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ABSTRACT
By providing high bandwidth chip-wide communication at
low latency and low power, on-chip optics can improve many-
core performance dramatically. Optical channels that connect
many nodes and allow for single cycle cache-line transmissions
will require fast, high bandwidth arbitration.

We exploit CMOS nanophotonic devices to create arbiters
that meet the demands of on-chip optical interconnects. We
accomplish this by exploiting a unique property of optical
devices that allows arbitration to scale with latency bounded
by the time of flight of light through a silicon waveguide that
passes all requesters.

We explore two classes of distributed token-based arbitra-
tion, channel based and slot based, and tailor them to optics.
Channel based protocols allocate an entire waveguide to one
requester at a time, whereas slot based protocols allocate fixed
sized slots in the waveguide. Simple optical protocols suffer
from a fixed prioritization of users and can starve those with
low priority; we correct this with new schemes that vary the
priorities dynamically to ensure fairness. On a 64-node op-
tical interconnect under uniform random single-cycle traffic,
our fair slot protocol achieves 74% channel utilization, while
our fair channel protocol achieves 45%. Ours are the first arbi-
tration protocols that exploit optics to simultaneously achieve
low latency, high utilization, and fairness.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiproces-
sors, Interconnection architectures

General Terms
Design, Performance

1. INTRODUCTION
As the number of cores on a chip increases, on-chip com-

munication also increases. Future many-core designs must
supply the bandwidth necessary to meet these demands and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

do so with acceptable power consumption. Optical commu-
nication channels, which span the chip and connect multiple
cores, maintain high signal integrity with low power. Possi-
ble optical organizations include buses [13], circuit-switched
meshes [24, 3], and a collection of single-destination, any-
source channels, one per node [6, 17, 26].

1.1 Arbitration
When several packet sources simultaneously request the

right to send on a channel, an arbiter must select one and
grant access. The arbitration should provide high utilization
and fair sharing with low arbitration latency, at low power
and hardware costs.

Arbitration will be frequent. In a cache coherent many-core
system, messages are small (cache-line size or less). Area-
efficient nanophotonic waveguides and dense wavelength divi-
sion multiplexing enable very wide channels, which can trans-
mit a cache line in one or two cycles. Therefore, nearly every
channel will need arbitration on nearly every cycle.

Arbitration should be fast. The time to arbitrate should not
add unnecessarily or excessively to the message transfer time.
In our protocols, the latency of arbitration exactly matches
the latency of communication, since both use the same mech-
anisms.

Arbitration should be effective. It should yield high uti-
lization of the channel. End-to-end flow control can further
improve bandwidth utilization by avoiding failed transmis-
sions due to receive buffer overflows. To address this, we de-
vise methods to allow flow control information (buffer space
reservations, or credits) to be piggybacked on the arbitration
signals with little overhead.

Arbitration must be fair. Sources with equal needs should
receive equal service, and none should starve. Bias in arbi-
tration can cause longer queueing delay for packets from an
unfairly treated source. We ensure fairness by dynamically
adjusting the arbitration priorities when the system detects
an imbalance in service.

The protocols we examine are all based on the use of an
optical token that signifies temporary ownership of a single
channel, i.e. the right to modulate certain wavelengths on
certain waveguides. In its simplest form, the token is a short,
single wavelength light pulse, in effect a binary “1”, that trav-
els at the speed of light in silicon (about 10 cm/nsec) through
an arbitration waveguide. Interested sources attempt to read
the token by removing the light, changing the “1” to a “0”;
disinterested sources do not and the token propagates un-
perturbed. In this way our protocols take full advantage of
an important property of photonic switching devices: inac-



N

1

Figure 1: Arbitration Scalability. The arbitration
waveguides snake throughout chip, passing each of
the N cores exactly once and having length O(

√
N).

tive nodes have no effect on the latency or power of messages
that bypass them. Only the nodes that are participating (by
actively requesting) in an arbitration are visible. Electronic
arbitration protocols, as well as other optical protocols (all of
which convert to electrical signals at each node), incur some
latency for each node, whether interested or not. That disin-
terested nodes are effectively not present greatly lowers arbi-
tration latency.

