"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts."

<u>0100110010101</u> **10** . Data Science

"Data Science" is thinking with data

How to categorize data

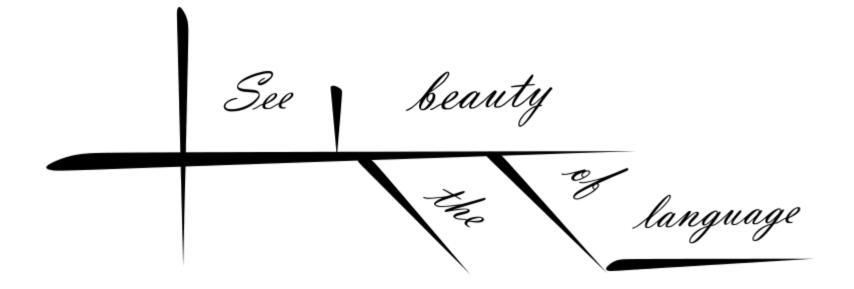
How to computationally explore data

How to visually explore data

-Question-

Please ask questions if you have them!!!

How to categorize data


How to computationally explore data

How to visually explore data

What are the different properties of the data

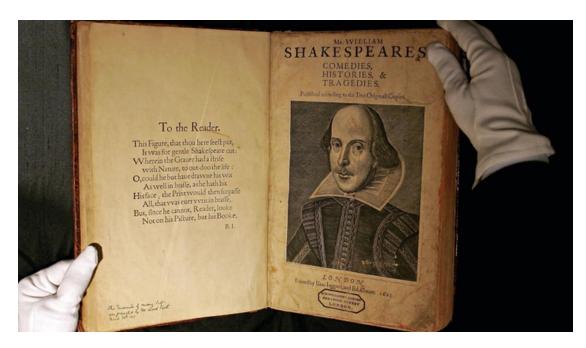
Data falls into two categories:

Quantitative:

Numeric measures

Qualitative:

Descriptions, categories, and observations

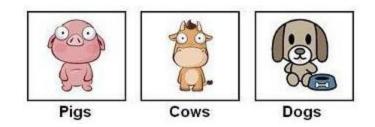

Data about this book:

Quantitative:

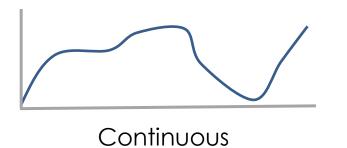
142 pages 20,000 words 1,700 nouns

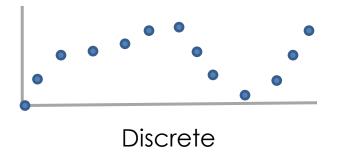
Qualitative:

Old By Shakespeare Published in London


Data can also be:

Top 250 movies as voted by our users


For this top 250, only votes from regular voters are considered.


Rank	Rating	Title	Votes
1.	9.1	The Shawshank Redemption (1994)	500,419
2.	9.1	The Godfather (1972)	398,773
3.	9.0	Inception (2010)	20,248
4.	9.0	The Godfather: Part II (1974)	236,845
5.	8.9	The Good, the Bad and the Ugly (1966)	153,321
6.	8.9	Pulp Fiction (1994)	404,952

Ordinal

Categorical/Nominal

hear. She saw two knights ride down a running man. A wooden barrel came crashing onto one of the burning tents and burst apart, and the flames leapt twice as high. A catapult, she knew. The castle was flinging oil or pitch or something.

"Come with me." Sandor Clegane reached down a hand. "We have to get away from here, and now." Stranger tossed his head impatiently, his nostrils flaring at the scent of blood. The song was done. There was only one solitary drum, its slow monotonous beats echoing across the river like the pounding of some monstrous heart. The black sky wept, the river grumbled, men cursed and died. Arya had mud in her teeth and her face was wet. *Rain. It's only rain.*

What are the different levels of detail we can look at?

