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Abstract—This paper advocates Atomic Coherence,
a framework that simplifies cache coherence protocol
specification, design, and verification by decoupling
races from the protocol’s operation. Atomic Coher-
ence requires conflicting coherence requests to the
same addresses be serialized with a mutex before they
are issued. Once issued, requests follow a predictable
race-free path. Because requests are guaranteed not
to race, coherence protocols are simpler and protocol
extensions are straightforward.

Our implementation of Atomic Coherence uses
optical mutexes because optics provides very low
latency. We begin with a state-of-the-art non-atomic
MOEFSI protocol and demonstrate that an atomic
implementation is much simpler while imposing less
than a 2% performance penalty. We then show how,
in the absence of races, it is easy to add support
for speculative coherence and improve performance
by up to 70%. Similar performance gains may be
possible in a non-atomic protocol, but not without
considerable effort in race management.

I. INTRODUCTION

Cache coherence protocols manage reads and writes
to shared memory locations. Given a memory location,
a protocol should deliver read values that can be inter-
leaved into a total order of writes to that same location.

The literature usually represents cache coherence pro-
tocols as state machines with events that cause atomic
transitions between stable states (e.g. M, S, I) [1].
In early bus-based machines, these stable transitions
could be accomplished atomically, since the bus, once
allocated, was held until the transition completed and
prevented the initiation of any other concurrent tran-
sitions. Such blocking shared buses made it relatively
easy to guarantee coherence, since arbitration for the
shared resource implicitly specified a total order for
all memory references. The buses atomically serialized
all racing requests, enabling a trivial construction of a
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coherent system-wide interleaving of reads and writes to
a common address.

Unfortunately, performance concerns quickly forced
designers to abandon blocking shared buses in favor of
nonblocking buses and other high performance inter-
connects [2]. Such interconnects provide much higher
utilization by separating a request from its associated
responses, allowing the bus to deliver other commands
in the interim. The price of this optimization is that tran-
sitions between stable states no longer occur atomically.
Instead, transitions must be decomposed into a series
of split transitions. Split transitions correspond to the
completion of various steps in the end-to-end state tran-
sition. This is an unavoidable result of exposing greater
concurrency in the processor-memory interconnect.

Unfortunately, absent arbitration for a single shared
resource, split transaction protocols are susceptible to
races between conflicting requests to the same addresses.
Coherence protocols must provide a means for detect-
ing and resolving these races. If the race is detected
after two or more nodes in the system have initiated
conflicting coherence state transitions, the protocol must
include additional race transitions to correctly resolve
the situation.

Figure 1 shows the contribution of the above three
transitions (stable, split, and race) to a simple MSI
directory protocol and a more complex MOESTI bus
protocol [3]. Note that race transitions make up the
largest category. Next we will discuss the impact these
race transitions have on protocol design and verification.

A. Impact of Race Transitions

Although race transitions are make up the plurality
of finite state machine transitions, they only make up a
small fraction of all observed transitions in our scientific
and commercial workloads. Because of their relative
infrequency, race transitions have little impact on per-
formance, yet they impose significant design complexity
and verification challenges.
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Fig. 1: L2 Transitions for Two Protocols.

Designing for races is hard, because a race event
is an “unexpected interruption” to an in-flight request.
Designers must consider all races and determine which
races are possible (or impossible). The possible transition
and action pairs require specification in the finite state
machine. At a minimum, the designer must prune down
the space of all event-state combinations. If races are
allowed to race, the space can compound indefinitely.

Verifying racy protocols is also hard, because race-
induced design bugs may be masked away during most
executions, but may reveal themselves at inopportune
times. Random traffic generators may stress, but not
exhaust, potential race combinations [4]. Formal verifica-
tion is more robust, but the space explosion caused by the
races can consume large amounts of hardware resources
and time. Formal verification is also prone to human-
error during protocol-to-formal-language translation [5].

Ultimately, despite significant efforts to improve pro-
tocol verification [4], [5], [6], coherence bugs still make
it into shipping products [7]. Recently, work by Zhang,
Lebeck, and Sorin focused on easing the burden on
verifiers by incorporating verifiability into the coherence
protocol design [8]. Instead of focusing on verification,
we turn our attention to the protocols themselves, believ-
ing the best way to simplify verification is to simplify
the objects being verified.

B. A Return to Atomic Protocols

In this paper, we advocate a return to atomic protocols.
Since a return to atomic interconnects is unlikely, we
decouple atomicity from the interconnect and require
that a fine-grained mutex for a block must be acquired
before any coherence request on that block may be
performed. By removing the races from the protocol,
we substantially simplify the protocol.

