
A Task-centric Memory Model for Scalable Accelerator Architectures

John H. Kelm, Daniel R. Johnson, Steven S. Lumetta, Matthew I. Frank∗, and Sanjay J. Patel
University of Illinois at Urbana-Champaign

Urbana, IL 61801
∗ The author is now with Intel.

Abstract

This paper presents a task-centric memory model for
1000-core compute accelerators. Visual computing appli-
cations are emerging as an important class of workloads
that can exploit 1000-core processors. In these workloads,
we observe data sharing and communication patterns that
can be leveraged in the design of memory systems for future
1000-core processors. Based on these insights, we propose
a memory model that uses a software protocol, working in
collaboration with hardware caches, to maintain a coher-
ent, single-address space view of memory without the need
for hardware coherence support.

We evaluate the task-centric memory model in simula-
tion on a 1024-core MIMD accelerator we are developing
that, with the help of a runtime system, implements the pro-
posed memory model. We evaluate coherence management
policies related to the task-centric memory model and show
that the overhead of maintaining a coherent view of mem-
ory in software can be minimal. We further show that, while
software management may constrain speculative hardware
prefetching into local caches, a common optimization, it
does not constrain the more relevant use case of off-chip
prefetching from DRAM into shared caches.

1 Introduction

Contemporary general-purpose chip multiprocessor
(CMP) development is driven by the need to support mul-
titasking operating systems, legacy code, and a broad spec-
trum of applications. In contrast, compute accelerators are
hardware entities designed to improve performance and re-
duce power for a specific class of applications by exploit-
ing the characteristics of the target domain. Current exam-
ples of compute accelerators include graphics processing
units [1] (GPUs) and many-core variants of conventional
microarchitectures such as Intel’s Larrabee [2].

The design goals of contemporary CMPs are distinctly
different from those of compute accelerators, which have

less stringent requirements of system software, are con-
strained by the need for low-overhead work dispatch, and
are less beholden to legacy code. Therefore, an accelera-
tor can be optimized for a narrower class of workloads and
programming styles. Furthermore, the trajectory of CMPs
towards higher core counts and the growing importance of
workloads that have historically targeted accelerators, such
as gaming and visual computing applications, make com-
pute accelerators a vehicle for evaluating novel system ar-
chitecture for future CMPs.

In this work, we define the task-centric memory model, a
hardware/software protocol for maintaining a coherent view
of shared memory for accelerators. The model exploits
sharing patterns we observe in visual computing workloads
to reduce the hardware cost of coherence management. The
visual computing applications we study are developed using
a form of bulk synchronous processing [3] in which paral-
lel work units, which we call tasks, execute independently
between barriers, a period that we denote an interval. Log-
ically, coherence updates and synchronization occur at the
end of an interval. Our analysis of these applications shows
that they have well-structured sharing patterns. The data ac-
cess properties of these workloads include: a high degree of
read-sharing among tasks within an interval, a private work-
ing set with updates that need only be made globally visible
at the end of an interval if at all, and a small amount of
data that is shared amongst tasks and must be kept coherent
within an interval.

The task-centric memory model employs software-
managed coherence. Our approach is similar to previ-
ous work, such as distributed shared memory (DSM) sys-
tems [4, 5] that provide the illusion of a single global ad-
dress space in software on top of networked processors with
distributed local memories. Our approach differs in that
we target a single-chip multiprocessor with private caches
where the cost of communication, through a shared global
cache, is orders of magnitude less costly since it can be done
on-chip. By providing explicit operations for accessing the
coherent memory space, we can also provide software with
a stricter consistency model on-demand. Our model in-

Figure 1. Read and write sharing between in-
dependent tasks in the VISBench suite

teracts with hardware managed caches with per-word dirty
bits, allowing us to take advantage of fine-grained sharing
and reducing the programmability burden of false sharing
while retaining the hardware support for exploiting spatial
and temporal locality provided by caches.

We evaluate our task-centric memory model in the con-
text of a clustered compute accelerator we are developing
called Rigel [6]. Rigel is a 1024-core compute accelera-
tor that has a single cacheable address space, but without
hardware-enforced cache coherence across all cores on the
chip. The implementation of our task management sys-
tem is the Rigel Task Model (RTM). RTM utilizes the task-
centric memory model to provide the illusion of a coherent
address space for application developers, while supporting
fine-grained parallel applications efficiently.

The contributions of this paper include:

1. the observation that data sharing patterns for a class of
emerging workloads can be exploited in the design of
accelerator architectures,

2. the definition of a scalable task-centric memory model
for 1000-core single-chip multiprocessors,

3. the evaluation of an important optimization showing
that, although arbitrary hardware prefetching is con-
strained by our model, prefetching from DRAM is
unimpeded and most beneficial to performance, and

4. the evaluation of scheduling disciplines for coherence
management operations showing that the performance
overhead of the task-centric model can be minimal.

The remainder of the paper is organized as follows: Sec-
tion 2 describes our motivation and presents related work.
Section 3 describes RTM and the baseline architecture we
use to evaluate it. Section 4 presents the task-centric mem-
ory model of the Rigel architecture. Section 5 evaluates the
memory model using a 1024-core simulator. Section 6 con-
cludes the paper.

Figure 2. Read and write sharing between
independent tasks in the Rigel benchmark
suite.

2 Motivation and Background

Accelerators place different constraints on caches and
coherence management relative to contemporary general-
purpose CMPs. An opportunity exists, chiefly driven by
characteristics of accelerator workloads, to exploit these
differing constraints. To enlarge the space of applications
accelerators target, they must not only support the data-
parallel execution model prevalent today, but irregular task-
parallel computation not well-suited to contemporary ac-
celerators such as single instruction, multiple data (SIMD)
GPUs. Support for flexible and evolving task management
models is not easily implemented with area-efficient hard-
ware mechanisms. Therefore, we are motivated to investi-
gate software mechanisms when possible, and general hard-
ware mechanisms as required, for supporting a memory
model tuned for accelerators.