1115 Jesa Hillesa Hillesa

inne 209

Scales

Overview

Detail

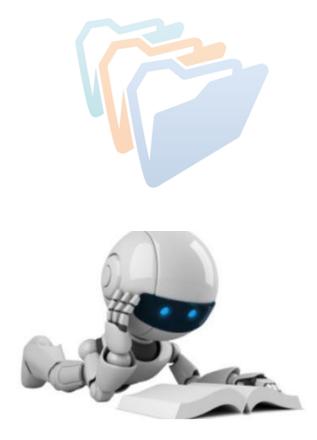
Overview:

High-level patterns looking across all the data

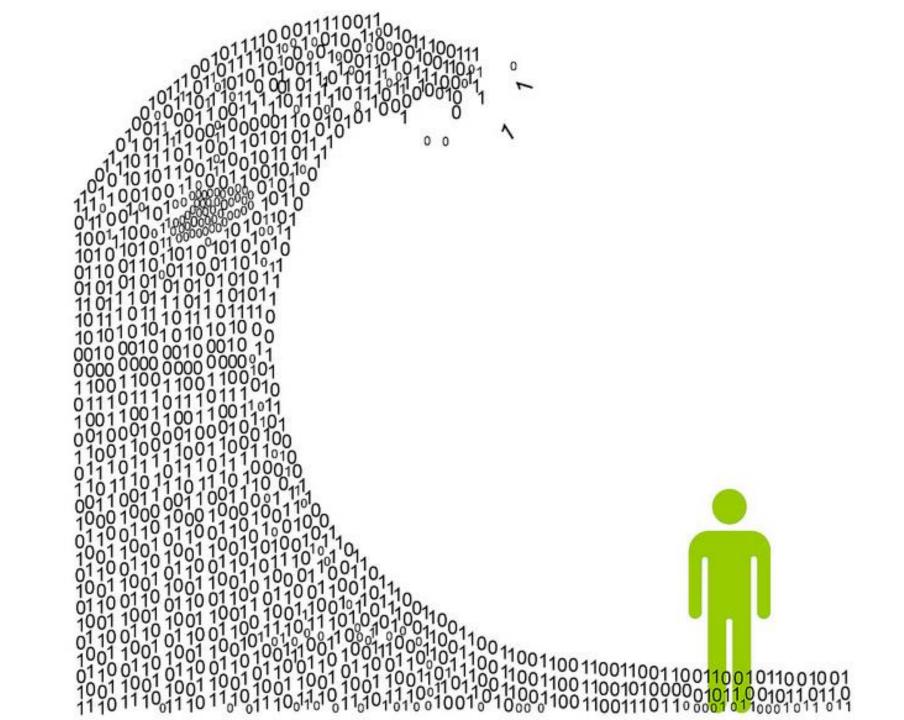
Detail:

Low-level patterns looking at specific pieces of the data

near. She saw two knights ride down a running man. A wooden barrel came crashing onto one of the burning tensa and burst apart, and the flames leapt twice as high. A catault, she knew. The castle was flinging oil or pitch or omething.


"Come with me." sandor Clegane reached down a hand. "We have to get away from here, and now." Stranger tossed his head impatiently, his noxtlis flaring at the scent of blood. The song was done. There was only one solitary drum, its slow monotonous beats echoing across the river like the pounding of some monstrous heart. The black sky wpt, the river grumbled, men cured and died. Arya had md in her teeth and her face was wet. *Rain. It's only tain*.

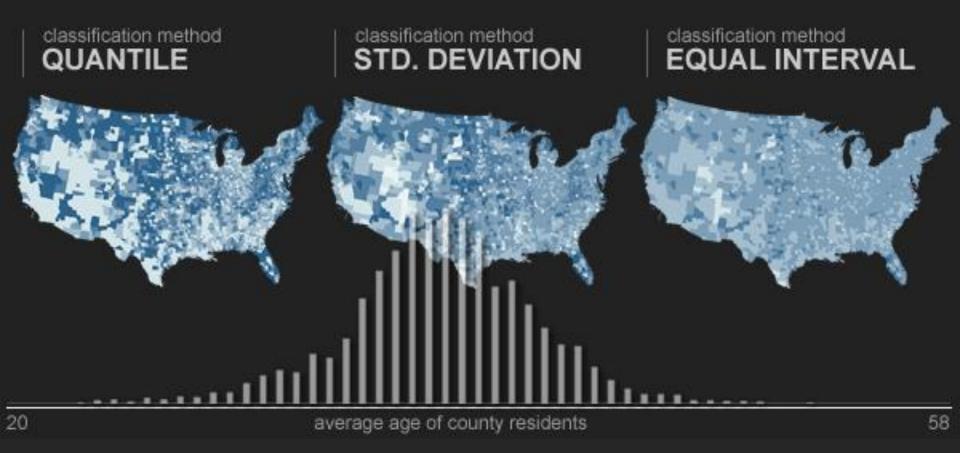
Alls concandes and concentration is at at the set of th