The latency of our arbiters—meaning the time between
availability of a buffer at a destination and communication
of this fact to a sender—is dictated by the length of the op-
tical waveguides and the time of flight of a token through
them. Since chip area is essentially fixed as core count grows
with Moore’s Law, each core in an N -core chip has area pro-
portional to 1/N and has length and width proportional to

1/
√
N . Our waveguides follow a path that visits all N cores,

like the one shown in Figure 1; they therefore scale in length as
N×width of one core = O(

√
N). When N = 64 on a 576mm2

chip with a 5GHz clock, flight time is 8 cycles. Electronic to-
ken arbiters delay the token at each node and therefore have
higher latency.

The latency and power advantages of keeping the token in
the optical domain at all times during arbitration come at
some cost. Because optical tokens cannot be delayed, they
cannot be inspected or modified as they are passing a node
without removing the light from the waveguide and convert-
ing the signal to an electronic one. If the light is to be placed
back on the waveguide, it must be delayed to the next clock
edge. To take advantage of the fast movement of tokens in
optics, they should only be removed when a node will in fact
use the token. This means that nodes must use local informa-
tion alone to decide whether or not a given token should be
removed. So if, for example, a node is interested in two chan-
nels but can only transmit on one, it cannot claim both (by
removing their respective tokens) and then release one with-
out affecting (by delaying or consuming) the released token.
Our protocols cope with these limitations.

1.2 An On-chip Optical Network
We apply our single-channel arbitration protocols for con-

trol of an optical interconnect that provides a dedicated, single-
destination, multiple-source communication channel to each
node, called a Multiple Write, Single Read (MWSR) intercon-
nect in the Firefly terminology proposed by Pan, et al. [21].
The MWSR interconnect is a common optical interconnect

Multiple Write, Single Read Single Write, Multiple Read

(Corona) (Firefly)

Figure 2: Ring-based Optical Interconnects.

architecture because it deals well with unidirectional wave-
pipelined technology. Our arbiters may be applied to any
optical MWSR, including [17, 26, 15, 16]. In addition, our
arbiters are general enough to be applied to optical broad-
cast buses [13, 26]. In Section 5, we employ these protocols
asynchronously on each channel of an MWSR.

In an MWSR, any node may write to a given channel but
only one node (the destination or home node) may read from
the channel. Optical data packets traverse the channels in a
wave-pipelined, or latchless, manner from a single source to
a single destination. Packets are fixed in both temporal and
spatial extent. Several short packets may occupy the same
channel simultaneously in moving slots. Time of flight varies
with differing source–destination distance.

Firefly uses a Single Writer Multiple Reader (SWMR) in-
terconnect, which is a dual to MWSR. In an SWMR, exactly
one node may write to a given channel, but any node may
read from the channel. Figure 2 contrasts these interconnects
and shows how both provide full connectivity. An SWMR
benefits from not requiring any arbitration on the part of the
sender. The extra complexity, which is not present in MWSR,
is that the sender must communicate to the receiver that a
message is destined for it. The receiver then activates its re-
spective detectors, which read the packet (and happen to also
destroy the optical signal in the process). Firefly broadcasts
a head flit to identify the designated receiver of each packet;
this costs bandwidth and needs specially designed and rela-
tively expensive broadcast waveguides and optical broadcast
power.

Proposed SWMR designs may experience flow control prob-
lems, while MWSRs naturally demonstrate a degree of flow
control. An MWSR node can receive at most one flit in a
network cycle and as long as it can drain packets at this rate
there can be no issues of flow control. On the other hand, an
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Figure 3: Basic Optical Arbitration.

SWMR node may receive upto n flits in a network cycle—a
much harder drain-rate to maintain. This paper shows how
flow-control may be piggybacked onto arbitration in a MWSR.

In Section 6 we report on an experimental evaluation of
the utilization, latency, and fairness of these protocols for a
64-node optical MWSR interconnect under synthetic work-
loads and for benchmark applications. Finally, we estimate
the power used by each of our arbiters.

In summary, we make these contributions:

• We present an arbitration mechanism that for the first
time satisfies all of the requirements of arbitration: it
provides high channel utilization, fairly across all sources,
and adds little to communication latency;

• Our mechanism takes full advantage of and copes with
the limitations of optical technology described above;

• Our mechanism achieves very low latency because its
tokens remain in the optical domain until consumed and
used.

2. OPTICAL ARBITRATION
We consider optical communication structures comprised

of silicon ring resonators and silicon waveguides. Waveguides
confine laser light, which travels from a light source, unidirec-
tionally, and with negligible losses. Multiple wavelengths can
use the same waveguide, with no interference between them.
Rings are tuned during fabrication to a particular wavelength
by controlling their dimensions. When placed next to a waveg-
uide, a ring can be used to modulate or to detect light of its
particular wavelength on that waveguide, or to divert (switch)
the light from one waveguide to another. The modulation, de-
tection, and diversion functions are controlled by applying an
electrical signal to the ring, which brings it into or out of
resonance with its specific wavelength. We assume modula-
tion occurs on both clock edges of the clock. Functioning ring
resonators have been demonstrated [29, 30].