2.1 Application Characterization

Parallelism Structure We observe that the programming
styles adopted by developers for accelerator applications
share a common structure, similar to bulk synchronous pro-
cessing [3]. These large-scale parallel applications are com-
posed of a collection of concurrently executing tasks com-
prising mostly-data-parallel units of work. The tasks ex-
change little or no data within an interval. At the barrier,
modified shared data is made globally visible and the next
phase of computation begins.

Updates by a task during an interval can only be assumed
by the programmer to be visible after the current interval
has ended. Sharing modified data within an interval requires
explicit programmer annotation. In a barrier-synchronized,
mostly-data-parallel, task-based shared-memory program-
ming model, coherence management is required to enable
sharing; however, the mechanisms found in conventional

CMP architectures to support arbitrary sharing through
cache coherence are of marginal utility.

We observe that popular programming models used in
developing large-scale data-parallel applications do not de-
pend on the hardware support provided by conventional sys-
tems for arbitrary sharing. However, a mechanism for en-
abling some data, such as work queues or data structures,
to be shared is required. Second, the common structure
present in these parallel applications is rooted in the pro-
grammer’s attempt to create scalable code in a manner that
is conceptually simple; thus there is minimal sharing.

Sharing Patterns Our next observation is that emerg-
ing applications targeting accelerator systems have com-
mon data sharing and synchronization characteristics that
can guide the design of future accelerator architectures. We
provide analysis of a set of parallel visual computing work-
loads from VISBench [7] and from the Rigel kernel bench-
mark suite. VISBench consists of a set of full applica-
tions that we run on the x86 platform. The Rigel bench-
marks conjugate gradient solver (CG), Sobel edge detec-
tion, k-means clustering, and dense matrix multiply (DMM)
were written by hand and optimized for the Rigel architec-
ture. The GJK collision detection benchmark was ported
from a freely-available sequential version. Heat is adopted
from the Cilk [8] benchmark with optimizations applied for
Rigel. The MRI benchmark is a port of the VISBench [7]
medical imaging code.

Analysis of these workloads shows similar data sharing
and synchronization patterns. Specifically, we investigate
the sharing patterns of our workloads across synchroniza-
tion boundaries. Figure 1 shows the number of unique
memory references that are shared across intervals, marked
as input and output, and within an interval, marked as con-
flict, for VISBench applications and Figure 2 shows the
same for the Rigel benchmark suite. Note that the analy-
sis results for MRI versions differ due to the larger degree
of register spilling on x86, resulting in more private reads on
x86 compared to the Rigel variant. We exclude work distri-
bution related sharing from results to highlight application-
level characteristics.

Figures 1 and 2 show the frequency of non-private loads
and stores, which are data produced by one task and con-
sumed by one or more other tasks. Non-private accesses fur-
ther are broken down into whether the values are shared be-
tween tasks within an interval, which we call conflict reads
and writes, or across intervals, which we call input reads
and output writes. The figures show that the majority of
non-private loads are reads to data produced before the cur-
rent interval began, i.e., input reads. At the same time, both
conflict reads and writes to data shared within an interval are
rare. Output writes, which are writes from one task in the
current interval consumed by another task in the next inter-

val, are more common in real applications than true shared
writes which require intra-interval synchronization; more-
over, they constitute a small fraction of overall execution.
Also note that the number of unique output writes is much
smaller than the number of input reads in the figure due to
one-to-many sharing across intervals.

Accelerator Workload Characteristics We observe five
common characteristics in accelerator workloads:

1. Large amounts of immutable, read-shared data is
present within an interval. Examples of read-shared
data from our workloads include scene and model de-
scriptions or blocks of streaming media data.

2. Synchronization is coarse-grained. This in turn moti-
vates our investigation of bulk coherence management
at task boundaries. Indicative of this pattern are output
writes and corresponding input reads in Figure 1 and
Figure 2, which demonstrate that modified data is of-
ten read by a task after the interval in which the data
was written has ended.

3. There exists only small amounts of write-shared data
within an interval. This indicates that tasks are highly
data-parallel with few data dependences between tasks
within an interval. This is illustrated in Figure 1 and
Figure 2 as a lack of conflict reads and writes. The
conflicts that do exist are structured, such as the his-
togramming operation on k-means and reduction oper-
ations in CG.

4. Fine-grained synchronization is present but rare. An
example of such synchronization is atomic updates to
shared data structures. We observe that much of the
fine-grained synchronization that we do find is used
for task management and not for application code.

5. When write sharing within an interval does exist, it is
usually between few sharers.

Collectively, these characteristics demonstrate that little
coherence management is required within an interval, in-
dicating the potential for pushing coherence management
into software to be logically performed at the end of an in-
terval. At the same time, mechanisms must be present to al-
low small amounts of fine-grained synchronization and data
sharing within an interval for supporting task management
efficiently. Our findings further motivate the use of shared
caches that can amortize the costs associated with data ac-
cess to read-shared data, a prevalent access pattern in our
target workloads.

Cache Coherence Management A mechanism for main-
taining coherence cannot simply be omitted from the design

of future accelerators, but the constraints placed on acceler-
ators with respect to coherence differ from those of CMPs.
CMPs rely on cache coherence and global synchronization
mechanisms to provide shared resource management. Al-
ternatively, an accelerator architecture can employ weakly-
consistent memory models, explicit local and global mem-
ory operations, and a task-based programming model to ex-
ecute the coherence actions needed to enforce the memory
model at barriers, thus providing structure without sacrific-
ing performance. As a substitute for hardware cache coher-
ence, we investigate the use of software enforcement of our
task-centric memory model.