Before a coherence request issues, the request must
obtain exclusive access to the memory block it is re-
questing. When the request is complete, and the address
is system-wide coherent, the mutex may be released.
Conflicting accesses are serialized before they begin,
just as in blocking shared-bus systems. However, mu-
tual exclusion is accomplished via fine-grained mutexes,
rather than through arbitrating for a single shared bus,
hence exposing abundant concurrency across indepen-
dent requests, while completely eliminating the need
for detecting and resolving races within the coherence
protocol proper.

Because acquiring a mutex is on the critical path, we
investigate a low-latency, optical substrate inspired by
the optical arbitration protocol used by Corona [17].

This paper shows that an atomic implementation of a
state-of-the-art MOEFSI protocol is much simpler and
easier to verify while imposing less than 2% perfor-
mance penalty. We also add features to this protocol



Eager

Lazy
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Before Coherence Front-End of Coherence

During Coherence

Back-End of Coherence/Time-Out

Atomic Coherence
Blocking Bus [13]

Wildfire [9] , Gigaplane [10]
Ring-Order [14]

SGI-Origin 2000 [11]
SCI [15]

Token Coherence [12]
Token Tenure [16]

TABLE I: Eager/Lazy Race Detection. Where race detection takes place along a racing-request’s path.

to support F state migration (ShiftF), minimizing off-
chip memory references, and an aggressive push protocol
(PushS) to prefetch on-chip cache-to-cache transfers.
These extensions would introduce significant complexity
in a non-atomic framework and would likely be deemed
unattractive, but in our Atomic Coherence framework
they are realized easily, by a single graduate student in a
matter of hours, while delivering significant performance
improvements (up to 7% for ShiftF and 70% for
PushS).

Section II and Section III define Atomic Coherence
and discuss performance implications, respectively. Sec-
tion IV describes our photonic implementation of Atomic
Coherence. Section V and Section VI describe our
experimental methodology and results, while Section VII
concludes the paper.

II. AToMIC COHERENCE
A. Definition and Semantics

We define Atomic Coherence in the following way:
We say a system implements Aromic Coher-
ence if, for any block, every transition from
one stable coherence state to another stable
coherence state occurs atomically with respect
to all other stable transitions for that block.

Some protocols consider a coherence state to be stable
once its control permissions have been established [9],
[18]. Others additionally require data-transfer comple-
tion [11]. We explore two atomicity policies, reflecting
both views:

e Atomic CResp Policy: Guarantee atomicity until

all control responses received and processed.

e Atomic DResp Policy: Guarantee atomicity until
all control and data responses received and pro-
cessed.

The only prior coherence protocols that we are aware
of that satisfy the Atomic DResp flavor of Atomic
Coherence are ones that rely on a shared blocking
bus [19], [13], where atomicity is guaranteed by suc-
cessfully arbitrating for and holding the bus for the entire
transaction. Two-transaction split busses, where control
is completed in the first bus transaction and data in the
second, satisfy Atomic CResp requirements.

All other protocols are non-atomic, but some are more
atomic than others. Blocking directories, like Wildfire
and Safe Points [9], [20], are the closest to Atomic
Coherence because races are detected early-on at the
directory (i.e. eagerly), shortly after the requester has left
its stable state. Meanwhile, Token Coherence, which uses
tokens to resolve permissions, is the furthest because it
detects races with time-outs (i.e. lazily) [12]. In general,
the later a race has been detected, the more system state
has been affected, and the harder it is to resolve (undo)
the race. Table I categorizes race detection for a variety
of protocols.

As alluded to above, blocking directories are similar to
and share many benefits with atomic protocols. However,
blocking directories are not strictly atomic, because
conflicting requests are allowed to leave requesting nodes
and race to the directory. Blocking directories will also
have much higher resource requirements, because each
directory must provide worst-case buffering to absorb
conflicting requests from each node in the system (or fall
back on NACKSs, which can lead to congestion, thrash-
ing, and poor performance). Finally, blocking directories
restrict implementations to protocols that always visit the
directory first before performing any other coherence
operations. This precludes not only snoopy coherence
implementations, but also speculative optimizations that
directly probe some subset of caches in parallel with
or prior to reaching the directory (e.g. multicast snoop-
ing [21]). Atomic Coherence is a general framework,
applying to snoopy and directory systems alike.

