

ISP Y

ISP Z

ISP P

Transit ($)

Transit ($$$)

Transit ($$ 1/2)

Transit ($$)

Peering

(0)

Transit ($$$)

Transit ($)

Transit ($$)

Transit ($$$)

These relationships have the greatest impact on BGP policies

24

Which route should
Frank pick to 13.13.0.0./16? 

AS 1

AS 2

AS 4

AS 3

13.13.0.0/16

Frank’s 
Internet Barn

peer peer

customerprovider

Illustrating BGP Policies
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AS 1
AS 2

AS 4

AS 3

13.13.0.0/16

local pref = 80

local pref = 100

local pref = 90

Set appropriate “local pref”
to reflect preferences:
Higher Local preference values
are preferred

Policy I: Prefer Customer routing

peer peer

customerprovider

Route learned from customer 
preferred over 
route learned from peer, preferred 
over 
route learned from provider

26

Policy II: Import Routes 

FromFromFromFrom

peerpeerpeerpeer

FromFromFromFrom

peerpeerpeerpeer

FromFromFromFrom

providerproviderproviderprovider

FromFromFromFrom

providerproviderproviderprovider

From From From From 

customercustomercustomercustomer
From From From From 

customercustomercustomercustomer

provider route customer routepeer route ISP route

27

Policy II: Export Routes 

ToToToTo

peerpeerpeerpeer

ToToToTo

peerpeerpeerpeer

ToToToTo

customercustomercustomercustomer

ToToToTo

customercustomercustomercustomer

ToToToTo

providerproviderproviderprovider

From From From From 

providerproviderproviderprovider

provider route customer routepeer route ISP route

filtersfiltersfiltersfilters

block block block block 
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Policy II: Valley-Free Routes
• “Valley-free” routing

– Number links as (+1, 0, -1) for provider, peer and customer
– In any valid path should only see sequence of +1, followed by 
at most one 0, followed by sequence of -1

– Why?
• Consider the economics of the situation

• How to make these choices?
– Prefer-customer routing: LOCAL_PREF
– Valley-free routes: control route advertisements (see 
previous slide)

29

BGP Route Selection Summary

Highest Local Preference

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

Lowest IGP cost 
to BGP egress

Lowest router ID

traffic engineering 

Enforce relationships
E.g. prefer customer routes 
over peer routes

Throw up hands and
break ties
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Multicast
• Unicast: one source to one destination
– Web, telnet, FTP, ssh

• Broadcast: one source to all destinations
– Never used over the Internet
– LAN applications

• Multicast: one source to many destinations
– Several important applications

• Multicast goal: efficient data distribution 

3

Multicast – Efficient Data 
Distribution

Src Src

Multicast as several 
concurrent unicasts

Efficient Multicast  
distribution
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Multicast Example Applications

• Broadcast audio/video
• Push-based systems
• Software distribution
• Teleconferencing (audio, video, shared 
whiteboard, text editor)
• Multi-player games
• Server/service location
• Other distributed applications

5

IP Multicast Architecture

Hosts

Routers

Service model/API

Host-to-router protocol
(IGMP)

Multicast routing protocols
(various)

6

IP Multicast Service Model (rfc1112)

• Each group identified by a single IP address

• Groups may be of any size

• Members of groups may be located anywhere in the 
Internet
– We will focus on an internetwork

• Members of groups can join and leave at will

• Senders need not be members

• Group membership not known explicitly 



3

7

IP Multicast Addresses
• Class D IP addresses

– 224.0.0.0 – 239.255.255.255

• How to allocate these addresses?
– Well-known multicast addresses, assigned by IANA
– Transient multicast addresses, assigned and reclaimed dynamically

• e.g., by “sdr” program

• Interested recipients must join a group by selecting the 
appropriate multicast group address

1 1 1 0 Group ID

8

IP Multicast Architecture

Hosts

Routers

Service model

Host-to-router protocol
(IGMP)

Multicast routing protocols
(various)

9

Internet Group Management Protocol

• End system to router protocol is IGMP

• Each host keeps track of which mcast groups 
it has subscribed to
– Socket API informs IGMP process of all joins

• Objective is to keep router up-to-date with 
group membership of entire LAN
– Routers need not know who all the members are, 
only that members exist
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How IGMP Works

• On each link, one router is elected the “querier”

• Querier periodically sends a Membership Query message to 
the all-systems group (224.0.0.1), with TTL = 1

• On receipt, hosts start random timers (between 0 and 10 
seconds) for each multicast group to which they belong 

QRouters:

Hosts:

11

How IGMP Works (cont.)

• When a host’s timer for group G expires, it sends a Membership 
Report to group G, with TTL = 1

• Other members of G hear the report and stop their timers

• Routers hear all reports, and time out non-responding groups
– “Soft state” again

Q

G G G G

Routers:

Hosts:

12

How IGMP Works (cont.)
• Note that, in normal case, only one 
report message per group present is 
sent in response to a query

• Query interval is typically 60-90 
seconds

• When a host first joins a group, it 
sends one or two immediate reports, 
instead of waiting for a query
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IP Multicast Architecture

Hosts

Routers

Service model

Host-to-router protocol
(IGMP)

Multicast routing protocols
(various)

14

Routing Techniques
• Basic objective – routers must collectively build 
distribution tree for multicast packets

• Flood and prune based approach for  DV-networks
– Begin by flooding traffic to entire network
– Prune branches with no receivers
– Examples: DVMRP

• Link-state based networks use a different approach
– Routers advertise groups for which they have receivers to 
entire network

– Compute trees on demand
– Example: MOSPF

• There are several others: PIM-SM, PIM-DM, CBT…
– These are “rendezvous-based” approaches
– Independent of underlying routing protocol

15

MOSPF: Example

Source 1

Receiver 1

Receiver 2

Z

W

Q

T
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Link Failure/Topology Change

Source 1

Receiver 1

Receiver 2

Z

W

Q

T

17

Impact on Route Computation
• Hard to pre-compute multicast trees for all 
possible sources and all possible groups
– Otherwise, may end up with a lot of unwanted state 
where there are no senders

• Compute on demand when first packet from a 
source S to a group G arrives

• New link-state advertisement
– May lead to addition or deletion of outgoing 
interfaces if it contains different group addresses

– May lead to re-computation of entire tree if links 
are changed

18

Distance-Vector Multicast Routing

• DVMRP consists of two major components:
– A conventional distance-vector routing protocol 
(like RIP) 

– A protocol for determining how to forward 
multicast packets, based on the routing table

• DVMRP router forwards a packet if
– The packet arrived from the link used to reach the 
source of the packet (reverse path forwarding 
check – RPF)

– If downstream links have not pruned the tree
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Example Topology

G G

S

G

20

Broadcast with Truncation

G G

S

G

21

Prune

G G

S

Prune (s,g)

Prune (s,g)

G
Unwanted state where there are no receivers!
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Graft (s,g)

Graft (s,g)

Graft

G G

S

G

G

Report (g)

23

Source-based Trees

Router

Source

Receiver

S

R

R

R

R

R

S

S

Both protocols discussed today use this approach

24

Shared Tree

RP

Router

Source

Receiver

S

S

S

R

R

R

R

R
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Shared vs. Source-Based Trees
• Source-based trees
– Shortest path trees – low delay, better load 
distribution

– More state at routers (per-source state)
– Efficient for dense-area multicast

• Shared trees
– Higher delay (bounded by factor of 2), traffic 
concentration

– Choice of core affects efficiency
– Per-group state at routers
– Efficient for sparse-area multicast: PIM-SM