2.2 Related Work

The bulk-synchronous parallel (BSP) model was de-
scribed by Valiant [3]. BSP continues to be reflected in lan-
guages prevalent today including CUDA [9] from NVIDIA
and OpenCL [10]. CUDA is used to map data-parallel ker-
nels to GPUs comprising hundreds of processing elements
in a bulk-synchronous fashion, but requires SIMD-friendly
code to achieve high execution efficiency. Conventional
multi-core processors make use of programmer annotations,
such as those provided by OpenMP [11], to identify parallel
regions for the compiler. CMPs also use explicit task gen-
eration in models such as Intel’s Threaded Building Blocks
(TBB) [12].

Accelerator Workloads Examples of data- and task-
parallel workloads that motivate our investigation of a task-
parallel model include recognition, mining, and synthesis
(RMS) [13] and physical simulation applications [14] for
providing more realistic virtual worlds that are being in-
vestigated within Intel. A variety of highly parallel work-
loads have been evaluated for conventional multi-core pro-
cessors such as PARSEC [15] and ALPBench [16]. Accel-
erator workloads targeting current-generation GPU comput-
ing have been studied [17], while studies motivating future
accelerator architectures have focused on characterizing vi-
sual computing workloads [7]. While these studies investi-
gate the scalability of visual computing workloads, we go
further to point out the sharing patterns relevant to coher-
ence management and show how these characteristics can
be exploited in the design of future compute accelerators.

Memory Models Leverich et al. [18] investigate the im-
plications of choosing between two different memory sys-
tem configurations, coherent cache-based and streaming,
for future CMPs. A third choice they name Incoherent
Software-based is most similar to the model defined here,
but is not investigated in that work. Rigel’s memory model
and coherence mechanisms are akin to software coherence
mechanisms for distributed shared memory (DSM) systems.

Unlike DSM systems, Rigel’s model is intended for a sin-
gle chip multiprocessor with a cache hierarchy that uses a
shared address space for communication. Much like the
task-centric model we study, Munin [5] uses multiple con-
sistency models, based on data types specified by the pro-
grammer, allowing for communication-based per-type opti-
mizations to be exploited by the runtime.

The consistency guarantees we investigate for write-
output data at RTM task boundaries are similar to Scope
Consistency [19] in that dirty data is implicitly made coher-
ent at the end of the task’s scope and updates can be de-
ferred until the scope is reopened. TreadMarks [4] shares a
property of our model not found in conventional coherence
protocols: write sharing can occur without first obtaining
ownership of a block, thus reducing write miss latency. Un-
like TreadMarks, we do not need to reconcile dirty copies
in software, but rather rely on proper use of cache man-
agement operations by software and global operations that
complete at the point of coherence to enable a consistent
view of write-shared data.

Eventual Consistency [20] enforces consistency using
the object data abstraction similar to the control abstrac-
tion of a task and its associated interval used here. The
Cooperative Shared Memory model [21] provides a simi-
lar model to Rigel that relies on software to properly la-
bel shared accesses for performance, but relies on hardware
mechanisms to guarantee correctness. Blumofe et al. [22]
present Dag consistency and its associated BACKER coher-
ence algorithm for implementing the memory model of the
Cilk runtime system. Both our approach and the approach
of Dag-consistency make use of synchronization structure
in target applications to enforce memory ordering between
executing tasks.

3 Rigel Architecture and Task Model

Rigel [6] is a MIMD compute accelerator targeting task-
and data-parallel visual computing workloads in the areas
of computer vision, imaging, and physical simulation that
scale up to thousands of concurrent tasks. The design goal
of Rigel is to provide high compute density by minimizing
per-core area while still enabling a conventional program-
ming model. Density is improved by removing features
found in conventional designs that are of minimal benefit to
the workloads targeted by Rigel. A block diagram of Rigel
is shown in Figure 3.

3.1 Overview

The fundamental processing element of Rigel is an
area-optimized dual-issue in-order core with one single-
precision floating-point unit and an independent fetch unit

Cluster View Chip Level View

Core Core Core Core
GDDR

Global Cache BanksTile View

In
te

rf
ac

e
to

 in
te

rc
on

ne
ct

Cluster Cache

Core

I$

Core

I$

Core

I$

Core

I$

II I$ I$

Interconnect

Interconnect

In
te

rc
on

ne
ct

Figure 3. Diagram of the Rigel processor.

which executes a RISC instruction set. Eight cores are at-
tached to a unified cache named the cluster cache. The
cores, core-to-cluster-cache interconnect and the cluster-
to-global interconnect logic comprise a single Rigel clus-
ter. Clusters are connected and grouped logically into
a tile using a bi-directional tree-structured interconnect.
Eight tiles are distributed across the chip and are attached
to global cache banks via a multistage crossbar intercon-
nect. The global caches provide buffering for multiple high-
bandwidth memory controllers. Global cache banks provide
a serialization point for inter-cluster shared data for main-
taining a coherent view of memory. Our initial design incor-
porates 8 GDDR memory controllers and 32 global cache
banks totaling 4 MB. The chip contains eight tiles, each tile
contains 16 clusters, and each cluster consists of eight cores
and the shared cluster cache.

3.2 Cache Management

All cores share a single global address space. Cores
within a cluster have the same view of memory due to the
shared cluster cache, while global coherence is not explic-
itly maintained by the hardware between clusters. When
serialization of accesses is necessary between clusters, the
global cache is the point of coherence. To access each cache
directly, Rigel implements two classes of memory opera-
tions: local and global.