B. Atomic Coherence Substrates

From the definition of Atomic Coherence, we can
define atomic protocols as being made up of two in-
dependent substrates:

o The Atomic substrate enforces the invariant that
only one stable-to-stable transaction to a memory
block may be in progress at a time (mutual exclu-
sion).

o The Coherence substrate performs the coherence,
enforcing contracts for block permissions and some-
times data.

The Atomic substrate is dedicated to resolving races,

so the Coherence substrate does not have to. The Co-



herence substrate is left with only stable transitions
and split transitions. Once a request has been granted
issuing-rights in the Atomic substrate, it may enter the
Coherence substrate where it will only receive events
that will further it towards its destination stable state
(e.g. responses, acknowledgements, data). Guaranteeing
forward progress eliminates the possibility of patholog-
ical livelock and starvation scenarios in the protocol.

Without races, the Coherence substrate is easier to
design and verify. The Atomic substrate also needs to be
designed and verified, but its job, to detect and resolve
races, is simple and so it should also be relatively easy to
verify. Finally, because the Atomic substrate is entirely
decoupled from the Coherence substrate, verification of
both substrates may proceed in parallel, shortening end-
to-end verification time.

C. Atomic Coherence with Mutexes

Mutexes are a natural way to support mutual exclusion
in the Atomic substrate. According to the semantics
outlined above, the block’s coherence state may not
be altered until the mutex has been obtained. If, while
pending in the Atomic substrate, a mutex acquisition is
interrupted by a conflicting coherence request, the mutex
must have been already claimed by another node and the
acquisition must be retried. In this way, mutexes provide
strong guarantees on message arrival order, even on top
of a general unordered interconnect.

A miss that has seized its mutex may begin its
transaction to the next stable state, leaving its node to
perform coherence activity in the Coherence substrate.
The mutex is released only after it has reached its
next stable state, implying that all relevant coherence
activity has quiesced and guaranteeing that there will
be no coherence interference with subsequent conflicting
requests.

For safety, we only allow a cache to make one
coherence request per mutex acquisition before passing
the mutex on. Still, all nodes should have fair access to
the mutex. We leave mutex fairness techniques to future
work, but believe the Atomic substrate can provide fair
service by adapting techniques from prior work [22].

In Section VI we evaluate two policies for releas-
ing the mutex. The Atomic CResp policy holds the
mutex through permission acquisition, and the Atomic
DResp further delays release of the mutex until the
data itself has arrived at the requester. With Atomic
CResp, a node that is otherwise coherent but is still
waiting for data (typically from a long-latency DRAM
fetch) may release the mutex but must be prepared to
queue a subsequent request to the same block. The
Atomic DResp policy removes even this requirement,
holding the mutex until data arrival at the expense of a

considerable increase in mutex hold time and additional
pressure on finite mutex resources.

III. PERFORMANCE IMPLICATIONS

Atomic Coherence has performance pitfalls and op-
portunities, which we discuss below.

A. Performance Pitfalls

Atomic Coherence can negatively affect performance
in two ways. First, the act of acquiring the mutex before
issuing a request is latency critical because it adds to
the request’s critical path. Second, Atomic Coherence
may serialize coherence requests when it would have
been perfectly coherent to service them in parallel (e.g.
parallel reads).

1) Mutex Constraints: Because atomicity is on the
critical path, a free mutex should be seized as quickly as
possible. Ideally, we would like to have as many mutexes
as we have blocks and be able to seize these mutexes
instantaneously, but physical constraints prohibit this.
Hashing or associating a mutex with a super-block region
of memory [23] can help with a limited mutex pool. For
latency, techniques include: spatially locating a mutex
near its likely requester, prefetching a mutex, or quickly
circulating a mutex by requesters. In this work, we
employ hashing and circulating the mutexes optically.
Optics allows an available mutex to make a full pass
by every potential requester in about 800 picoseconds (4
cycles at 5 GHz).

2) Serialization: Many protocols allow parallel reads
to proceed simultaneously barring any intervening write.
Conceptually, this seems safe, as long as the reads are
free of side effects. However, coherence read requests
often do have side effects, such as updates to sharing lists
or LRU state. As long as these metadata updates can be
correctly handled, it would be safe to allow concurrent
read requests in the coherence subsystem. As described,
Atomic Coherence serializes these reads, which may
negatively affect performance by inhibiting concurrency.

Our results show that read-serialization effects are
usually negligible. However, when read-serialization is
non-negligible, it can be mitigated with a straightforward
push protocol optimization we call PushS, which we
discuss next.