How to categorize data

How to computationally explore data

How to visually explore data

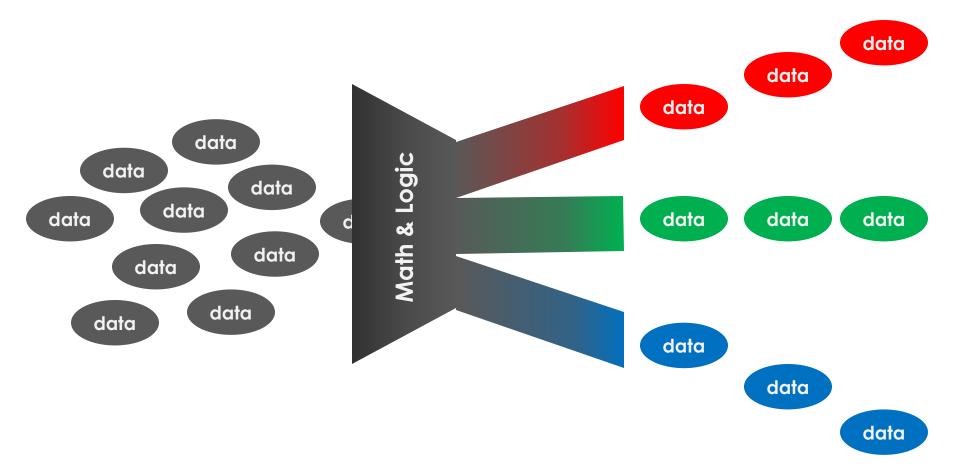
THRIVING IN THE BIG DATA ERA



Reduce the dataset using mathematics and logic

All models are wrong, but some are useful.

--George E. P. Box


U.S. Census Bureau, 2000 AVERAGE AGE, US COUNTIES

older

younger

Use statistics to group the data into manageable units

Algorithmically categorize dataset based on properties of the data

Topic Models:

Identify words that categorize groups of texts in a corpus

Clustering:

Identify groups of datapoints with similar properties

Bayes Nets:

Compute how likely it is that a text belongs to different groups based on its properties

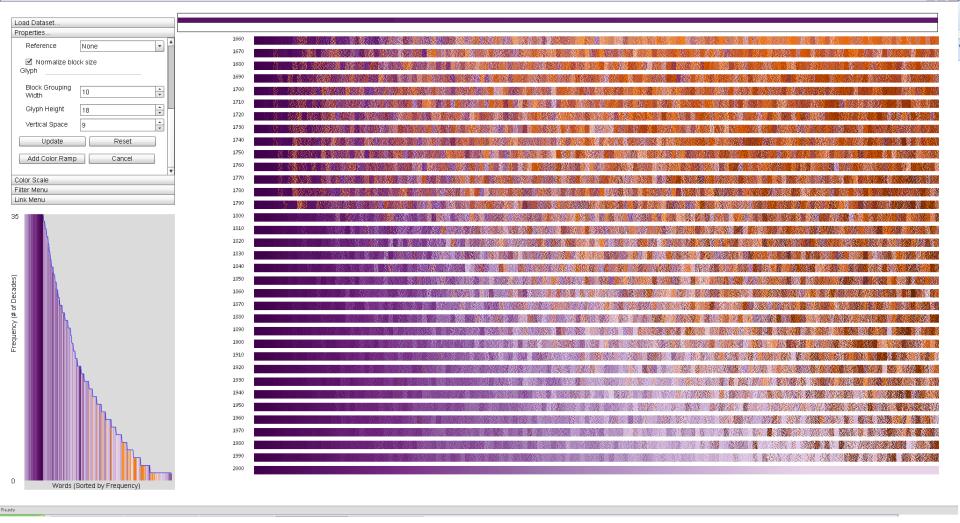
Explainers:

Determine how similar different texts are to an example text

How to categorize data

How to computationally explore data

How to visually explore data



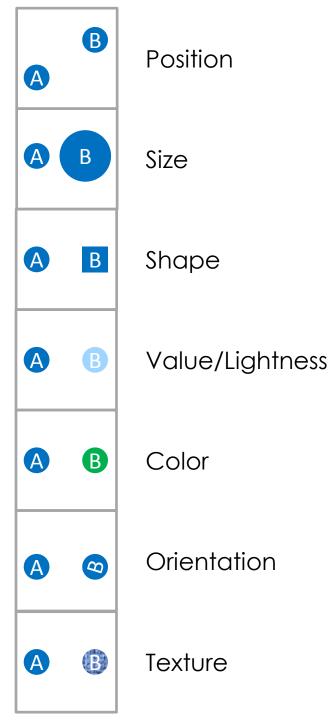
You need statistics to describe data, but then visualization to see it in context.