Local memory operations are intended to constitute the
majority of memory operations. Low-latency and high-
bandwidth memory accesses are achieved using local op-
erations. Local read operations are cacheable at the cluster
cache, but are not kept coherent between clusters by hard-
ware. Local memory writes follow a writeback policy at the
cluster cache: on eviction from the cluster cache, modified
data is written back to the global cache. From the perspec-
tive of the programming model, local operations are used
for accessing read-only data, private data, and data that is
shared intra-cluster.

Global loads, stores, and atomic read-modify-write op-

erations on Rigel are not cached by the cluster cache and
complete at the global cache, which serves as the point of
global coherence. Memory locations operated on solely by
global memory operations are kept coherent across the chip.
Global operations are key to providing system resource
management and synchronization for a chip that supports
global cache coherence in software. Global memory op-
erations also enable fine-grained inter-cluster communica-
tion by way of the global caches without the need to obtain
ownership as is found in invalidate-based coherence proto-
cols. The cost of global memory operations is high relative
to local operations due to the greater latency of accessing
the global caches versus the local cluster caches. Further-
more, the achievable global memory operation throughput
is limited by the number of global cache ports, the latency of
performing a global operation, and cluster-to-global cache
interconnect bandwidth.

3.3 Rigel Task Model

The Rigel Task Model is a queue-based low-level pro-
gramming model, described in [6], that enforces coherence
in software and performs synchronization using barriers.
The Rigel ISA provides instruction primitives useful for
implementing task management, such as local and global
atomic operations, but does not provide explicit support for
task management. In this section, we describe the relevant
pieces of the API of the Rigel Task Model to provide back-
ground and the implementation details relevant to support-
ing the task-centric memory model.

Software API The software API for the Rigel Task Model
is composed of basic operations for managing the resources
of queues located in memory and inserting and removing
units of work from those queues. Applications are written
for the Rigel Task Model using a single-program multiple-
data (SPMD) execution model where all cores share a sin-
gle address space and application binary. The programmer
defines tasks that are inserted and removed from queues be-
tween barrier operations. The barriers thus provide a partial
ordering of tasks. Barriers are used to synchronize the ex-
ecution of all cores using the queue and define a point at
which all locally-cached non-private data modified during
that interval must be made coherent. Coherence is enforced
by writing back modified, write-output data to the global
cache and invalidating non-private, read-input data in the
cluster cache. Write-shared data within an interval must be
specified by the programmer. Intrinsics are provided by the
API for global memory operations and atomic operations
that are kept coherent across tasks within an interval.

Queue Management The Rigel Task Model provides the
following set of API calls to the programmer: TQ Create,

TQ EnqueueLoop, and TQ Dequeue. TQ Create al-
locates resources for the queue and makes it available to
the system. Each TQ Dequeue action operates on a single
task descriptor. A unique task descriptor is generated for
each task enqueued and contains two user-defined word-
sized data fields and two parameters set by the runtime to
a range that can represent values such as loop iterations.
The TQ EnqueueLoop operation provides a single opera-
tion to enqueue a DO-ALL-style parallel loop similar to the
loop operation available for Carbon [23]. The runtime uses
parameters to the enqueue call to select the proper range to
deliver to dequeuing cores.

An initialized queue can be in one of the following states:
tasks-available, empty, or completed. A newly-initialized
task queue, or more generally any initialized task queue
without available tasks but not all cores blocking on de-
queue, will be in the empty state waiting for tasks to be en-
queued. Any core that attempts a dequeue operation with
an empty queue will block. When tasks are enqueued, the
state of the queue becomes tasks-available. When tasks are
available, dequeue operations return tasks without block-
ing. If cores are blocking on the task queue and the queue
transitions to the tasks-available state, blocking cores are al-
located newly available tasks and become unblocked. Tasks
are removed in–order from the front of the queue, but may
complete in any order between barriers.

The completed state is used to provide an implicit bar-
rier in the Rigel Task Model. When all cores participating
in a barrier interval have completed all tasks, all cores will
be blocking on the task queue and the task queue will tran-
sition into the completed state. When the completed
state is reached, a barrier is executed. Although our fork op-
eration does not have the synchronization semantics found
in other models, such as TBB [12] and Cilk [8] where a fork
operation is a synchronization between parent and child, the
semantics of the completed state are such that tasks can be
enqueued at any point within an interval—tasks are not con-
strained to only be enqueued at the start of an interval. An
example of where this may be useful is in the traversal of
a tree structure where sibling subtrees can be processed in
parallel, but the number of tasks is not known a priori.

Implementation RTM is a highly tunable multi-level hi-
erarchical task queuing system running on Rigel. Note that
the implementation detailed here allows for a task queuing
system to be built without the use of global cache coherence
but rather through the use of memory operations that bypass
possibly incoherent local caches. Coherence management is
intertwined with the RTM implementation. Multiple poli-
cies for managing coherence are described and evaluated in
Section 5. We leave the study of alternate implementations,
tuning, and optimizations to future work.