B. Performance Opportunities

We can counteract the negative attributes of Atomic
Coherence by adding low-cost speculation features to
the protocol. Our speculation features are based on the
observation that while a processor holds a mutex, it
may perform coherence in any way it sees fit, as long
as it leaves the system in a coherent state when it
releases the mutex. During a mutex holding, we allow
potential future sharers to be “pushed” a block (PushS)
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Fig. 2: PushS/ShiftF Overview. (a) PushS: When a block goes to Shared at the directory, the old sharing list is used to
push the block into caches (pushes shown with dotted lines). (b) ShiftF: When the F block is evicted, the directory serially
sends ShiftF messages until it finds an S block that can be upgraded to F.

Note for both figures: The mutex is seized by the requester but released by a non-requester.

and owner permissions to be manipulated (ShiftF).
We believe both of these protocol features are novel
contributions.

PushS and ShiftF are coherence optimizations,
much like any other coherence optimization [24], [25],
[26]. In theory, they could be implemented in any atomic
or non-atomic system, but non-atomic implementations
would be non-trivial, because the optimizations require
multiple steps and potentially many serial visits to multi-
ple nodes. This would make non-atomic implementations
very vulnerable to races and latent protocol bugs which
beget additional split and race transitions in the protocol,
contributing to state-space explosion and creating verifi-
cation headaches. In Atomic Coherence, the absence of
races makes them trivial to implement, and as we show
in Section VI, provide compelling performance benefits.

Now, the optimizations:

1) PushS: Our PushS protocol pushes data into
caches so to avoid future misses.

It works as follows (shown in Figure 2(a)): when a
block transitions to exclusive at the directory, we do not
erase the sharer list. Instead, we hold the sharing list
in place for future reference. When the block is later
read and leaves the Exclusive state, the old sharing list
becomes our prediction of new sharers as well as the new
sharing list. The data is sent in a message, visiting each
predicted cache in series, similar in spirit to Piranha’s
Cruise Missile Invalidate [27]. At each visit, the data
is prefetched (or “pushed”) into each processors’ cache
for later use. A processor that has a read outstanding to
the block (and is waiting for the mutex) will have its
read immediately satisfied and the mutex request will be
dropped. The last cache visited by the missile releases
the mutex. For performance reasons, our implementation
eagerly passes the missile. A separate missile trails the
initial missile, waiting for the L2 to process the push

before continuing. Only when the last node in the list has
received both the missile and the trailing missile, may the
mutex may be released. Note that different nodes seize
and release the mutex: the initiator of the miss seizes the
mutex while the last missile site releases the mutex.

2) ShiftF: Our ShiftF protocol tries to keep a shared
block in a state that sources to other on-chip caches (e.g.
0 and F!. A block that is in one of these sourcing states
saves other sharers from supplying redundant responses
and elides a memory reference, saving both time and
energy. Of course, all sharers may respond to a new
sharing miss, but this can potentially lead to a flood of
extraneous responses.

Our ShiftF protocol works as follows (shown in
Figure 2(b)): when an F or O block is evicted, the
directory tries to find another sharer to take on the F state
(if O, the data is cleaned to F with a memory writeback).
While the mutex is being held, the directory goes through
the sharing list, serially making attempts to assign F and
sending ShiftF messages to sharers. The sharer may
be in the S or I state:

o If the sharer is in S, the block transitions to F, its

LRU state updated, and the mutex released.

o If the sharer is in I (silently evicted), the sharer
informs the directory it is no longer a sharer; the
directory removes the sharer from the sharing list,
corrects its F assignment, and tries sending another
ShiftF to the next sharer on the list.

If all ShiftF’s encounter I blocks, the block is no
longer cached; the directory entry transitions to invalid
and releases the mutex. Note that shifting has many ben-
efits: it keeps an on-chip sourcer, updates the directory’s
sharer information (which may be stale due to silent
evictions), and cleans the data.

I'A block in the F, or Forward state, is clean with respect to memory
and is responsible for supplying data to on-chip misses [28].
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IV. IMPLEMENTATION

On-chip silicon photonics is a promising up-and-
coming technology that allows for fast communication
with little power, as evidenced by recent production of
silicon-based transceivers in the telecom industry [29].
Pulses of light circulate around a ring-shaped intercon-
nect made of silicon waveguides. The presence of a light
pulse represents an available mutex while its absence
represents an unavailable mutex. The nodes are equipped
with ring resonators, which they periodically bring into
resonance when the mutex they require is passing by. An
on ring resonator diverts a specific wavelength of light
from the waveguide, effectively atomically performing a
destructive read on the mutex (i.e. seizing the mutex);
downstream nodes will not divert the mutex. If the ring
resonator detects light, it has won the mutex. An off
ring resonator has a negligible effect on the light, and
the light passes by at the speed of light.

