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ABSTRACT 

The problem of visual network comparison is one that received 
relatively little exposure in the visualization literature. This paper 
describes a number of comparative network visualization 
approaches based on early explorations of small network 
comparisons. These prototypes have been applied to a set of flight 
path data between ten different cities for four different airlines as 
well as a larger synthetic data set. The ability of the visualizations 
generated by the study to depict relationships between the 
networks of the data sets suggests that the techniques of the study 
do provide a relevant comparison between different data sets. 
These techniques may later generalize to facilitate the comparison 
of a broader set of networks and contexts. 
 

1 INTRODUCTION 

Network visualization is one of the most well-known and well-
studied form of information visualization. Generally, the purpose 
of these visualizations is to demonstrate the nature of relationships 
across a body of related data items. Graph theory provides a great 
deal of quantitative understanding of networks and a broad variety 
of literature exists with respect to understanding potentially 
massive data sets; however, little exploration has been done with 
respect to comparative network visualization: how to visual 
compare a set of distinct networks.  
   In this context, the notion of network comparison can be defined 
as a comparison of some subset of properties between different 
networks in a set. These properties can be observed at a global 
scale, as in layout properties, or a local scale, as in node or edge 
properties, or some combination thereof. The comparative 
network visualization must consider some subset of the network 
properties and display the similarities and discrepancies amongst 
each in a manner that is perceptually interpretable by the user.  
   The purpose of this exploration is to begin develop different 
methodologies for comparing network data. The scope of this 
issue is extremely broad with respect to the number of factors that 
must be considered when constructing such visualizations. In this 
study, we consider only a small set of labeled network with fewer 
than twenty nodes and unweighted edges. 
   These constraints serve to simplify the initial exploration of the 
concept. The purpose of this study is to begin to explore the realm 
of comparative network visualization. Ideally, by understanding 
how to compare small, simple network sets, we will have a better 
idea of how to construct visualizations that may scale in terms of 
both quantity and complexity. By understanding the problem at a 
small scale, we will be better equipped to address the issues at 
larger scales. 
    

2 RELATED WORK 

The study of network visualization has received a good deal of 
attention from the visualization community. However, a limited 

body of work exists addressing the notion of comparative network 
visualization. Erten et al. offer three different potential solutions 
to the network comparison problem using different weighting 
methods combined with weighted force-directed network layout 
in [2]. Both Collberg et al. [1] and Frishman [3] evaluate the use 
of time to express change over a series of networks. This mapping 
introduces time as a fourth dimension over which networks can be 

visualized and compared. Both of time-based methods suggest a 
sense of visualizing the evolution of a network over time.   
   A significant amount of work related to network comparison can 
be found in the domain of biology. A number of biological 
problems can be modeled as network diagrams whose comparison 
translates to an actual biological phenomenon. The uncertain 
mapping of biological networks to one another can reduce the 
problem of aligning two distinct biological networks into that of 

comparing two graphs of unlabeled node, essentially the graph 
isomorphism problem. Towfic et al. [6] developed a polynomial 
time solution to solving this alignment problem, which could be 
implemented in later iterations of this work in order to address the 
comparative network problem at a broader scope. 
   The existing work generally does not offer a viable solution to 
the problem of comparing multiple networks. We seek to use the 
lessons from visualization and existing network comparison 

methodologies in order to explore techniques for visualizing the 
comparison of multiple networks.  
 

3 VISUALIZATIONS 

In order to construct effective comparative network visualizations, 
it is important to consider the principles that illustrate successful 
comparison between networks. The user’s mental mapping refers 
to the user’s understanding of the underlying data. Network 
visualization must strive preserve the mental mapping of the 
component networks in order to form a visualization that is 
readily understandable by the user.  
   Furthermore, it is important to reduce the amount of visual 
clutter present in a given visualization. While a good deal of work 
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Figure 3. Overlay Network for American Airlines (red), 

United Airlines (green), and Continental Airlines (blue) 

has been done in this area with regard to standard network 
visualizations, it is nonetheless important to keep these lessons in 
mind with respect to comparative network visualization and keep 
the visual environment as simple and organized as possible. 
   The direction in which we approached this problem was through 
the development of a series of prototypes. The prototypes were 
tested over two data sets: a randomly generated set of nine 
different networks with variable levels of connectivity and a set of 
flight paths for ten major US cities serviced by Delta, United, 
American, and Continental Airlines. The format of the input data 
is an Excel file containing the connectivity matrix for the given 
input data set, with one matrix defined for each sheet in the 
workbook.  
   These matrices were then fed to the network prototypes in order 
to generate the comparative visualization. These prototypes are 
discussed in the following subsections. 