-- Andy Kirk

				Acr	es					By	tes	
		-	Atlanta		Boston							
		Avocados	Bobbins	Canoes	Avocados	Bobbins	Canoes	Avocados	Bobbins	Canoes	Avo	
	Daphne	2,870	2,903	2,915	3,624	3,657	3,669	2,715	2,748	2,760		
	Ezra	2,470	2,503	2,515	3,224	3,257	3,269	2,315	2,348	2,360		
Harley-Davids	Archie	2,831	2,864	2,876	3,585	3,618	3,630	2,676	2,709	2,721		
	Betty	2,483	2,516	2,528	3,237	3,270	3,282	2,328	2,361	2,373		
	Chet	2,201	2,234	2,246	2,955	2,988	3,000	2,046	2,079	2,091		2
	Daphne	2,865	2,898	2,910	3,619	3,652	3,664	2,710	2,743	2,755		~0
	Ezra	2,465	2,498	2,510	3,219	3,252	3,264	2,310	2,343	2,355		
Isdera	Archie	2,929	2,962	2,974	3,683	3,716	3,728	2,774	2,807	2,819		
	Betty	2,581	2,614	2,626	3,335	3,368	3,380	2,426	2,459	2,471		
	Chet	2,299	2,332	2,344	3,053	3,086	3,098	2,144	2,177	2,189		
	Daphne	2,963	2,996	3,008	3,717	3,750	3,762	2,808	2,841	2 853	;	
	Ezra	2,563	2,596	2,608	3,317	3,350	3,362	2,408	2, Feto	hing Data		
Jaguar	Archie	2,917	2,950	2,962	3,671	3,704	3,716	2,762	2,795	2,807		
	Betty	2,569	2,602	2,614	3,323	3,356	3,368	2,414	2,447	2,459		
	Chet	2,287	2,320	2,332	3,041	3,074	3,086	2,132	2,165	2,177		
	Daphne	2,951	2,984	2,996	3,705	3,738	3,750	2,796	2,829	2,841		
	Ezra	2,551	2,584	2,596	3,305	3,338	3,350	2,396	2,429	2,441		
Kia	Archie	2,790	2,823	2,835	3,544	3,577	3,589	2,635	2,668	2,680	:	
	Betty	2,442	2,475	2,487	3,196	3,229	3,241	2,287	2,320	2,332	:	
	Chet	2,160	2,193	2,205	2,914	2,947	2,959		2,050	:		
	Daphne	2,824	2,857	2,869	3,578	3,611	3,623	2,669	2,702	2,714	;	Ŧ
		II									- P	

Visualizations let us explore and communicate large amounts of data visually

1) Visually encode the data

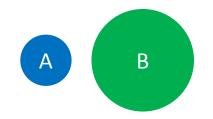

- 2) Arrange the encoded data to highlight patterns of interest
- 3) Design complementary methods for looking at the data that can answer complex analysis questions
- 4) Design ways for interacting with the encoded data that support your analysis

1) Visually encode the data

2) Arrange the encoded data to highlight patterns of interest

3) Design complementary methods for looking at the data that can answer complex analysis questions

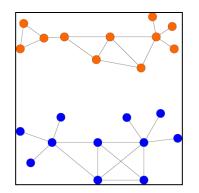
4) Design ways for interacting with the encoded data that support your analysis



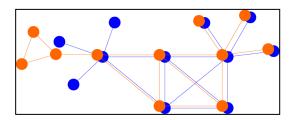
Visual Encodings:

Ways to map data values to visual marks

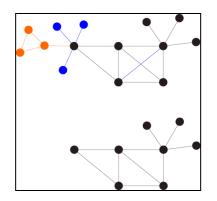
Different visual encodings highlight different properties in the data



Encodings can be combined to communicate multiple properties of the data


1) Visually encode the data

- 2) Arrange the encoded data to highlight patterns of interest
- 3) Design complementary methods for looking at the data that can answer complex analysis questions
- 4) Design ways for interacting with the encoded data that support your analysis