Requesters must know when to turn on their resonators

to divert a mutex. Many mutexes may be in flight simul-
taneously, occupying different spatial “slots” on different
wavelengths [30] We assume the assignment of a mutex
to a slot is global knowledge. For instance, mutex m
might be found by cache c at slot ¢+ on wavelength j
in waveguide k. Slots are separated by clock edges, and
nodes turn on and off their ring resonators to align with
the clock’s edges. If the ring resonator does not divert
the mutex, it must try again on the next revolution of the
mutex. The retry is effectively a local-NACK and thus
consumes no interconnect bandwidth.

The nodes obey an optical clock signal that travels
on a parallel broadcast-powered wavelength. This wave-
length is in phase with the mutex transmission, allowing
nodes to divert the entire pulse associated with a mutex.
The mutex transmission can come out of phase with the
clock if the ring-shaped interconnect is not an integral
of clock edges in length. To remedy this, we use a
global dateline to re-time the in-flight mutexes through a
Optical-to-Electrical-to-Optical (OEO) repeat [31]. The
dateline’s main job is retiming, but it also doubles as a
means to refresh the mutex’s power.

The resource cost of having an optical mutex for every
cached address, much less every memory address, would
be prohibitive. We reduce this number by hashing several
addresses to a single mutex. Furthermore, we divide the
mutex-space such that each directory “owns” an equally
sized mutex subset, believing that accesses should be
spread equally across all directories. Thus, a request
maps its addresses to a directory (a subset of mutexes)
and then hashes its address (excluding the bits for the
offset and directory) into a mutex mapping. We use a
simple hash function that operates on the lower bits of
a block address exclusive-or’d with some of the higher
bits. We found this hash function exploits the high-
entropy of the lower bits and performs competitively
with a more sophisticated H3 hash function [32].

When the request completes and it comes time to
release the mutex, the node must return the mutex to its
assigned slot in the waveguide. It does so by injecting
light at the precise moment the slot is passing by. A
ring resonator with a power source serves as the injector.
After injection, the mutex passes without interruption
(except for the dateline) to the next requester of the
mutex.

We draw inspiration from Corona’s arbitration sys-
tem, which also uses optical pulses to maintain mutual
exclusion [17]. Figure 3 shows the optical layout and
configuration of our Atomic substrate.



Component Count Details
Nodes
Cores 128 single-threaded, in-order, 5 GHz
L1Is/L1Ds 64 32 KB, 4 way, 2 cycle
L2s 16 2 MB, 16 way, 10 cycle, 64 byte block
Directory Caches 16 2048 sets, 24 way, 13 cycle
Memory Controllers 16
Interconnects
On-chip Data Waveguides 64 Optical, 2 cycles/64 byte msg, < 3 cycle latency, 4 wg/channel

Off-chip Memory Waveguides 32
Atomic Coherency Substrate

O/E E/O latency 1 cycle
Mutexes Per Wavelength 4
Wavelengths Per Waveguide 64
Mutex Waveguides 4
Mutexes 1024
Cycles per Mutex Revolution 4

Optical, 4 cycles/64 byte msg, 90 ns latency, 2 wg/channel

TABLE II: System Configuration

V. METHODOLOGY

A. Experimental Setup

We evaluate Atomic Coherence on a chip with 128
single-threaded cores. The chip has 16 L2s connected by
on- and off-chip optical interconnects, similar to a scaled
down version of the 1024-threaded Corona architecture
[17]. The on-chip interconnect allows any-to-any com-
munication with point-to-point ordering between nodes
(note that our coherence protocols do not rely on these
ordering properties).

Our data interconnect differs from Corona in a few
key ways. Corona uses a snake-shaped interconnect
to connect 64 nodes (256 quad-threaded cores); our
interconnect uses a ring-shaped interconnect to connect
16 nodes (128 single-threaded cores). The difference
in interconnect shape translates to a shorter light-path,
allowing light to complete a revolution in less than
3 cycles at 5 GHz, compared to Corona’s 8 cycles.
Like Corona, the data channels are 4 waveguides wide,
however there are fewer channels (16 vs 64) and they
are clocked at half the rate (on the leading clock edge
instead of both clock edges). In total, our data inter-
connect consumes 64 waveguides. Our Atomic substrate
interconnect consumes 4 waveguides.

