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Introduction

Why we need LASSO for multivariate Bernoulli

Correlated Bernoulli outcomes come from many applications, such as systolic blood
pressure (BP) and intraocular pressure (IOP) in medical studies.

Both biological variables (SNPs) and environmental variables (smoke, age) were
proved to be important in a sparse manner so variable selection approach is of great
need.

LASSO is a powerful and efficient variable selection tool, and it has been already
applied to various models.
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The Multivariate Bernoulli distribution

Let Y = (Y1, . . . , YK ) be a K -dimensional vector of possibly correlated Bernoulli
random variables (binary outcomes) and let y = (y1, . . . , yK ) be a realization of Y .
The most general form p(y1, . . . , yK ) of the joint density is (Whittaker, 1990)

p(y1, . . . , yK ) = p(0, 0, . . . , 0)[πK
j=1(1−yj )]p(1, 0, . . . , 0)[y1πK

j=2(1−yj )]

. . . p(1, 1, . . . , 1)[πK
j=1yj ] (1)

or we can write this in a simpler form

p(y) = p
[πK

j=1(1−yj )]

0,0,...,0 p
[y1πK

j=2(1−yj )]

1,0,...,0 . . . p
[πK

j=1yj ]

1,1,...,1 (2)

The special form of K = 2 can be written as

p(y1, y2) = p
(1−y1)(1−y2)
00 p

(1−y1)y2
01 p

y1(1−y2)
10 py1y2

11 (3)
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The Log-linear model

Let the probabilities depend on some attribute vector X = (X1, . . . , Xp), which is a
subset of Rp. By using the natural parameters, the negative log likelihood can be
written as

−L(y , f(x)) = −[
KX

j=1

f j(x)Bj(y) +
X

1≤j1<j2≤K

f j1j2(x)Bj1j2(y) +

. . . + f 12...K (x)B12...K (y)− b(f(x))] (4)

where Bj1j2...jr (y) = yj1yj2 . . . yjr and f = (f 1, f 2, . . . , f 12...K )T .

b(f(x)) = log(1+
X

j

eS j (x)+
X

1≤j1<j2≤K

eS j1 j2 (x)+
X

1≤j1<j2<j3≤K

eS j1 j2 j3 (x)+. . .+eS12...K (x))

where
S j1j2...jr (x) =

X
1≤s≤r

f js (x) +
X

1≤s<t≤r

f js jt (x) + . . . + f j1j2...jr (x)
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Parameter transformation

LEMMA (Parameter transformation). For multivariate Bernoulli model, the general
parameters and natural parameters have the following relationship.

exp(f j1j2...jr ) = (5)

Q
p(even number zeros among j1, . . . , jr positions and other K-r positions are all zero)Q
p(odd number zeros among j1, . . . , jr positions and other K-r positions are all zero)

in addition

exp(S j1j2...jr ) =
p(j1, . . . , jr positions are one, others are zero)

p(0, 0, . . . , 0)
(6)
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Conditional Covariance

PROPOSITION (Conditional Covariance). In the multivariate Bernoulli model, f jk is
related to the conditional variance of two outcomes, without loss of generality, just
take j = 1 and k = 2

exp(f 12) = cov(Y1, Y2|Y3 = 0, . . . , YK = 0) (7)

What’s more in the bivariate Bernoulli,
COROLLARY When K = 2 for multivariate Bernoulli distribution

exp(f 12) = p11p00 − p01p10

= cov(Y1, Y2) (8)

and f 12 = 0 if and only if Y1 and Y2 are uncorrelated.
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First order derivative.

Direct calculation or shows that

∂−l(y , f(x))

∂f j1j2...,jr (x)
= −Bj1j2...,jr (y) +

P
τ∈T (j1,j2,...,jr )

eSτ (x)

eb(f(x))

= −Bj1j2...,jr (y) + µj1j2...jr (x) (9)

where T (j1, j2, . . . , jr ) is the collection of interaction indexes which include
j1, j2, . . . jr and µj1j2...jr (x) = E (Bj1j2...jr (Y )|f(x)), which is the conditional mean.