Clean

Globally Coherent

Immutable†

Private (Clean)†

Private (Dirty)†

G.ST,
G.LD INV

TG ←TG ∪ {ti}
TG ←TG \ {ti}

G.ST,
G.LD

TG ←TG ∪ {ti}

L.LD
TI ←TI ∪ {ti}

(TG ≡ Ø)
ε

L.LD
TP ← {ti}

INV
TP ← Ø

(TG ∪ TP ≡ Ø)

(TG ∪ TP ∪ TI ≡ Ø)

(TI ∪ TP ≡ Ø)

(|TP|≡ 1)

(|TP|≡ 1)

L.LD
TI ←TI ∪ {ti}

L.LD
TP ← TP

WB
TP ← TP

L.ST
TP ← TP

L.LD,
L.ST

TP ← TP

INV
TI ←TI \ {ti}

(TI ≡ Ø)
ε

Figure 4. State transitions for memory blocks in the
task-centric memory model. Actions include: Local loads
(L.LD), local stores (L.ST), global loads (G.LD), global
stores (G.ST), write backs to the global cache (WB), and
cluster cache invalidates (INV). The † notes states that may
cache a block at the cluster cache. The set of tasks sharing
a block in state X is denoted by TX . Any unlisted transition
is disallowed by the model.

4 Memory Model

The memory model we define allows software to achieve
the behavior of a coherent design without hardware cache
coherence by having the programmer reason about mem-
ory blocks that are read-only, shared, or private during each
interval. The task-centric memory model defines a coher-
ence domain as a logical grouping of memory blocks for
which coherence guarantees are provided collectively by the
model. Software performs the necessary actions to transi-
tion blocks between the different domains during program
execution. Once a block is moved into a state other than the
initial state, i.e., the clean state to be described shortly,
during an interval, it cannot transition to another coherence
domain until after a global synchronization point is reached.

4.1 Coherence Algorithm

A block of memory follows the state machine depicted
in Figure 4. Tasks ti operate on blocks using the follow-
ing memory instructions: Local loads (L.LD), local stores
(L.ST), global loads (G.LD), global stores (G.ST), write-
back operations that write a line back to the global cache if
present in the cluster cache and mark the line unmodified at
the cluster cache (WB), and invalidate operations that make
the line invalid in the cluster cache if present (INV). Each

set represents the collection of tasks sharing a block in a par-
ticular state: clean (TC), globally coherent (TG),
immutable (TI), and private (TP). Note that the pri-
vate domain is broken into two states for clarity.

There are six properties defined for the memory model:

1. All blocks start in the clean state. (∅ ≡ TI ∪ TG ∪
TP |time = 0)

2. Blocks may only transition between accessible states
by first passing through the clean state and after a
barrier is reached.

3. A barrier is a global point of synchronization. All
memory operations performed before a barrier must be
complete after that barrier.

4. A block may be in exactly one accessible state from
the perspective of all cores in the system at any time.
((∅ ≡ TI ∩ TG) ∧ (∅ ≡ TI ∩ TP) ∧ (∅ ≡ TG ∩ TP))

5. A block in the private state must have |TP | ≡ 1.

6. A block in the globally coherent state returns
the last write to that location and all cores in the system
see the same ordering of updates to that location, i.e.,
the block is kept coherent.

The software coherence protocol must interact properly
with the underlying hardware to ensure correct execution.
For instance, the private (clean) state corresponds
to a data value in the cluster cache that does not have its
dirty bit set. The cluster cache controller may invalidate
the line on an eviction, implicitly moving the line into the
clean state. Should the core previously holding the block
in the private state reissue a load to that location, the
cluster cache controller must fetch the value from the global
cache. The value is guaranteed to return the same value as
if the eviction had not occurred since, by properties 4 and
5 above, ownership of the block is held solely by the core
issuing the load. Note that global atomics are performed
only to globally coherent blocks and have the same
semantics from the perspective of the memory model as
global loads and stores. Having two distinct cluster caches
hold the same block in the dirty state represents a race con-
dition that is possible in hardware, but is disallowed by the
coherence protocol defined above.

4.2 Memory Ordering

Ordering of memory operations is defined separately for
operations performed within distinct coherence domains.
Ordering must be defined when conflicting accesses exist.
A conflict is defined as at least two cores accessing the
same block with at least one access being a write. Blocks

in the clean and immutable states can never have con-
flicting accesses by definition. Blocks in the clean and
immutable states have a single value that is visible by all
cores in the system.

Property 5 of the memory model ensures that updates to
private blocks are only ever visible to a single core and
therefore by definition no conflicting accesses may occur.
Loads by a core return the last store to the block performed
by the core while in the private state or, if the block has
not been written by the core since becoming private, the
value of the block when it was in the clean state is re-
turned. Blocks in the private state therefore need only
respect dependences constrained by program order. Ac-
cesses to private blocks between cores are unordered.

Conflicts may occur for blocks in the globally
coherent state. We define the ordering of all blocks in
the globally coherent state to conform to proces-
sor consistency [24]. The choice of processor consistency
is fueled by the desire to maintain as strict of a consis-
tency model as possible without precluding the hardware
optimizations of benefit to a hierarchical clustered accel-
erator. The strongest model, sequential consistency [25],
would preclude write buffering, message reordering in the
network, and multi-banked global caches and was there-
fore rejected. A weaker model than sequential consistency,
total store order [26], was rejected as it would have disal-
lowed a core to read global stores performed by other cores
within its cluster early. Processor consistency allows for
the aforementioned optimizations without requiring explicit
synchronization to achieve correct ordering, as would be
needed to support weak consistency [27], for relevant use
cases on Rigel.

A global ordering of accesses is defined at barriers by
property 3. For implementation and optimization reasons,
the memory model defines ordering between dependent op-
erations that cross coherence domains from a single core
similarly to weakly consistent models. The memory model
defines that reads to private blocks followed by writes
to globally coherent blocks from a single core re-
spect program order. Reads to immutable or globally
coherent blocks followed by writes to private blocks
from a single core respect program order. Other orderings
across cores and coherence domains are undefined by the
model. A memory fence operation is provided by the ISA
to ensure all memory operations, including writebacks and
invalidates, issued by a core executing the fence complete
before the fence may retire. No new memory operation may
be initiated until after the fence has retired. A global mem-
ory fence can be constructed by all cores issuing a memory
fence prior to entering a global synchronization barrier.