Our atomic baseline is a directory-invalidate MOEF ST
protocol. We built this protocol by extending a multicore
appropriate version of SGI-Origin 2000 MESI protocol
to support the O and F states, which allow for on-
chip sourcing of dirty-shared and clean-shared data,
respectively. Like SGI-Origin, we allow silent evictions
of S blocks at the L2. Our directory protocol uses an on-
chip directory cache with a backing DRAM directory to
track the 32 MB of L2 cache. We support sequential
consistency.

Ring resonators can convert a mutex from Optical-

to-Electrical (OE) or Electrical-to-Optical (EO) in one
cycle (200 ps). This estimate is in line with other 2017
targets: it is less aggressive than Phastlane (20 ps) but
more aggressive than FlexiShare (400 ps)( [33], [34]).

We achieve 1024 mutexes by spatial packing, buffer-
ing at the dateline, and wavelength multiplexing. Each
mutex has a binary value (available or unavailable), so
the 1024 mutex system has 128 bytes of state.

Details of our configuration can be found in Table II.

B. Experiments and Measurements

We apply our Atomic-to-Data-Response (Atomic
DResp) and Atomic-to-Coherence-Response (Atomic
CResp) to our baseline MOEFSI protocol and demon-
strate the impact of mutex acquisition and request seri-
alization on bottom line performance. Next, we optimize
the performance of our protocols by adding support for
shifting the F state (ShiftF) and pushing the S state
(Pushs).

Our results measure performance and complexity. For
performance, we tested our protocols with a memory-
intensive subset of workloads from the SPLASH-2 suite
(Barnes and Ocean) [35] and three commercial work-
loads from the Wisconsin Commercial Suite (OLTP,
Apache, and SPECjbb) [36]. We also added a micro-
benchmark that models a 3-level feed-forward neural
network, as a “best-case” scenario for PushS. A neural
network should benefit from Pushs, because its sharing
behavior alternates between single-writer and many-
reader.

Each experiment was run in server-consolidation mode
with eight 16-threaded instances, except for the neural
network, which was run as a single 128 thread instance.
Each instance was offset from the next, and pages
were dynamically re-mapped on demand. Threads were
assigned to cores in a semi-random fashion, to both



160
140
120
100
80 -
60 -
40 -
20 -

|Non-Atomic [l
| Atomic

127

85

# Unique L2-Transitions

MESI MESI
Atomic

DResp

MESI
Atomic
CResp

MOEFSI MOEFSI MOEFSI

Atomic
CResp

Atomic
DResp

(a) Static

= MOEFSI

=== MOEFSI - Atomic DResp |
=== MOEFSI - Atomic CResp

que L2-Transitions

—Percent of Uni

o
=}

102 10® 10* 10° 10
# L2-Transitions Executed

10?

(b) Dynamic

Fig. 4: (a) Static. L2 Transition Counts (b) Dynamic. Cumulative coverage of L2 Transitions using a directed random tester

(Note: log-scale on x-axis)

simulate real-world scheduling and to stress coherence.
Inter-core sharing occurs at the L1 (2-cores) and the L2
(8-cores).

All simulations were trace-driven, except the neural
network, which was driven by Pin [37]. Traces contained
L1 misses retrieved from runs in the GEMS simula-
tor [38]. The simulator faithfully modeled the miss at the
L2 and all levels below the L2, dynamically generating
L2 misses and the appropriate coherence messages on-
demand. Caches were warmed with a fixed number of
trace entries and then run for a fixed number of trace
entries, the equivalent of about 50 million and 500
million instructions respectively.

VI. RESULTS
A. Complexity

The primary advantage of Atomic Coherence is a
reduction in protocol complexity. Complexity is difficult
to quantify using a single metric, so this section char-
acterizes our protocols both statically, in terms of the
overall number of unique transitions in each protocol, as
well as dynamically, by reporting coverage achieved by
a random protocol tester.

1) Static Complexity Analysis: Figure 4(a) shows
the percent of unique transitions for two non-atomic
protocols (MESI, MOEFSI) and four atomic protocols
(IMESI, MOEFSI] + [DResp, CResp]). We only count
the transitions triggered at the L2, because this is where
the protocols’ complexity lies.

The two non-atomic protocols contain 85 and 127
unique transitions, respectively. The increase in transi-
tions conveys the additional complexity required for the
new O and F states. The figure also shows that, if we
enforce coherence atomicity through to the completion of
the data (Atomic DResp) or the coherence (Atomic

CResp), our transition counts drop by at least 50%.
The dropped transitions existed solely to handle protocol
races.