For instance in K = 2, the first derivative with respect to f 1 is

∂−l(y , f(x))

∂f 1(x)
= −B1(y) +

eS1

+ eS12

eb(f(x))

= −y1 +
e f 1

+ e f 1+f 2+f 12

eb(f(x))
(10)
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Second order derivative.

From the first order derivative, we can derive that

∂2−l(y , f(x))

∂f j1j2...,jr (x)∂f h1h2...,hs (x)
= Cov (Bj1j2...jr (Y ), Bh1h2...hs (Y ) | f(x))

(11)

Hence the Hessian with respect to f is

∂2−l(y , f(x))

∂f(x)∂f(x)T
= Var (B(Y )|f(x)) (12)

which is exactly the conditional covariance matrix.
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Bivariate Bernoulli log linear model

The negative log-likelihood for Bivariate Bernoulli log linear model can be written as
follows:

L(y , f ) = − 1

n

nX
i=1

h
y1(i)f

1(x(i)) + y2(i)f
2(x(i)) + y1(i)y2(i)f

12(x(i))− b(f (x(i)))
i

= − 1

n

nX
i=1

" X
τ=1,2,12

f τ (x(i))Bτ (y(i))− b(f (x(i)))

#
(13)

here the index i refers to the subjects, with range 1, . . . , n. The f functions are
formulated as the so-called linear predictors, for instance the f 1 function can be
represented by:

f 1(x) = c1
0 + x1c

1
1 + . . . + xpc

1
p (14)
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The target function

In most cases of real applications, the dimension of the genetic data p is large but only a
small portion of covariates have important effects on the responses, so the l1 penalty can
be applied to impose sparsity. The target function can be formulated as:

Iλ(y , f ) = L(y , f ) + Jλ(f ), (15)

where the penalty function is defined to be sum of l1 penalty:

Jλ(f ) = λ1

pX
j=1

|c1
j |+ λ2

pX
j=1

|c2
j |+ λ12

pX
j=1

|c12
j |, (16)
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First-order step

The basic (first-order) step at iteration k is obtained by forming a simple model of the
objective by expanding around current iterate ck (c is the coefficients vector) as follows:

dk = arg min
d

L(ck) +5L(ck)Td +
1

2
αkd

Td + λT ||ck + d||1 (17)

where αk is a positive scalar and dk is the proposed step. The subproblem (17) is
separable in the components of d and therefore trivial to solve in closed form, in O(3p)
operations.
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Active and inactive set

The solution dk can be examined to obtain an estimate of the active set:

Ak = {j = 1, 2, . . . , 3p|(ck + dk)j = 0} (18)

The definition of the ”inactive set” estimate Ik is the complement of the active set
estimate, that is:

Ik = {1, 2, . . . , 3p} \ Ak (19)
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Newton step

We enhance the step by computing the restriction of the Hessian 52L(ck) to the set Ik

(denoted by 52
IkIk

L(ck)) and then computing a Newton-like step in the Ik components
as follows:

(52
IkIk

L(ck) + δk I )p
k
Ik

= −5Ik L(ck)− λT ωIk (20)

where δk is a small damping parameter that goes to zero as ck approaches the solution,
and ωIk captures the gradient of the term ||c||1 at the nonzero components of ck + dk .
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Algorithm

The first-order step is cheaper to calculate than the Newton step, the general iterative
steps of the algorithm therefore can be summarized as follows:

1 Evaluate the current first-order step dk with a proper αk .

2 Calculate the Newton step pk
Ik

, only if the inactive size is less than a predefined
threshold.

3 Take the better step between first-order and Newton.

4 Check optimal condition, repeat if not satisfied.

There are some improvement to the algorithm omitted here.
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Tuning Criterion

So far, all smoothing parameters are considered fixed. However, the choice of the tuning
parameters is crucial and 4 different criterion are considered

AIC, aimed at prediction, and the degrees of freedom can be approximated by the
number of nonzero coefficients.

BIC, used for variable selection, is the Bayesian version of AIC but achieving more
sparsity.

GACV (generalized approximate cross-validation) used to minimize the comparative
Kullback-Leibler (CKL) distance.