An activated ring detector removes all the light in the pro-
cess of detecting it, thus implementing a destructive read.
When the detector is inactive, the light passes the ring un-
perturbed. Thus, an activated detector detects a light signal
if no upstream (towards the light source) detector is activated.
The output of the detector is therefore a logical function of
the state of all of the upstream detectors; this wired-or-like
combinational operation is performed without any delay other
than the time of flight of light in the waveguide.

In the simplest approach to optical arbitration, presented
in Figure 3, a one-bit-wide pulse of monochromatic light trav-
els down an arbitration waveguide. The presence of this light
represents the availability of a resource: it is a token. Each

node has a detector on this waveguide. Nodes that want to use
the channel activate their detectors (solid- and cross- dotted
rings); the other nodes do not activate theirs (empty dotted
rings). At most one node can detect the token (solid dotted
ring), because reading the token removes the light from the
waveguide. As a result, a node detecting a token wins exclu-
sive use of the channel. In our protocols, it uses the channel
for some fixed period.

In an optical channel, modulated light, hence information,
travels in one direction and arrives with slight but increasing
delays at each node in sequence. To deal with this, it has
been proposed [26] to send an optical clock signal through a
parallel waveguide so that clock edges arrive in phase with
modulated light. Nodes synch their local electronic clocks to
the arriving optical clock, thereby avoiding any skew between
the local clock and the optical signals. Where a signal path
returns to the node at which the optical clock is generated,
the data could arrive out of phase with the clock. We call this
point the “dateline.” By designing a waveguide whose length
is an integral number of clock cycles, or by positioning a re-
timer at the dateline, we eliminate such a phase shift.

3. OPTICAL ARBITRATION PROTOCOLS
We describe our channel based, and slot based protocols

which we will call Token Channel and Token Slot. We let T
denote the time of flight, in cycles, that it takes for an optical
token to complete a full circuit from injection at its home
node to detection at the same home node assuming it is not
removed by an intervening node. In other words, T is the
number of clocks it takes the token to complete a round trip
along the blue path of Figure 2.

3.1 Token Channel
Optical Token Channel is inspired by the 802.5 Token Ring

LAN standard [2]. Figure 4 shows the operation of Token
Channel. There is a single token circulated per channel. The
token is passed from requester to requester, entirely skipping
nonrequesters that lie between. When a node removes and
detects a token it has exclusive access to the corresponding
channel and may begin sending (one or more) packets some
number of cycles later. The sooner it begins transmitting, the
better the utilization of the data channel. In Token Channel,
no more than one source can use the channel at any one time:
the segment of the data channel from the home node to the
token holder carries no data, while the segment from the token
holder back to the home node carries light modulated by the
token holder. The sender may hold the token (and use the
channel) for up to some fixed maximum number H ≥ 1 of
packets. When a sender has many packets in its queue for
one receiver, it helps considerably to send more than one.

When a source first turns on its detector for an otherwise
idle channel, it waits on average T/2 cycles for arrival of the
token. When a single source wants to send a long sequence of
packets on an otherwise idle channel, it transmits H packets
at a time and waits the full flight time T for the reinjected
token to return. The Token Slot arbiter of the next section
reduces these token wait times.

3.2 Token Slot
Token Slot is based on a slotted-ring arbitration protocol

[22]. It divides the channel into fixed-size, back-to-back slots
and circulates tokens in one-to-one correspondence to slots.



P0 injects its token onto the arbi-
tration waveguide. It passes by P1
unperturbed. P2 requests the to-
ken.

P2 seizes the token. P2 reinjects the token, and the to-
ken travels back to the home node
(P0).

Figure 4: Token Channel. Arbitration for one channel of an N channel interconnect.

The home node (P0) injects to-
kens in one-to-one correspondence
for the slots.

P2 requests and seizes one of P0’s
token as it passes by.

The token P2 previously seized is
represented by the absence of light
traveling by P3.

Figure 5: Token Slot.