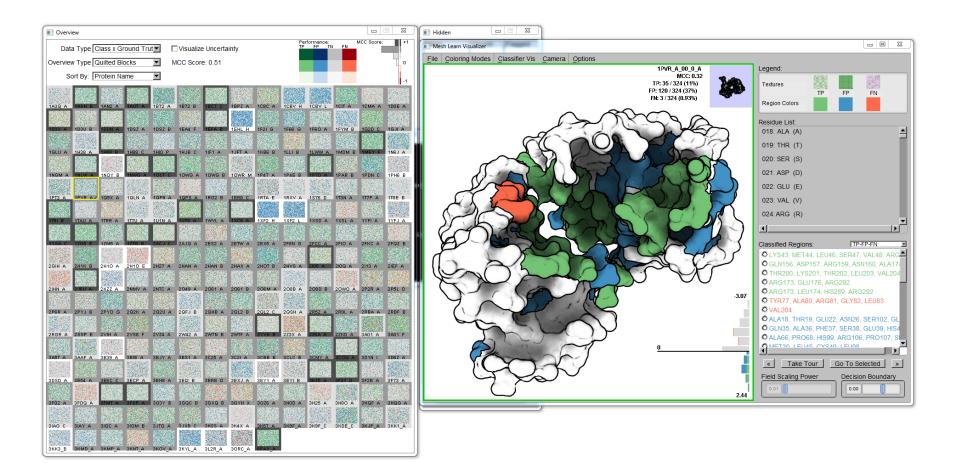

Once data is encoded, we can highlight relationships in the data by:

Juxtapositioning encoded data side-by-side

Superpositioning encoded data in the same space

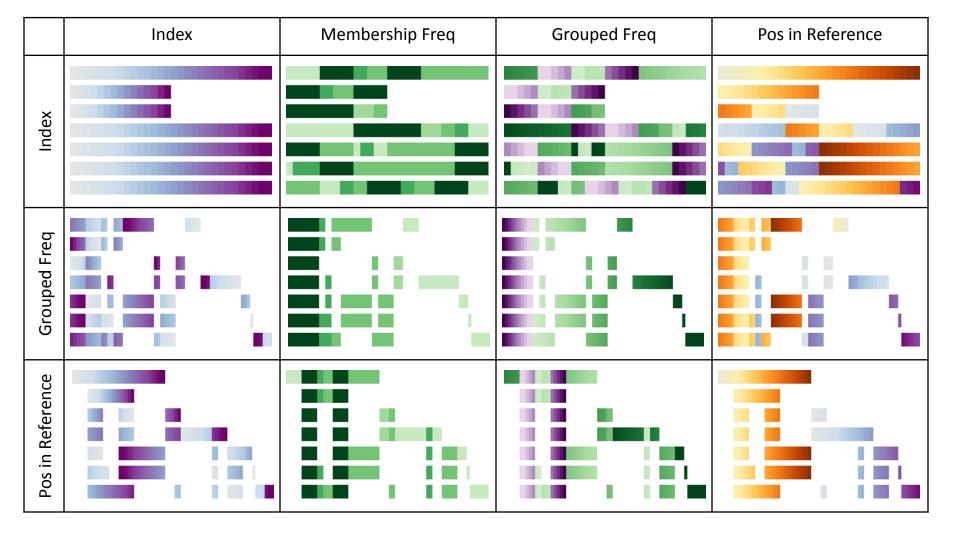
Explicitly encoding relationships of interest between datapoints

Small Multiples:


Juxtapose large numbers of small visualizations to communicate highlevel patterns