BGACV the Bayesian version of GACV criteria, analogous to BIC.
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Augmented Data

The augmented response for the ith subject y(i) = (y1(i), y2(i)) is defined by

Y(i) = (y1(i), y2(i), y1(i)y2(i))
T (21)

the augmented covariate X can be similarly defined, then the vector form can be
constructed as follows:

~f (x) = (f 1(x(1)), f 2(x(1)), . . . , f 12(x(n)))T

~Y = (Y(1),Y(2), . . . ,Y(n))T
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Leaving-out-one-augmented-subject lemma.

For fixed i and a new augmented response Ỹ, let hλ[i , Ỹ] be the minimizer of

−
X
k 6=i

l(y(k), f(x(k)))− ỸT f(x(i)) + b(f(x(i))) + nJλ(f) (22)

Then hλ

h
i , µ

[−i ]
λ (x(i))

i
= f[−i ]

λ . Here µ
[−i ]
λ (x(i)) = E [Y|f[−i ]

λ (x(i))].
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Augmented Linear Predictor

The vector form of the linear predictor ~f (x) can be formulated as:

~f (x) = Dβ

where the corresponding design matrix and the coefficients to be estimated are

D =

0BBBBBB@
x(1) 0 0
0 x(1) 0
0 0 x(1)

x(2) 0 0
. . . . . . . . .
0 0 x(n)

1CCCCCCA
β =

“
c1
1 , c1

2 , . . . , c12
n

”T
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GACV

Let β̂λ be the estimated β for a specific tuning parameter λ, and denote the number
of nonzero elements in β̂λ to be s and D∗ is the sub-matrix of D with columns
corresponding to nonzero elements in β̂λ. Define the H matrix

H = D∗T
“
D∗W (fλ)(D∗)T

”−1

D∗

where W (fλ) = Var(Y|~fλ).

The GACV score can therefore be evaluated:

GACV(λ) =
1

n

nX
i=1

h
−Y(i)T fλ(x(i)) + b(fλ(x(i))

i
+

tr(H)

n

Pn
i=1 Y(i)T (Y(i)− ~µ)

n − s
(23)

here ~µ = E [Y|f(x)]
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Setup

In this simulation, the sample size is set to 500 (n = 25), and 25 (p = 25)
independent binary predictor variables (X1, X2, . . . , X25) are generated. The true
model is

f 1(X ) = −4 + 2X1 + 2X2 + 1.5X6

f 2(X ) = −3 + 2X3 + 1.5X4 + 1.5X7

f 12(X ) = −3 + 2X5

Thus there are in total 78 candidate patterns in the model and only 10 of them are
nonzero patterns in the true model.

100 independent data sets were generated and fitted by the LASSO in bivariate
Bernoulli model.
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Simulation Result

f 1 -4 2X1 2X2 1.5X6

GACV 100 100 100 87
BGACV 100 95 94 69

AIC 100 100 100 85
BIC 100 100 100 82

f 2 -3 2X3 1.5X4 1.5X7

GACV 100 100 80 88
BGACV 100 99 57 66

AIC 100 100 65 77
BIC 100 98 65 70

f 12 -3 2X5 Average Noise
GACV 100 100 19.15

BGACV 100 98 9.34
AIC 100 99 16.3
BIC 100 87 2.56

Table: The number of true patterns captured in 100 simulations.
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Beaver Dam Eye Study

Introduction to the data set

The Beaver Dam Eye Study (BDES) is an ongoing population-based study of
age-related ocular disorders including cataract, age-related macular degeneration,
visual impairment and refractive errors.

2061 patient with 4886 SNPs information with missing observations.

Pedigree information available for a few families

Measurements of environmental variables (blood pressure, intraocular pressure, etc.)
as follow-up data collected every 4 to 5 years.

What do we want to find

Both continuous and discrete variables that contribute to main effects and
interactions of BP and IOP

Whether the influence of the continuous variables is linear to the outcomes

The improvement of the accuracy of the model with pedigree information.
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Summary

1 LASSO penalty is a powerful tool in model selection, it can be applied to
multivariate Bernoulli models.

2 The LASSO-Patternsearch algorithm can efficiently handle large scale convex
problems with l1 penalty.

3 The tuning scores such as GACV, BGACV, AIC and BIC has superior performance
than 10-fold cross validation in terms of runtime and achieving sparsity.
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Future Development

n gets larger.

p gets larger.

K gets larger.

Relax linearity assumption of f .
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