3.1 Blended Networks 

Blended networks use color blending to display two superimposed 
network diagrams. The nodes of the two graphs are laid out in a 
single layout (radial or force-directed) and plotted on the visual 
plane. Edges and nodes are then defined by their network 
belonging: those belonging to the first network are colored red, 
the second are green, and those belonging to both the first and 
second networks are colored yellow, the blend of the first and 
second color encodings. 
   This technique takes advantage of color to demonstrate 
similarity by using a literal blending of the two different graph 
encodings to signify shared elements. It preserves the overall 
network structures by drawing all the edges of both networks and 
maintaining edge position, even over common edges. It also 
minimizes visual clutter by maintaining a minimal number of 
objects in the visible plane. However, by coloring common edges 
with a different color that the rest of the networks, the user’s sense 
of immediate belonging is disrupted and common edges may not 
immediately be perceived as part of each distinct network. 
Furthermore, this technique does not scale well beyond three 
networks, as color blending quickly becomes ambiguous.  

3.2 Double-Edge Networks 

Double-Edge Networks integrate the color blending and edge 
position ideas of Blended Networks while addressing the issue of 

network belonging. As in Blended Networks, the layout of the 
aggregated network (radial or force-directed) is computed and the 
nodes are laid out in visual space. Non-shared edges are laid out 

in the same manner as before. Shared edges are indicated via a 

pair of Bezier curves, one per network, bowing in opposite 
directions and bounded by a ghosted (opaque) yellow bounding 
box. The curves converge at the nodes at either end of the shared 
edge. 
   The use of the yellow bounding box preserves the Blended 
Network notion of color blending; however, using the ghosting 
technique allows the user to focus on either the shared edges or 
the individual network edges, thus maintaining the perceptual 
network sets. The convergence of the curves at the nodes 

preserves the mental mapping of the edges by always connecting 
node centers while the divergence keeps the edges visually 
distinct. This technique only extends to up to three networks 
(should edges common to all three networks be signified by a pair 
of curves with a center straight edge). Furthermore, the overlay of 
the different colors over shared edges can create simultaneous 
contrast artifacts and thus make it more difficult to trace the edge 
set belonging across certain networks. 

3.3 Overlay Networks 

Overlay Networks take advantage of visual prioritization to 
display the superimposition of multiple networks. As in the 
blended networks, the layout of the aggregated network (radial or 
force-directed) is first computed. The network edges are then laid 
atop one another, with the bottom-most network having the widest 
and most ghosted edges. Transparency and width are smoothly 
reduced across networks. Nodes are colored based on the color 
blending principle discussed in section 2.1.  

This approach benefits from the fact that the original edge sets 
are visually preserved across all networks. The user can 
perceptually follow the distinct paths traced by the networks and 
the confusion of belonging found in the Blended Network is 
avoided. User focus can be dictated toward exploring individual 
graphs or any combination of comparisons. However, this 
technique does not well beyond three networks as the edges 
quickly grow too wide and begin to occlude visible space. 
Additionally, it relies on careful color selection to keep the 
network edges perceptually distinct. 

3.4 Correspondence Network Matrices 

Correspondence Network Matrices handle comparisons between 
larger numbers of networks by juxtaposing them in visual space. 
Visual space is broken down into a square matrix of bounding 
boxes, each of which hold a single network. When the user clicks 

Figure 2. Radial Double-Edge Network for American 

Airlines (red) and United Airlines (green) 



Figure 4. Correspondence Matrix Network for nine synthetic 15-

node data sets 

Figure 5. Flight information for Continental and Delta Airlines, 

with Delta highlighted in red. 

Figure 6. Flight information for Continental and Delta Airlines. 

on an edge or node in a network, that edge or node is assigned a 
color over the entire network set. A twelve color ColorBrewer set 

defines the color library, and, as a result, at most twelve distinct 
nodes or edges may be selected at a given time. 
   This approach allows the user to compare networks in scenarios 
where the actual layout of the network is relevant. Furthermore, 
the technique could potentially scale to a relatively large number 
of networks (25 or more), bounded by the density of the networks 
and the size of the display. While the number of selected edges is 
limited, this limitation prevents confusion between nodes and 

edges which may otherwise be colored in a perceptually 
indistinguishable manner.  This also insures that the occurrences 
of nodes and edges of interest across networks are readily 
recognizable.  
   However, this technique suffers from the fact that the degree 
with which networks can be readily compared is bounded by the 
proximity of a given set of networks. Networks further from one 
another are less readily comparable than those further apart. 

Additionally, densely clustered networks may become obscured as 
the size of a given network is reduced. Both of these limitations 
could be addressed through intelligent interaction and zooming 
techniques, but the application of such techniques is beyond the 
scope of this work.  
 

3.5 Connections Application 

This is a visualization of the difference between the adjacency 
matrices of two graphs. The edges that the two graphs have in 
common are solid, black lines. The edges unique to graph A are 
red, and the edges unique to graph B are blue. Colors were 
selected using ColorBrewer. 

   This visualization is designed to be interactive. The node 
placement is constant, and determined by a force-directed layout 
where all the edges of both matrices are considered. However, the 
user can highlight connections of only one matrix by clicking 
anywhere on the image to toggle between the two matrices (and 
right-clicking to clear). The connections are emphasized by the 
opacity of the lines.  