4.3 Optimizations

The task-centric memory model is able to provide the
appearance of a coherent single address space on a chip
multiprocessor without hardware cache coherence. How-
ever, strict adherence to the model would: limit software
and hardware prefetching capabilities, force shared data to
conservatively access high-latency global caches, and un-
necessarily require aggressive invalidation and cache flush-
ing. By extending the baseline model presented, many of
these issues can be addressed. We briefly cover some of the
issues here, but leave further analysis to future work.

We evaluate different policies for deciding when to per-
form coherence actions before the end of an interval. Fur-
ther optimization can be performed by taking a thread-
centric view of coherence management, i.e., a view that
considers the sequence of all tasks run on a single core
within an interval as one unit for which to schedule co-
herence actions instead of at the completion of tasks. As
an example, we can weaken property 2 by adding: Not all
blocks need to be clean at barriers, only those that undergo
state transition across the barrier. While the general prob-
lem of determining what data may be made coherent lazily
is difficult, there are opportunities to exploit always-private
data, such as stack allocations, and programmer assertions
for immutable data, such as the const keyword in C.

When available, locality could be exploited by augment-
ing an underlying assumption of the model that a task maps
to a single core. Optimization can be performed using
cluster-level sharing by extending the model to map tasks
to clusters in groups instead of a single task to a core. By
reconsidering the level at which work is mapped to execu-
tion resources, a low-level cache, such as the cluster cache
on Rigel, can now be used as the point of coherence for data.
Doing so allows for data that would otherwise be required
to exist in the globally coherent state, thus suffering
high latency to access the highest level of the hierarchy, to
be effectively privatized to more local caches when all tasks
accessing the data can be co-located as part of a group.

The task-centric memory model supports staged porting
of applications initially developed assuming full hardware
cache coherence and porting efforts starting from a sequen-
tial implementation. To do so, initially the globally
coherent state is used for all data in the application to
provide the appearance that all data is kept coherent at all
times. While a performance penalty is paid for using the
globally coherent state for all data due to the restric-
tions on local caching, the assumption of coherence holds,
and thus enables correctness for ported software. With a
correct implementation on the new platform to serve as a
baseline, software can be modified to make use of other
states in the memory model to improve performance by re-
laxing coherence guaranties as needed.

5 Evaluation

In this section we evaluate the task-centric memory
model using an implementation of the Rigel Task Model
running on an execution-driven 1024-core simulator of the
Rigel accelerator. Previous work [6] has shown the scal-
ability of the Rigel Task Model and the cost of intrinsics
it provides. In this work, we demonstrate two key results.
The first is that the overhead of software-enforced coher-
ence, compared to an optimistic hardware-coherent base-
line, is less than 10% in most cases and that eager coher-
ence actions can even improve performance in other cases
by reducing instantaneous bandwidth demands placed on
the system at barriers. The second result is that a common
hardware optimization, hardware prefetching, is highly ben-
eficial to performance when performed by the global cache,
a case allowed trivially by our model, and is of questionable
benefit when performed at the cluster cache, the case that is
handled with difficulty by our model.

5.1 Methodology

The benchmarks presented are written in C using the
Rigel Task Model API. System call and task management
overhead is simulated. The API is implemented by a li-
brary written in a mix of C and Rigel assembly that makes
use of the coherence and memory management instructions
provided by the Rigel ISA. The choice of data to writeback
and invalidate is driven by programmer annotation to main-
tain the model presented in Section 4. Note that data that is
immutable for the duration of the benchmark is not invali-
dated in our benchmarks. We evaluate six of the optimized
parallel benchmarks described in Section 2.1.

5.2 Discussion

Impact on Hardware Optimizations The task-centric
memory model provides the benefits of reduced complex-
ity and increased density, but may constrain the design of
a processor that implements the model. One limitation is
the system’s restricted ability to do speculative non-binding
prefetches since speculative hardware cache actions are in-
visible to the software-enforced coherence algorithm de-
fined earlier. However, a benefit of our model is that while
prefetching into the cluster cache cannot be done arbitrar-
ily, the model is defined such that hardware prefetching
from DRAM into the global cache is feasible. Instruction
prefetching is not impeded by our proposed memory model
since instructions are assumed immutable. Enabling self-
modifying code written and executed within the same inter-
val is outside the scope of this work.

The lack of hardware-managed coherence inhibits non-
binding hardware prefetching at the cluster cache. The rea-

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

1.4x

cg dmm heat kmeans mri sobel

Sp
ee

du
p

O
ve

r
N

o
Pr

ef
et

ch
in

g

G$ (best) G$ (worst) C$ (best) C$ (worst)

1.52x2.13x

Figure 5. Best- and worst-case performance
for global (G$) and cluster cache (C$) next-N-
line (N = (1, 2, 4, 8)) prefetching normalized to
no prefetching (N = 0).

son is that the cluster cache prefetcher brings lines into the
cache speculatively, thus taking them out of the coherence
protocol because software will have incomplete knowledge
of the cluster cache contents. The prefetched lines may not
be invalidated by the software coherence protocol and thus
the earlier prefetch action could then result in a stale value
being read later. We note that software prefetches that are
tracked as part of the software algorithm presented are not
limited in our model and can be used where necessary.