Atomic CResp has slightly more transitions than
Atomic DResp, because Atomic CResp must deal
with a small vulnerability window. The vulnerability
exists when coherence request A releases the mutex
before it has acquired its data, and the next coherence
request (B) acquires the mutex. A will recognize B’s
request as a later ordered event and will delay the request
until its data has arrived. When the data arrives, A
satisfies its own request and then forwards the data to
B. This case can only occur while waiting for data,
involves at most a single subsequent request, and adds
only a slight amount of complexity to the protocol.
It also significantly reduces Atomic CResp’s mutex
hold time for misses to main memory.

2) Dynamic Complexity Analysis: To further support
our simplicity assertion, we collected coverage results
using a directed random tester similar to the one provided
with GEMS. The tester generates pseudo-random mem-
ory references at each node in a targeted mix of reads
and writes that are designed to trigger both independent
and conflicting memory references in the coherence
subsystem. The tester also randomly delays responses on
the interconnect in order to synthetically expose transient
states to racing requests.

The purpose of the tester is to excite as many unique
transitions as quickly as possible in order to quickly
uncover protocol bugs and to allow rapid testing and
turnaround for protocol fixes. We are not claiming that
random testing alone is sufficient for validation of a real
design, but it is a very useful and widely-deployed tool
for flushing out design errors, particularly early in the
design process. An efficient random tester that provides
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Fig. 5: Performance and Overhead for Atomic Coherence. Configurations use 1024 mutexes across 4 wg.

fast and early coverage of as many unique transitions as
possible will substantially improve the productivity of
the protocol designer.

The results in Figure 4(b) clearly illustrate the
complexity advantages of our atomic protocols. Well
within the first million transitions, Atomic DResp and
CResp have reached 100% coverage of all unique tran-
sitions, while the non-atomic MOEFSTI protocol begins
leveling off asymptotically at 75% coverage. This result
suggests two conclusions about the atomic protocols: (1)
turnaround time to uncover, fix, and test design bugs
is reduced substantially, since all protocol transitions
are exercised early and often; and (2) the rare and
likely problematic corner cases lurking in the remaining
unexercised 25% of transitions in the non-atomic proto-
col are completely eliminated, reducing the unpleasant
consequences of encountering them late in the design
cycle.

Of course, tweaking the random tester to synthetically
force decreasingly likely protocol races to occur sooner
could probably improve the cumulative distribution for
non-atomic protocols, but this activity requires designer
effort as well, since such tweaks will likely have to
be specific to each protocol and interconnect topology.
In contrast, our very simple, generic, first attempt at a
random tester ("200 lines of C code) produces excellent

coverage in a very timely manner, as long as it is
exercising one of our atomic protocols.

Our experiments with the random tester also produced
three interesting anecdotal observations: first, the tester
uncovered multiple latent, obscure bugs in our non-
atomic MOEFSTI protocol; second, the tester failed to
uncover any bugs in our atomic protocols, which were
correct in their first iteration; third, the tester uncovered
opportunities for simplifying our atomic protocols, since
it failed to exercise transitions that, upon closer exam-
ination, we found to be impossible and subsequently
removed from the protocol. These observations lend
credence to our claims that atomic protocols are sub-
stantially easier to design and verify.

B. Performance Evaluation

In this section we summarize our performance results,
provide sensitivity analysis, and evaluate our PushS and
ShiftF optimizations.

1) Performance Summary: Figure 5 shows Atomic
Coherence’s performance relative to the traditional non-
atomic MESTI (top-left) and non-atomic MOEFSI (top-
right). To summarize: relative to non-atomic MEST,
atomic MOEFSTI achieves on average 14% better per-
formance with 36% fewer transitions. Relative to non-
atomic MOEFSTI, atomic MOEFSI results in a sub 2%
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slowdown with 57% fewer transitions on average. We
believe this is a small price to pay for dramatic protocol
simplification.

Looking more closely, we found that Barnes and
Ocean, when run with our in-order cores, are bound
by computation and are mostly insensitive to the co-
herence protocol (and also to Atomic Coherence). For
the commercial workloads, Atomic CResp performs
nearer to the baseline than Atomic DResp, because it
benefits from early release of the mutex. The requester
eases pressure on the mutex pool by releasing the mutex
when data is the only remaining protocol step.

Figure 5(bottom) shows the sources of mutex latency.
The category Mutex Circulation Overhead (bottom bar)
accounts for the 2 cycles it takes an available mutex
to reach the next requester (recall a mutex completes a
revolution every 4 cycles). The other categories deal with
contention for the mutex. When a mutex is unavailable,
it is because either (1) an independent request to the
same block is active (true positive) or (2) an independent
request to a different block is active (false positive).
The figure shows true positives (top bar) are small
contributors to delay, indicating that true positives (races)
are rare, an observation echoed by Martin, Hill, and
Wood [12]. False positives (middle bar) are the major
contributor to latency in Atomic DResp and result
from the pressure caused by memory misses holding
mutexes for long periods of time. Meanwhile, Atomic
CResp does not suffer as much from false positives,
because it release the mutex earlier.