One packet occupies one slot. A source waits for arrival of a
token, removes the token, and modulates the light in the cor-
responding single-packet slot. The token precedes the slot by
some fixed number of cycles which are used to set up the data
for transmission. The slot is occupied (by modulated light,
i.e. data) until it gets to the destination, which removes the
data, freeing the slot; the destination reinjects a fresh token
along with new unmodulated light. Figure 5 shows the Token
Slot layout and its operation.

Compared with Token Channel, Token Slot reduces the
average source wait time significantly and increases channel
bandwidth utilization in our experiments. In the single-source
scenario above, the one active source can claim all tokens, us-
ing the channel continuously at full bandwidth. In Token
Channel, the token holder is the only possible sender (there
is only one token in the system), whereas in Token Slot, there
are multiple tokens, and there can be multiple sources simul-
taneously sending at different points on the waveguide.

Unlike Token Channel, which requires each node to have
reinjection capabilities on the arbitration wavelength, in To-
ken Slot only the destination needs reinjection capability. Thus,
Token Slot requires fewer resources and less power.

3.3 Timing
In Token Channel, after sending one or more packets, the

sender reinjects a token into the arbitration waveguide in par-
allel with the last clock edge of its most recent transmission.
If the sender cannot reinject the token at this time, so that the
token lags the end of the data packets, then a data channel
“bubble” results, wasting channel bandwidth. In this paper,
we assume that the token can be reinjected one clock after
it is removed. We intentionally chose an aggressive target to
push the limits of arbitration. Early SPICE models of the
analog circuitry indicate that the target is feasible.

If injecting on the trailing clock edge is too soon, a possible
fix is to narrow the data channel, increasing the serialization
delay of a data packet so as to cover the time needed to read,
process, and reinject the token. Adding more channels could
then compensate for this narrowing. Our studies indicate that
halving the bandwidth and doubling the channels drops the
maximum achievable throughput of Token Channel to 26%
under uniform traffic, tripling and dividing by three further
drops it to 18%, vs. 45% for a single channel.



We assume the node can detect a token and deactivate
its detector before the next token arrives. If the ring res-
onator cannot respond to the token before the next token ar-
rives, then one or more following tokens may be inadvertently
claimed. Arbitration pipelining [20] can hide this effect. For
example, if the ring resonators have a k-cycle latency, then
for each data channel, k arbitration channels that have to-
kens every kth slot may be employed. Since a new arbitration
is started before the last one has completed, the status of
the last arbitration is unknown leaving the new arbitration
to speculate on whether or not it will win. Pipelining the ar-
bitration makes the reinjection latency less critical but has a
significant impact on performance. On uniform traffic, when
using two- and three-cycle detectors and speculating that pre-
vious arbitrations were not won, throughput is 76% and 64%
in contrast to 87% for a one-cycle arbiter.

4. FLOW CONTROL AND FAIRNESS
Arbitration for the interconnect is only half of the story

when it comes to communicating data from source to desti-
nation. Flow control is the other half of the story: it guar-
antees that an outgoing packet has a receive-buffer entry al-
located for its arrival at the destination. By managing flow
rate, it prevents buffer overflow at the destination, avoiding
the complexity and overhead of negative acknowledgements
and retransmissions. In this section, we add credit-based flow
control to the Token Channel and Token Slot protocols.

To be useful, a protocol must provide some guarantees of
fairness. At a minimum, a fair protocol will not starve any
contending user. We show here how to modify both Token
Channel and Token Slot to provide fairness while retaining
the advantages of fully optical implementations.

4.1 Flow Control
The idea is simple: the home node emits credit-filled to-

kens to communicate the number of available entries to source
nodes. A node that removes a credit-bearing token (convey-
ing one or more credits) is guaranteed that there are available
entries at the destination.

Token Channel encodes flow control information in the to-
ken. The token is enlarged to contain a binary encoding of the
number of buffer entries available at the home node. When a
node detects the token, it only transmits on the data channel
if there are credits available. It then marks its reservation by
decrementing the number of credits in the token, and reinjects
the diminished token. The token eventually returns home, at
which point the home node increments the credits to reflect
entries that have become available since the token’s last visit.
The home emits the enriched token.

Token Slot encodes flow control information simply by emit-
ting a token only when a buffer entry is available. Thus, each
token signifies a single credit and, if a node removes a token,
it has also reserved an entry at the destination. When the
entry is relinquished, the home emits a token.

