1. *3D.1* Consider the three circles whose diameters are the sides of a given triangle. Show that the radical center of these circles is the orthocenter of the triangle. ### Proof. Draw three circles C_a , C_b , and C_c on the sides BC, AC, AB of triangle ABC as diameters. Let H_a , H_b , and H_c be on BC, AC, AB and assume that AH_a , BH_b , and CH_c are perpendicular to A,B, and C, respectively. It suffices to show that the radical axes of three circles are the same as altitudes of ABC. By construction, C_a and C_b meet at C and one other point. Let R be the point that is the intersection of C_b with BC. Since AC is a diameter, $\angle ARC = 90^\circ$, thus $AR \perp BC$. Therefore, $R = H_a$ and we find that C_a and C_b meet C and C_b . With a similar proof, C_b and C_c meet at C_b and C_b and C_b is the radical axis of C_b and C_b . Similarly, C_b is the radical axis of C_b and C_b . Similarly, C_b are radical axis of C_b and C_c . Therefore, we know that the altitudes of C_b are radical axes of C_b , and C_c . Since they are equivalent, we finally get the radical center of these circles is the orthocenter of the triangle. This ends the proof. Figure #### 2. **3D.2** In Figure 3.29, the common chord PQ of two circles bisects line segment AB, where A and B lie on the circles as shown. If X and Y are the other points where AB meets the two circles, show that BX = AY. ### Proof. In the figure, the common chord PQ of two circles bisects line segment AB, where A and B line on the circles as shown. Assume that X and Y are the other points where AB meets the two circles. Let M be the point where PQ and AB meet. Then, we have AM = BM by assumptions. By Theorem 1.35, AM.XM = PM.MQ and PM.MQ = BM.MY. Since AM.XM = PM.MQ = BM.MY, AM.XM = BM.MY, thus we deduce XM = MY. Since AM = AY + MY = BM = BX + XM, AY + MY = BX + XM and we finally get AY = BX because XM = MY. This completes the proof. \blacksquare Figure #### 3. **4A.5** Given three concurrent Cevians in a triangle, show that the three lines obtained by joining the midpoints of the Cevians to the midpoints of the corresponding sides are concurrent. ## Proof. Given $\triangle ABC$, let M_a , M_b , and M_c be midpoints of BC, AC, AB, respectively. Then $M_aM_bM_c$ is the medial triangle. Let an arbitrary point X_a be on BC. Draw AX_a from vertex A and let N_a be a point on M_cM_b meeting AX_a . Let N_b be a point on M_aM_c meeting BX_b and let N_c be a point on M_aM_b meeting CX_c . First, we show N_a is the midpoint of AX_a . It suffices to show $M_cN_a\|BX_a$ because M_c is the midpoint of AB and AB and AB are midpoints of AB and AB, respectively. Since AB is on AB, AB is the midpoint of AB, as required. With similar proofs, AB is the midpoint of AB and AB, as required. With similar proofs, AB is the midpoint of AB, and A Since these points are midpoints, $M_cN_a = \frac{1}{2}BX_a$ and $N_aM_b = \frac{1}{2}X_aC$ by Corollary 1.31. Thus, we have $$\frac{M_c N_a}{N_a M_b} = \frac{B X_a}{X_a C}$$ Similarly, $$\frac{M_b N_c}{N_c N_a} = \frac{A X_c}{X_c B}$$ and $$\frac{M_a M_b}{N_b M_c} = \frac{C X_b}{X_b A}$$ Since $$\frac{BX_a}{X_aC}.\frac{AX_c}{X_cB}.\frac{CX_b}{X_bA}=1$$ by Ceva's Theorem, we get $$\frac{M_cN_a}{N_aM_b}.\frac{M_bN_c}{N_cN_a}.\frac{M_aM_b}{N_bM_c}=1$$ Since the products are 1, by Ceva's Theorem, we find that three lines obtained by joining the midpoints of the Cevians to the midpoints of the corresponding sides are concurrent, as required.