Putting the top and bottom parts of Figure 5 together,

we see that the atomic MOEFSI’s incur about 1% slow-
down (top-right figure) for every 3-5 cycles of added
latency (bottom figure). The sensitivity of performance
to small mutex overheads highlights that our very low
latency data interconnect requires a very low latency
atomic substrate.

Overall, our results indicate that Atomic CResp
performs better than Atomic DResp. However,
Atomic CResp’s performance is paid for by a
slight increase in coherence transitions for queueing
of forwarded requests, but, given these tradeoffs, we
believe Atomic CResp is the more reasonable and
complexity-effective policy of the two.

2) Sensitivity Analysis: The mutex overhead is largely
dependent on the size of the mutex pool (to avoid false
positives) and the circulation time of a free mutex (to
promptly seize free mutexes). Below we study how these
two factors affect cache miss latency.

a) Mutex Number.: Figure 6(a) shows how adding
more mutexes, between 512-4096 (or 2—16 waveguides),
decreases the mutex overhead. The figure also shows
how an unlimited number of mutexes would perform.
Atomic DResp is highly sensitive to the pool size,
because its mutex-hold times are large. The effect is
largely due to queueing delay as responses contend for a
limited set of mutex resources. Atomic CResp is less
sensitive and has less than 2% overhead across most data
points.

b) Mutex Latency.: Varying the latency of a mu-
tex’s revolution period also affects the system, as shown
in Figure 6(b). The minimum circulation time of a
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mutex is set by light’s propagation in the topology. The
maximum circulation time can be arbitrarily extended
by adding buffers to the dateline, or another fixed point.
We varied the circulation time from O (instant) to 16
cycles. Again, Atomic DResp has consistently higher
overheads than Atomic CResp. Atomic DResp ex-
periences mutex overheads in the [0, 11]% range, while
Atomic CResp is in the [0,4]% range. For the points
we looked at, varying this latency has a smaller impact
than varying mutex count. Still, the latency remains non-
negligible.

3) PushS and ShiftF Results: Figure 7 show the
performance of our PushS and ShiftF optimizations
(from Section III-B and implemented as extensions to
Atomic DResp and CResp).

ShiftF improves performance up to 6%, mainly by
preserving an on-chip sourcer of data through the F
state, improving performance for subsequent read and
write misses. Interestingly, in terms of complexity, our
implementation actually slightly reduces the number of
transitions over the Atomic CResp design we began
with. The reasons are as follows: When there are sharers
on a chip, a miss in Atomic CResp may source the
data from memory or from a remote cache. A miss in
ShiftF may only source from a remote cache (if there
are sharers, ShiftF guarantees a single F or O sharer).
This effect removes some of the possible responses a
miss is able to see, thereby shrinking the state-event
space.

PushS improves performance by anticipating read
misses to a block and forcing the S state data into
prospective caches. We found that our scientific and
commercial workloads did not benefit from this opti-
mization, because they did not have cyclic patterns of
many readers and a single writer. We wrote a neural

network micro-benchmark that exhibits this behavior and
captures the potential of PushsS, improving performance
over non-atomic MOEF ST by 70%. The shared read-write
pattern is traditionally expensive to implement and is
one reason why programmers use locks sparingly. Our
PushsS protocol addresses this cost with a simple high-
performance implementation.

In summary, we can see that while Atomic Coher-
ence does exact some overhead over the baseline racy
protocols, but the addition of simple enhancements can
mitigate this penalty. Recall that even our most complex
atomic protocol (PushS) is substantially less complex
than our baseline MOEFSI protocol, containing 52%
fewer transitions (61 vs. 127).

VII. CONCLUSION

In this paper, we advocate nanophotonic support for
building high-performance simple atomic protocols.

We propose Atomic Coherence, a framework that
decouples race resolution from coherence protocol pro-
cessing, leading to protocols that only need to follow
expected, mostly sequential paths to satisfy coherence
requests, and eliminating all unexpected, complex, and
difficult-to-verify race transitions from the protocol state
machine.

Atomic Coherence not only simplifies protocol de-
sign, but also enables straightforward implementations
of aggressive protocols, yielding substantial performance
improvements (up to 7% for ShiftF and 70% for
PushS).
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