Can either subdivide the data or properties of the data

Overv	a Type C		round Tra		Visualize		vintu		Per TP	formance: FP_TN		MCC Score:	
				_			anny						
	w Type C			_	ICC Score	e: 0.51							
S	ort By: F	Protein Na	ame						_				
1A3Q A	1AKH B	1AN2 A	1AU7 A	1872 A	1B72 B	18C7 C	1BPZ A	1080 A	1CBV H	1CBV L	1CIT A	1CMA A	1DOE A
	124												
1D3U A	103U B	100N A	1DSZ A	1DSZ B	1EA4 F	1EFA B	1EHL H	1F2I G	1F66 G	1F60 A	1FYM B	1G2D C	1GJI A
1GLU A	1H38_A	1H88_B	1H88 C	1HIO P	1HJB C	1IF1 A	1JFT A	1KB6 B	1LLI B	1LWW A	1MDM B	LIMEY F	1NGJ A
INGM A		1NOY B			10WG A	10WG B	10WR M	1P47 A	1P4E B		1PAR B	1PDN C	1PH6 E
			1990 B	2530					1223	MAN.			1223
1PT3 A	1PVR AJ	109X A	10LN A	10P9 A	10PS A	1RG2 B	1RR8 C	1RTA E	1RXV A	1576 D	1T3N A	1T7P A	1TSE B
			1200	No.									
1ТЭГ В	1TAU A	1TRR A	1TTU A	101N A	1U78 A	1WVL A	1XC8 A	1XF2 H	1XF2 L	1XSD A	1XSL A	1YFL A	1YFJ A
		18.2	Sec.										
1YSA C	1265 E	1ZM5 A	1ZTG B	2ACJ C	2AJO A	2ES2 A	2ETW A	2EX5 A	2F8N G	2FCC A	2FIO A	2FKC A	2FQZ B
2GIH A	2H1K B	2H10 A	2H10 E	2H27 A	2HAN A	2HAN B	2HAX A	2HOT B	2HVS A	2105 A	210Q A	2113 A	2IEF A
2IHN A	2.1511 A	2KZZ A	2NMV A	2NTC A	2049 A	2061 A	2061 B	206M A	2088 A	208D B	20W0 A	2P2R A	2P5L D
Q\$//3				1000				90858A	SEE		1000	265	200
2PGR A	2PYJ B	2PYO G	202K A	2020 A	20FJ B	20HB A	20L2 B	20L2 C	20SH A	2R5Z A	2R9L A	2RBA A	2RBF E
			and										
2RGR A	2SSP E	2VIH A	2VS8 F	2VZ4 A	2W42 A	2W7N B	2WTF A	2 YVH B	2Z3X A	2ZEA A	2ZKD A	3A01 A	3A01 F
	102									$\langle r \rangle_{c}$		12.76	
3A5T A	3AAF A	3839 A	SBIE A	3BJY A	3BS1 A	3C25 A	3021 A	3CBB B	3CLC B	3CMY A	3000 A	3D1N	SD6Z A
			DECD .					DEV4	Service P				
3DSD A	3E54 A	3E6C C	SECP A	3EH8 A	3EI2 B	SERE D	JEAJ A	3EY1 A	SEYI B	18230	No. SA	3F2B A	3F73 A
3FD2 A	3FDQ A	SFMT A	SFSP A	3G3Y B	3GQC B	3GXQ B	збүн х	SGZ6 A	SHOD A	3H25 A	3H80 A	SHQF A	знос
N/X		3.30											20
SIAG C	SIAY A	SIGC A	3IGM B	3JTG A	SJXB C	3KOS A	3K4X A	3K57 A	3K9F_A	3K9F_C	3KDE_C	3KJP_A	3KK1_4
3-64 C		1933		6.20.42	1448	1.1	C. P. C.						


1) Visually encode the data

- 2) Arrange the encoded data to highlight patterns of interest
- 3) Design complementary methods for looking at the data that can answer complex analysis questions
- 4) Design ways for interacting with the encoded data that support your analysis

Coordinated Views:

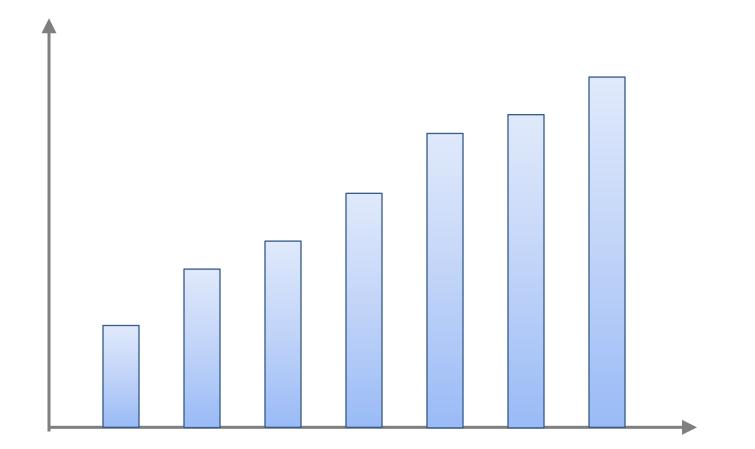
Create multiple visualizations that work together to support complex analysis

Dynamic Remapping:

Allow the user to change what data maps to which visual channels to highlight different patterns