4.2 Fairness
In the two protocols of the previous section, the home node

emits credits. Nodes close to home have priority over nodes
farther downstream in obtaining them. If emitted tokens do
not have enough credits to reach distant requesters, these re-
questers risk starvation. This problem with token protocols is
well known; it has been addressed in electronic systems with
modifications that cause relatively well served senders to sit

on their hands for awhile and give someone else a chance [17].
Here we modify the optical token protocols discussed above,
retaining their latency advantages, and providing, by a similar
back-off mechanism, fair treatment to underserved senders.

Suppose that the aggregate demand for a channel’s band-
width is less than both its inherent maximum bandwidth and
the rate at which the home node frees buffer slots. Simple
protocols, for example token slot, can fairly satisfy all this
demand. The fairness issue surfaces when the aggregate de-
mand by all senders exceeds this maximum achievable service
rate. (In practice, full input buffers will throttle the senders
so that their aggregate packet insertion rate approaches, but
never exceeds, this rate.)

The max-min protocol [4] is a well-accepted notion of what
the goal should be in this situation. In max-min, senders that
need little service get all they can use. All remaining senders,
which get somewhat less service than they might be able to
use, get equal service.

Max-min is a worthy goal, but is difficult to achieve ex-
actly in an online, low latency, distributed arbiter. There is
no generally accepted metric for measuring the deviation be-
tween an achieved service profile and the max-min goal. We
instead present the data visually, providing a clear picture of
the extent to which we have approximated the max-min goal.

4.3 Fair Token Channel
Fair protocols such as iSLIP [18] implement rotating pri-

ority schemes that distribute service in some sort of cyclic
manner to competing requesters. We propose to mitigate the
unfair behavior of Token Channel with Fast Forward (FF) to-
kens that implicitly do the same sort of approximately cyclic
service allocation when this is needed. When the home node
injects an FF token (rather than a regular token), the to-
ken travels in its own waveguide, bypassing previously served
senders. At some point along the waveguide (as described
below), the FF token changes into a regular token and is
available for arbitration. By fast forwarding these FF tokens
downstream, nodes far from the home node are given higher
priority than nodes close to home.

FF tokens are emitted onto a FF waveguide, which is con-
centric with the arbitration waveguide. The FF waveguide is
used to both notify the home node that a node is starving and
to supply a credit-filled token to that starving node. When a
potential source node removes the token and finds it empty of
credits, it declares itself to be a victim of starvation. It does
not reinject the empty token on the arbitration waveguide,
but rather puts it on the FF waveguide (see Figure 6). Only
the home node activates its detector, and so the token quickly
returns (in at most T cycles) to the home node, which replen-
ishes it with any newly available credits. Moreover, the arrival
of the token at the home node via the FF channel causes the
home to send the token back out again on the FF channel.
The node that discovered the empty token will have activated
its FF channel detector, so the replenished token will take a
direct route back to that node. This not only removes the
credit bias in favor of nodes near the home node, but has the
added bonus of reducing the time needed to refresh an empty
token with new credits. Our experiments do show a signif-
icant bandwidth improvement compared with simple Token
Channel from this effect. Note that the opportunity to re-
move an empty token propagates cyclically, which is a key to
the fairness of Channel FF.



P2 wins P0’s Token from the arbi-
tration waveguide, but does not use
the channel because there happens
to be no credits left.

P2 fast forwards the token to P0,
past any other possible outstand-
ing downstream requesters (e.g.
P3). P2 also activates its detector
on the FF waveguide.

When credits become available
again, P0 injects its token onto the
FF Waveguide. P2 is expecting the
token, as shown by the active de-
tector. It removes the token, sends,
and function returns to normal.

Figure 6: Fast Forwarding for Token Channel.

Requesting Node

Satisfied Hungry

Suspended

Seize Plenty Token /
Send Packet

Seize Plenty or Famine Token /
Send Packet

Packet Wait Time > W || Queue Length > L /
Mark Packets in Queue, Divert on Hungry WG

Number Marked Packets == 0 /
Stop Diverting on Hungry WG

Detect Plenty Token

Home Node

Plenty Famine

Free Entry /
Transmit Plenty Token

Free Entry /
Transmit Famine Token

Detect No Light on Hungry WG

Detect Light on Hungry WG

Figure 7: Fair Slot Finite State Machine.