Hardware prefetching at the global cache is not impeded.
Blocks in the global cache are kept coherent with memory,
resulting in prefetching actions from the global cache being
transparent to the task-centric memory model. Global cache
accesses will return the same value to a core in the three pos-
sible states a block may be in: Case 1: the block is already
present in the global cache due to an earlier read or write to
the block (a normal memory operation generated the origi-
nal request, not a prefetch); Case 2: the block is not present
in the global cache and the block is retrieved from memory
(no prefetch occurred and DRAM has the current value), or
Case 3: if a prefetch operation was performed previously,
the block is in the cache and is returned (the value returned
is the same from the prefetch as would be returned by hav-
ing the miss generate a DRAM request). Note that per-word
dirty bits are tracked at both the cluster and global caches
allowing for us to avoid lost updates due to false sharing.
Figure 5 shows the value of next-N-line prefetching at the
global cache (G$ in the figure). We evaluate the potential
benefits of prefetching at the cluster cache (C$ in the figure)
using an omniscient memory model that eliminates spurious
values due to prefetching, but still models cache timing. To
elucidate, a cluster cache miss will be charged the cost of
going to the global cache in the omniscient model, but a

load performed to a line cached at the cluster cache from
a prefetch occurring in the previous interval returns the lat-
est value from an update by another cluster during the cur-
rent interval and is only charged the cost of a cluster cache
hit. To demonstrate the range of benefit provided by hard-
ware prefetching, we show the best and worst performing
prefetcher at both the global and cluster level.

Cores sharing a small local cache, the cluster cache on
Rigel, create tension between common cache-oriented opti-
mizations, such as blocking the data set, and useless hard-
ware prefetches that pollute the cache by evicting useful
data. Due to this tension, some benchmarks benefit slightly
from cluster cache prefetching, while some benchmarks
suffer degraded performance, such as dmm and heat. A
pathological example is dmm, which has performance that
scales inversely with the number of lines prefetched on a
miss. The effect is due to useless prefetches from areas
outside of the matrix blocks in the cache, evicting read-
shared/reused data already present.

Figure 5 shows that hardware prefetching at the global
cache provides a large benefit in the best case and rarely
hurts performance measurably in the worst case. The ratio-
nale is that a large amount of on-chip bandwidth is available
for servicing cluster cache misses at low latency while clus-
ter cache size is limited. At the same time, the amount of
off-chip bandwidth for servicing global cache misses is an
order of magnitude less. The internal structure of DRAM
makes random access expensive and, coupled with the inter-
leaving of MIMD memory access streams, frustrates mem-
ory scheduling, increasing the cost of DRAM accesses due
to queuing delays from the global cache through the net-
work. Intuitively, more emphasis should be placed on re-
ducing the cost and frequency of random DRAM accesses
than on reducing the frequency of global cache accesses.
Our results show that a large performance benefit is possi-
ble using global cache prefetching, which is inherently sup-
ported by our memory model, while the benefits of cluster
cache prefetching are not clear and not trivially supported.

Coherence Management Optimizations A naı̈ve imple-
mentation of the memory model, which strictly adheres to
task-centric centric actions, would require a large number of
writebacks and invalidates to occur at task boundaries. The
added memory traffic at the start and end of each task may
lead to poor bandwidth utilization. Due to queuing delays
in the network and at the memory controller, the latency
for memory operations during these periods also grows pre-
cipitously. Lastly, the read sharing benefit of immutable
data would be decreased if shared data were aggressively
invalidated from the shared cluster caches. The combina-
tion of these effects leads us to explore alternative policies
for scheduling coherence actions.

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

cg dmm heat kmeans mri sobel

Sp
ee

du
p

vs
. I

de
al

 H
W

 C
oh

er
en

ce

LILW LIEW EILW EIEW

Figure 6. Speedup of the four combinations
of eager/lazy and invalidation/writeback poli-
cies relative to zero-cost coherence.

Coherence actions need not occur at task boundaries.
Coherence actions can be deferred by the runtime as long
as state changes that occur across a barrier are completed
by the end of the interval. To that end, we evaluate com-
binations of two policies, lazy and eager, for the writeback
and invalidate components of coherence management. We
use an optimistic baseline that mimics the effects of write-
update hardware coherence with zero-cost updates between
cluster caches; no software coherence actions are taken in
the baseline. Lazy actions occur en masse at barriers and ea-
ger actions occur at task boundaries. The results in Figure 6
show eager invalidate/eager writeback (EIEW), lazy invali-
date/eager writeback (LIEW), eager invalidate/lazy write-
back (EILW), and lazy invalidate/lazy writeback (LILW)
relative to the optimistic baseline.

The results show that different policies provide the best
performance for each benchmark and that only one bench-
mark (mri) suffers greater than 10% overhead relative to an
optimistic zero-cost hardware coherence baseline at eight
tiles (1024 cores) due to software coherence actions. Since
the model is under software control, a mix of policies across
applications can be deployed. In general we find two trends.
First, eager writebacks overlap write traffic with useful ex-
ecution and should be used as much as possible to increase
memory system concurrency. The coherence actions result
in less bursty load on the interconnect, increasing perfor-
mance. Brewer and Kuszmaul [28] observe a similar effect
due to output port contention on the CM-5. Second, lazy in-
validation allows for shared read-input data to be exploited
opportunistically when two tasks share read values and ex-
ecute on the same core, or in the same cluster on Rigel,
during an interval.

6 Conclusion
We describe a task-centric memory model and evaluate

it in the context of a work management and scheduling sys-
tem, the Rigel Task Model, for MIMD compute accelerators

that provide minimal hardware support for coherence and
task management. Our implementation of Rigel Task Model
demonstrates that the subset of system services required by
compute accelerators can be implemented efficiently with-
out overly specialized hardware using our memory model.