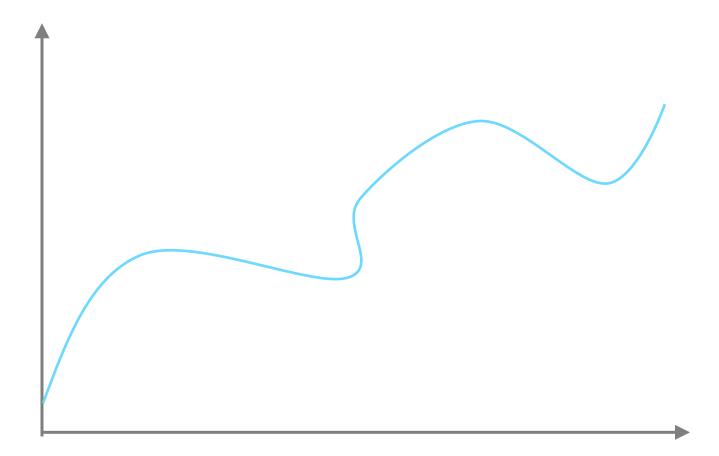
1) Visually encode the data

- 2) Arrange the encoded data to highlight patterns of interest
- 3) Design complementary methods for looking at the data that can answer complex analysis questions
- 4) Design ways for interacting with the encoded data that support your analysis

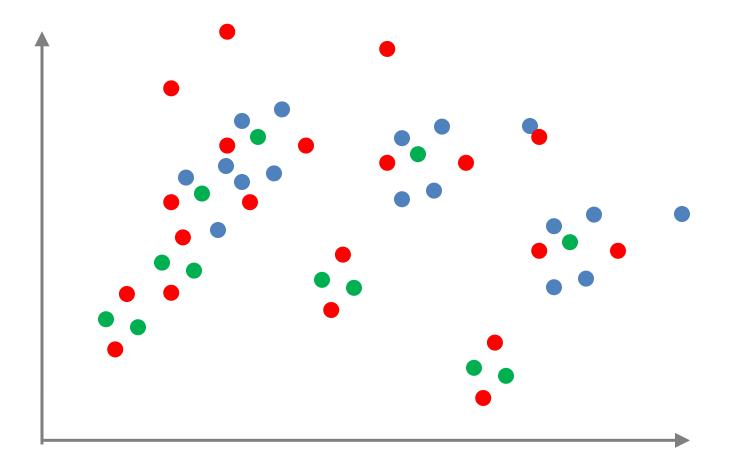

Always connect back to the person: how can we make insights meaningful?

Interaction

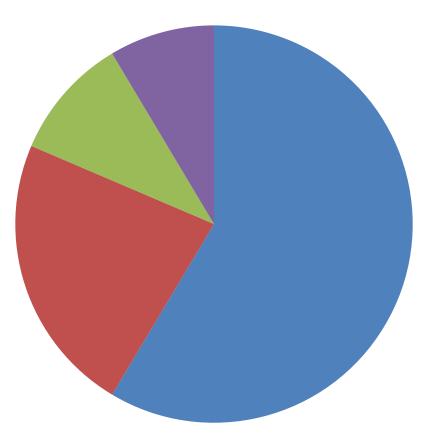
	fo ,Zoom: 1710
1660	
1670	
1680	
1690	
1700	
1710	
1720	
1730	
1740	
1750	
1760	
1770	
1780	
1790	
1800	
1810	
1820	
1830	
1840	
1850	


Some techniques for visualizing data...