4.4 Fair Token Slot
The simple Token Slot protocol is inherently unfair: it gives

higher priority to nodes closest to the home. To ensure fair-
ness we must make sure that every node having sufficiently
high demand is treated nearly equally. Proposed electronic
protocols do so using a SAT token that traverses in the direc-
tion opposite the token path and moves at most one node per
clock [17]. In this section, we provide a low latency protocol,
Fair Slot, that achieves this goal in a fully optical implemen-
tation. As with Channel-FF, Fair Slot detects starvation (a

node that isn’t receiving adequate service) and then services
all underserved nodes, once each, in some sequence before
returning to normal function.

Here we describe the implementation of Fair Slot on a sin-
gle channel (shown in Figure 8). In an MWSR system, each
channel independently implements this algorithm.

The essential idea is to switch between simple Token Slot
and an alternative that allocates credits to senders in a cyclic
manner. During periods of little load, we use the simple proto-
col. When higher load causes some senders to receive less ser-
vice than they need, the protocol switches to providing fixed
quanta of credits and bandwidth to the underserved senders,
once each cyclically, before returning to the simple protocol.

In Fair Slot, senders can be in one of three possible states:
satisfied, hungry, and suspended. A sender must traverse the
state diagram from satisfied to hungry to suspended cyclically
(as shown in Figure 7). The entire channel goes through al-
ternating phases of plenty and famine, the famine state being
triggered by notification to the home node that there is at
least one hungry sender. The presence of a hungry sender is
communicated back to the home node using an optical NOR
(as in Figure 3, any hungry node removes all the light from the
hunger waveguide) allowing the home node to detect whether
or not there is any hungry sender. When a hungry sender
is detected by the home node, the channel enters the famine
mode. The channel state of famine vs. plenty is communi-
cated to the nodes using a separate broadcast waveguide so
that all nodes can read it with no delay or reinjection.

Arrival of the famine signal changes the local (per node)
channel status from plenty to famine. We call a token a
famine token or a plenty token according to the accompa-
nying channel state. Only a hungry node may grab a famine
token. Other nodes (both satisfied and suspended) let them
pass by. Any node can take a plenty token.

A satisfied node becomes hungry according to a local crite-
rion. This can be the presence of an old packet (a packet is
old if it has been in the system longer than some threshold)
or when its input queue length exceeds some threshold. In
either case, there will be an upper bound, L, on the number
of packets in the queue of a node that becomes hungry.



The system is in Plenty mode. P1
is blocking P2 from winning P0’s
tokens. P2 diverts on the Hungry
WG.

P0 detects no light on the Hungry
WG and broadcasts on the Broad-
cast WG, putting the system into
Famine mode. Node P1 passes on
all famine tokens, allowing P2 to
seize a token.

P2 becomes satisfied and releases
the Hungry WG. P0 detects light
on the Hungry WG, and stops
broadcasting, returning the system
to Plenty mode. Execution returns
to normal.

Figure 8: Fair Slot.

When a node enters hunger for a given channel, it marks
all packets in its input queue for that channel. A hungry
node grabs any arriving tokens until these marked packets
are flushed. Any packets that arrive after the onset of hunger
can join the queue, but they aren’t sent during this period
of hunger. Once it sends the last of the marked packets, the
node de-asserts hunger and goes into suspended state.

A node in suspended state passes on all famine tokens.
When the first plenty token arrives, the node transitions to
satisfied; it can also grab the token if it wishes. On the next
clock it can transition to hungry if it meets the criterion.

No node can remain forever hungry. To see this, suppose
node h becomes hungry. It asserts its hunger and this signal
must reach the home node, which transitions to famine mode
if not already in it. By the current famine we shall mean
the epoch of consecutive cycles, including the clock cycle at
which h’s hunger signal arrives at home, over which the home
node emits famine tokens. The famine tokens of the current
famine may be taken by other hungry nodes upstream of h.
No one of these will take more than L of these tokens in the
current famine, as any node that takes L must have flushed its
buffer (keeping newly arrived packets in the queue) and hence
have gone into suspension. Node h will therefore eventually
receive enough packets to flush the marked packets from it
input queue, suspend, and de-assert its hunger.

No node returns to hungry state before all nodes that were
hungry when it became hungry leave hunger. To see this,
note that the transition from suspended to satisfied requires
the arrival of the broadcast that the system has transitioned
to the plenty state. The home node generates this signal only
when the or-ed hunger signal goes low. This cannot happen
until all nodes that were hungry when the given node became
hungry have suspended and de-asserted it.

When the last node goes from hungry to suspended and de-
asserts hunger, there is a delay of up to T cycles before home
gets the word. The famine tokens generated by home will be
wasted as there are no hungry senders left to take them. This
has a small impact on utilization.