 

 

3.6 Layout Application 

Again, the “Layout” visualization shows the difference between 
the adjacency matrices of two graphs, and is interactive. The 

difference between this and the “Connections” tool is that, rather 
than emphasis being placed on the edges connecting the nodes, it 
is now on the placement of the nodes. 
A force-directed layout is used, but now clicking on the image 
will change the edges that are considered when deciding node 
position. The locations of the vertices in the “cleared” image 
depend only on the connections that both matrices share. The user 
can toggle between a force directed layout that depends on the 

edges in graph A only and graph B only. 
    This tool may be used when the locations of the nodes are 
important. It does have the drawback of not preserving the user’s 
mental model very well, but the animated transitions do make up 
for this to some degree. 

    
Both the Connections Application and Layout Application 
highlight the individual graphs while providing information about 

the other graphs for comparison. Although we only use two 
graphs in the examples, the number of graphs that can be 
compared this way is around five, limited by the color encodings. 
 

5 PRE-PROCESSING 

Our visualizations focus primarily on unweighted data with 
labelled nodes. This describes a small subset of all the information 
that can be visualized and compared using our techniques. With 
this in mind, we spent a portion of our efforts on studying the 
graph isomorphism problem, which can be generalized to graphs 
with weighted edges and unlabelled nodes. 

 



Two graphs GA and GB are isomorphic if there exists a 
permutation matrix P such that their adjacency matrices satisfy the 
equation 

 
If the two graphs are perfectly isomorphic, it implies that 

 
One way to find P is to test all possible permutations, and see if 
any satisfy the equality. This approach is extremely inefficient, 
and impractical for graphs with more than 10 nodes. However, it 
does always return the exact P. Another approach is to use 
eigenvalue decomposition to find a matrix that is similar, but not 

exactly equal to P. 
 
Matrices A and B can be decomposed into a diagonal matrix of 
eigenvalues, and an orthogonal matrix of corresponding 
eigenvectors, given by 

 

 
By substituting these decompositions into the permutation 
equality, we find that 

 

where S is a diagonal matrix of entries 1 or -1. The matrix S is 
necessary because the eigenvectors of a matrix can be arbitrarily 
multiplied by any constant, and  if they are multiplied by -1 they 
satisfy the eigenvalue decomposition equation given above. 
Supposing the value of S was known, then 

 
due to the orthonormality of the eigenvector matrices. So 

 is bounded above by n, and the inequality 

becomes an equality when an exact solution for P has been found. 
This means that an approximation to the graph isomorphism 
problem can be reduced to finding a P that maximizes 

. This can be solved using the Hungarian 

algorithm, which runs in polynomial time.[8] Even when the 
graphs aren’t perfectly isomorphic, a near optimal P (one that 

reduces  ) can be found using this method. The 

more nearly isomorphic the graphs are, the better this method 
performs. 
 
We implemented both the brute force and eigendecomposition 
approaches to the graph matching problem. We found that the 

brute force method performs about 10% more accurately than the 
eigendecomposition problem, but is on the order of 1e6 times 
slower for a graph with 10 nodes. 

6 DISCUSSION 

Applying the above techniques to the airline data set reveals that 
these techniques can be used to draw conclusions about the 
overall relationship between the different networks. For instance, 
the Double-Edge Network in Figure 2 highlights the fact that 
American Airlines and United Airlines share one major hub and 
both also have a significant common presence in four other cities. 

The Overlay Network in Figure 3 reveals that every flight path in 
which Continental Airlines operates is also serviced by either 
American or United. The ability to draw such conclusions from 
these visualizations implies that the visual methods have 
succeeded in illustrating some useable of the networks.  

   Examining the different techniques, the use of color encoding 
plays a pivotal role in the display of patterns in the data. While 
this makes the information readily interpretable due to the 
mechanics of color processing in the perceptual system, this 
encoding can also prove to be a limiting factor to the eventual 

scalability of the techniques, as in the case of the Blended 
Network. One of the pivotal issues to developing large scale 
comparative network visualizations will be how to manage 
encodings with increasing larger amounts of available data. 
   Furthermore, the discussed techniques also operate over a set of 
small networks. As the size of the networks increases, the task of 
managing visual space in order to become clutter grows 
increasingly difficult. The mitigation of visual clutter is key to 

maintaining useful visualizations at scale.  
   In the future, understanding how to generalize the above 
techniques to a broader scope of problems, such as to unlabeled or 
weighted data, can lead to the establishment of more 
comprehensive and robust visualizations that facilitate a larger 
number of comparisons. Additionally, an analysis of the principles 
limiting the scalability of the different techniques explored above 
may provide insight into composing comparative network 

visualizations that scale to larger data sets.  
    

7 CONCLUSION 

The purpose of this exploration was to begin to explore the field 
of visual network comparison. In order to accomplish this task, a 
number of prototypes were constructed to visualize sets of small 
labeled networks.  
   The prototypes discussed in this paper succeeded in illustrating 
relationships between networks over both a synthetic and real 
world data set. This implies that the techniques developed here 
provide insight into how to successfully visualize network 
comparison.  
   Network visualizations are heavily used in a variety of different 
disciplines. Thus, the ability to compare between them offers 
valuable insight into a number of different domain problems. By 
developing a better understanding of the visual comparison of 
network visualizations, we simplify the task of using network 
visualizations across data domain and improve the overall 
usefulness of network visualization. 
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