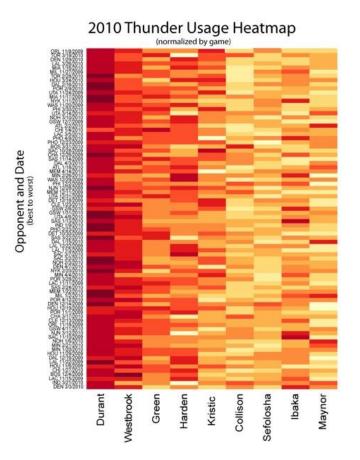
Bar Charts


Compare values

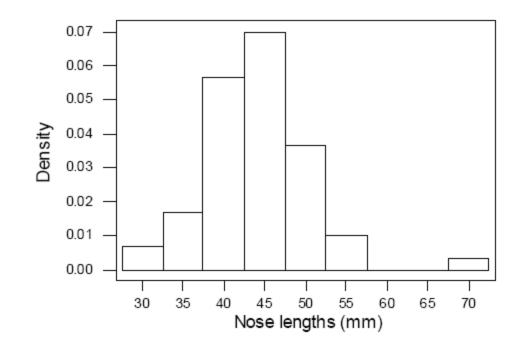
Line Graphs


Identify trends

Scatterplots

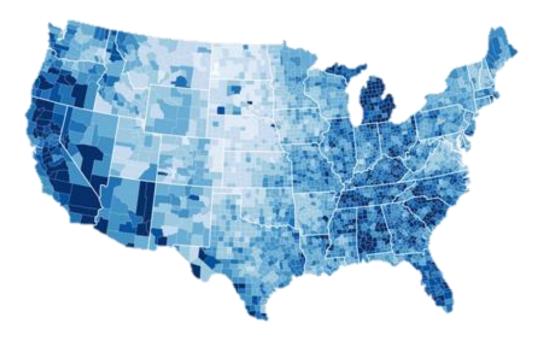

Identify clusters

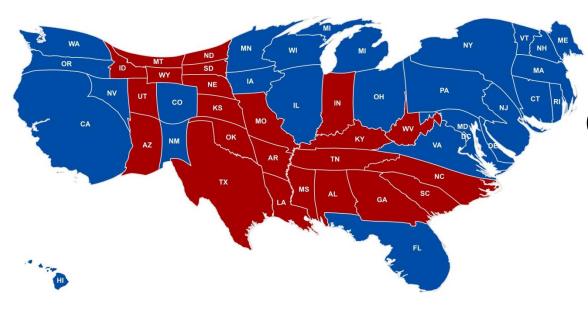
Pie Charts


Communicate proportions of a whole

Heatmaps

Color to convey values compactly

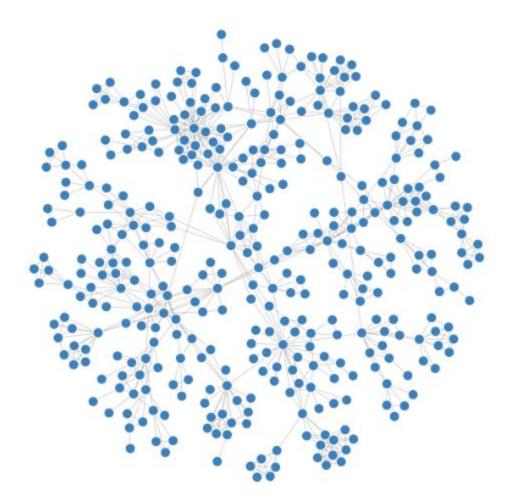

Histogram



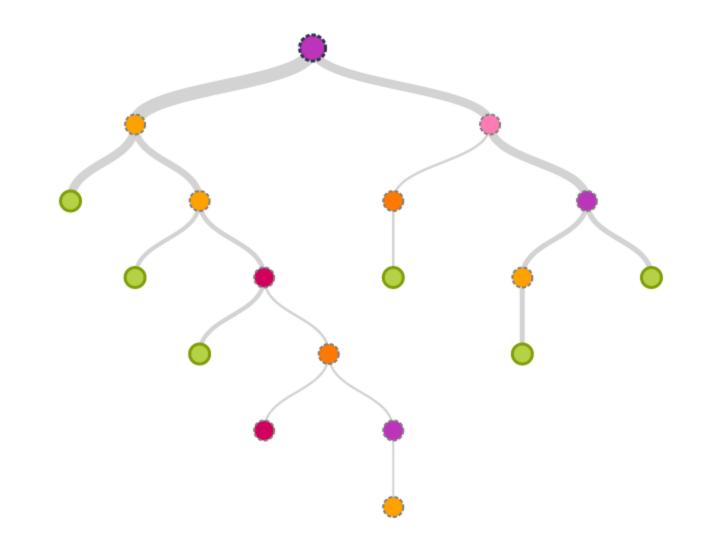
Distribution over different properties

Choropleths:

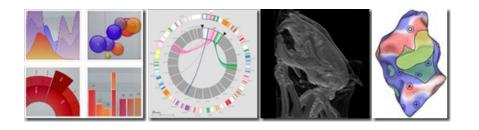
Color to convey values



Cartograms:


Size to convey values

Networks/Node-Link Diagrams


Connect related objects

Trees & Hierarchies

Communicate hierarchical relationships

Learn More about Visualization

CS638/838: Visualization Prof. Michael Gleicher 11:00-12:15 Tu/Th

Visualization Reading Group 2pm every other Thursday

- Break into groups—mix "techies" and "humanists"
- 2) Pick one dataset from your group to talk about
- 3) Sketch how you might approach analyzing this data
- 4) Rinse and repeat
- 5) Group critique

What are the different properties of the data?

What are the interesting relationships between these properties and why?

What are common or informative labels that can describe different aspects of the data?

What, if any, questions do you want to explore in the data?

What levels of detail are interesting?

What would be some interesting ways to "look" at this data?

What patterns (or lack thereof) would you hope to find in this data and what would they mean?