5. MWSR ARBITRATION
We evaluate the proposed optical arbiters for a N = 64-

node, optical MWSR interconnect. The MWSR requires 64
arbiters to arbitrate for the 64 channels. In systems using
dense wavelength-division multiplexing, each channel would
be assigned a unique wavelength, and all could share the same
arbitration waveguides. Examples of fully connected MWSR
arbiters are shown in Figure 9. We consider here some engi-
neering and scalability issues that arise when arbitrating for
several channels in parallel.

5.1 Engineering Simultaneous Arbitration
Virtual output queues (VOQs) allow sources with requests

destined for differing destinations to make these requests in-
dependently [25]. All our experiments employ VOQs.

While arbitration for one channel can occur independently
of all others, no one requesting node can simultaneously trans-
mit on all data channels because of limited per-node power.
If we impose an upper bound on the number of channels that
can be used simultaneously by a single sender for transmis-
sion, then how many concurrent transmissions should a sender
attempt to gain in arbitration? A requester that arbitrates
and wins more channels than it can use will waste unused
slots and bandwidth. In Token Channel, each extra win sac-
rifices the immediate transmission opportunity; the requester
can hold the extra tokens until it can transmit, or can reinject
them; in either case this causes a channel bubble. In Token
Slot, each extra token won causes the corresponding slot to
go unused. Bounding the number of requests a requester may
nominate (turn on detectors) reduces the likelihood of over-
winning.

We explored the space of how many requests to nominate
and how many to use with random traffic experiments. In To-
ken Slot, being zealously conservative of bandwidth by nomi-
nating only one request and transmitting on at most one chan-
nel actually restricts the maximum achievable throughput to
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Figure 9: Arbiters for 4-channel MWSR

58% of full channel utilization. This is due to head-of-line
blocking: the nominated request prevents another outstand-
ing request from trying for a channel, even when the channel
it needs is idle. This occurs despite the presence of VOQs.
Karol, Hluchyj, and Morgan [12] explain this analytically, de-
riving a limit of 2 −

√
2 = 0.586 on utilization. At the other

extreme, nominating and using up to N requests is overkill
(nodes generate at most a limited number of requests per
clock) and has impractical power costs. We found that nom-
inating for all nonempty VOQs (we can have up to 8), but
using at most 2 is a good power and performance point in our
search space. We observe roughly 5% of tokens are wasted by
this aggressive nomination strategy.

6. EXPERIMENTAL SETUP AND RESULTS

6.1 Experimental Setup
The MWSR we model operates at double data rate using

a 5 GHz Clock. It has single cycle, cache-line-sized pack-
ets and optical path length T = 8 cycles. We assume that
eight single-cycle, 64-byte non-overlapping packets can simul-
taneously share one channel. Table 1 shows the simulated
configuration.

In order to test the proposed optical arbiters under a vari-
ety of traffic conditions, we use the SPLASH-2 workloads [27].
A 1024-thread version of SPLASH-2 is simulated: each node
consists of an L2 cache and four multithreaded processors
(with private L1 caches) running four threads each. The
SPLASH-2 workloads model requests to and replies from mem-
ory and are trace-driven with L2 misses supplied by the COT-
SON simulator [9]. To ensure forward progress, responses
(which are of higher priority than requests) may arbitrate re-
gardless of the starvation-state of the system. Only requests
participate in fairness throttling, since fairness of responses
follows from fairness of requests For each simulation, we warm
up the model and then track and measure a fixed number of
requests.

We also use the synthetic Uniform and Hotspot traffic mod-
els. To isolate the performance of the arbiter, these synthetic
workloads consisted of one-way traffic only and do not model
memory. For these, we report the aggregate achieved packet
delivery rate, the latency, and the delivery rate seen by the
least serviced sender, all as a function of the offered load. The
network is capable of delivering up to 64 packets, one per des-
tination node, on every cycle. For Uniform, the destination
for every packet is chosen randomly with uniform probability.
An offered load of 1 means that there is, on average, for each

Resource Value
Number of nodes 64
Per node:

Network Input Request Entries 8
Network Input Response Entries (SPLASH-2 only) 8
Network Output Request & Response Entries 16
Max Concurrent Nominations 16
Max Concurrent Transmissions 2

Interconnect:
Packet Size (bytes) 64
Flit Rate (bytes/cycle) 64
Max Propagation Latency (cycles) 8
Bandwidth (TB/s) 20.48

Memory (SPLASH-2 experiments only):
Bandwidth (TB/s) 10.24
Memory Controllers 64
Max Outstanding Requests per MC 64

Table 1: System Parameters

destination, one source that generates a new request on every
cycle. Values over 1 indicate that demand exceeds capacity.