Based on our evaluation, we provide a perspective on
the constraints placed on the memory model in future ac-
celerators. For scalable accelerator applications, there is a
pattern to sharing that would indicate that hardware coher-
ence may be of marginal utility, but we find efficient co-
herence maintenance is necessary for implementing system
services and some intra-barrier sharing. Rigel Task Model
and the task-centric memory model presented take advan-
tage of the minimal sharing while enabling inter-task data
sharing when necessary.

We find that our model could restrict conventional
prefetching techniques that attempt to reduce latency of ac-
cess to private caches; however, our model does not limit
performance since prefetching from system memory into
global shared caches is not impeded, a greater concern for
pin-constrained 1000+ core accelerators.

Acknowledgment

The authors acknowledge the support of the Focus Cen-
ter for Circuit & System Solutions (C2S2 and GSRC), two
of the five research centers funded under the Focus Center
Research Program, a Semiconductor Research Corporation
Program. The authors thank the Trusted ILLIAC Center
at the Information Trust Institute for their contribution of
use of their computing cluster. The authors also wish to
thank Naveen Neelakantam, Matt R. Johnson, Aqeel Mah-
esri, and the anonymous referees for their input and feed-
back. John Kelm was partially supported by a fellowship
from ATI/AMD.

References

[1] NVIDIA, “NVIDIA GeForce 8800 GPU architecture
overview,” November 2006.

[2] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake, J. Suger-
man, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: a many-core x86 architecture
for visual computing,” ACM Trans. Graph., vol. 27,
2008.

[3] L. G. Valiant, “A bridging model for parallel compu-
tation,” Communications of the ACM, vol. 33, no. 8,
1990.

[4] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel, “Tread-

marks: Shared memory computing on networks of
workstations,” Computer, vol. 29, no. 2, 1996.

[5] J. K. Bennett, J. B. Carter, and W. Zwaenepoel,
“Munin: distributed shared memory based on type-
specific memory coherence,” in PPoPP’90. New
York, NY, USA: ACM, 1990, pp. 168–176.

[6] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C.
Crago, W. Tuohy, A. Mahesri, S. S. Lumetta, M. I.
Frank, and S. J. Patel, “Rigel: An architecture and
scalable programming interface for a 1000-core accel-
erator,” in ISCA’09, June 2009.

[7] A. Mahesri, D. Johnson, N. Crago, and S. J. Patel,
“Tradeoffs in designing accelerator architectures for
visual computing,” in MICRO’08, 2008.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the cilk-5 multithreaded language,”
SIGPLAN Not., vol. 33, no. 5, 1998.

[9] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with CUDA,” Queue,
vol. 6, no. 2, 2008.

[10] OpenCL Specification, 1st ed., Khronos OpenCL
Working Group, December 2008.

[11] OpenMP Architecture Review Board, “OpenMP ap-
plication program interface,” May 2008.

[12] J. Reinders, Intel Threading Building Blocks: Out-
fitting C++ for Multi-core Processor Parallelism.
O’Reilly, 2007.

[13] P. Dubey, “Recognition, mining and synthesis moves
computers to the era of tera,” Technology Intel Maga-
zine, Feb. 2005.

[14] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim,
S. Kumar, A. P. Selle, J. Chhugani, M. Holliman, and
Y.-K. Chen, “Physical simulation for animation and
visual effects: parallelization and characterization for
chip multiprocessors,” in ISCA’07, 2007.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li., “The
PARSEC benchmark suite: Characterization and ar-
chitectural implications,” Princeton University, Tech.
Rep. TR-81108, January 2008.

[16] M.-L. Li, R. Sasanka, S. Adve, Y.-K. Chen, and
E. Debes, “The ALPBench benchmark suite for com-
plex multimedia applications,” IWCS’05, Oct. 2005.

[17] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W. mei W. Hwu, “Optimiza-
tion principles and application performance evaluation
of a multithreaded GPU using CUDA,” in PPoPP’08,
2008.

[18] J. Leverich, H. Arakida, A. Solomatnikov,
A. Firoozshahian, M. Horowitz, and C. Kozyrakis,
“Comparing memory systems for chip multiproces-
sors,” in ISCA’07, 2007, pp. 358–368.

[19] L. Iftode, J. P. Singh, and K. Li, “Scope consistency:
A bridge between release consistency and entry con-
sistency,” in SPAA’96, 1996, pp. 277–287.

[20] B. Bershad, M. Zekauskas, and W. Sawdon, “The
midway distributed shared memory system,” Comp-
con Spring ’93, Digest of Papers., pp. 528–537, Feb
1993.

[21] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A.
Wood, “Cooperative shared memory: software and
hardware for scalable multiprocessors,” ACM Trans.
Comput. Syst., vol. 11, no. 4, 1993.

[22] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,
and K. H. Randall, “Dag-consistent distributed shared
memory,” in IPPS’96, 1996, pp. 132–141.

[23] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: ar-
chitectural support for fine-grained parallelism on chip
multiprocessors,” in ISCA’07, 2007.

[24] J. Goodman, “Cache consistency and sequential con-
sistency,” SCI Working Grp., Tech. Rep. 61, March
1989.

[25] L. Lamport, “How to make a multiprocessor computer
that correctly executes multiprocess programs,” IEEE
Transactions on Computers, vol. C-28, no. 9, pp. 690–
691, September 1979.

[26] SPARC Architecture Manual, Version 9, SPARC Inter-
national Inc., September 2000.

[27] S. V. Adve and M. D. Hill, “Weak ordering—a new
definition,” in ISCA’90, 1990, pp. 2–14.

[28] E. A. Brewer and B. C. Kuszmaul, “How to get
good performance from the CM-5 data network,” in
ISPP’94, 1994, pp. 858–867.