For HotSpot, node 0 is the destination of all requests. Node
0’s channel can sustain at most one request per cycle. Thus,
an offered load of o for HotSpot means that at every cycle,
each node generates a request with probability o/(63).

We perform our experiments with the M5 simulator frame-
work [5] to model the interconnect, including memory and
queueing at the ports.

6.2 Performance
We measured performance attained with five different ar-

biters, The first is called Baseline and is an optical channel-
token protocol that delays the token by a half-cycle at each
node, regardless of whether or not the node wants the channel.
It is motivated by earlier work of Ha and Pinkston [10] and
Kodi and Louri [14], who considered VCSEL-based technol-
ogy with an electronic hop at each node. The others are our
Token Channel (with H = 1), Token Channel w/ FF (with H
= 1, as used in Corona[26]), Token Slot, and Fair Slot arbiters.

As shown in Figure 10(a) & (b), the Baseline proposal has
low bandwidth potential and high latency solely because the
tokens must be repeated at every node. The baseline only
achieves 32% utilization in our Hotspot simulations, because
our token can have at most 16 credits and the full round trip
for a fully utilized token is at least 16 + (N − 16)/2 + 8 =
48 cycles. Token Channel does little better on Hotspot; it
saturates under a higher load but its bandwidth eventually
drops off to the level of the baseline. The bandwidth drop
seen in Hotspot is actually a result of credits becoming scarce
and a zero-credit token being delayed by losing requesters.
In fact, Token Channel behaves exactly like baseline at high
loads because every node requests the token. Fast forwarding
tokens, intended to improve the fairness of Token Channel,
here improves performance, because the FF waveguide quickly
returns zero-credit tokens to the home node. The average
token round trip drops from 48 cycles to 26 cycles under heavy
load. Both variants of Token Channel, however, use a single
token, repeatedly delayed in flight by senders, which causes
its on-board credit count to be updated infrequently and to
therefore carry increasingly stale information.

The data of Figure 10 indicate that Token Slot is the best
protocol available. Its implementation is relatively straight-
forward and it achieves nearly the best possible throughput
for both test cases across the range from very light to heav-
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Figure 10: Bandwidth(a & b), Average Latency(c & d), and Worst Serviced Node (e & f) for Uniform random
traffic (left) and HotSpot traffic (right).

iest achievable offered load. But Token Slot is unfair, as
Figure 10(f) shows: the least-served sender starves once the
aggregate demand exceeds the channel capacity. Fair Slot,
which removes this unfairness, is able to achieve 90% channel
utilization: 10% of available tokens (bandwidth) go unused
when the system transitions modes. In HotSpot at full load,
every node always has a packet available for the destination.
For Uniform, Fair Slot achieves 74% utilization at maximum
load: only a fraction of senders have a packet available for the
destination due to small shared input queues.

Figures 10(e) and 10(f) give a closer look at how well Chan-
nel with FF and Fair Slot ensure fairness. The service given
to the least-serviced sender indicates whether or not there

is a starvation problem. At low loads, fairness questions do
not arise – all demand is satisfied. For Uniform, all proto-
cols remain fair even at high load. The combination of input
queue size and credit availability ensure that starvation can
not happen with uniform traffic. In Hotspot, at high loads,
the simple protocols become unfair. Token Slot is efficient
and fair below network saturation, but falls over beyond that
point. Fair Slot and Channel w/ FF avoid starvation at all
measured loads. They are fair: the bandwidth seen by the
least served sender is close to an equal share of the aggregate
bandwidths shown in Figures 10(a) and (b).

In order to confirm that Fair Slot achieves excellent arbitra-
tion latency and channel utilization with excellent fairness, we
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Figure 11: Single-Channel Bandwidth Allocation by Fair Slot. Workloads use ascending demand assignment
(left) and random assignment (right). Note: Excessive demands are shown at the chart’s limits.
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Figure 12: SPLASH-2: Achieved Bandwidth.

tried a more complex test case. We generated single-channel
traffic in which half of senders have random, small demands,
and half have random, heavy demand such that the total de-
mand is 4 times the channel’s bandwidth. Figure 11 shows
achieved bandwidth: on the left, where demand is assigned to
senders in increasing order, and on the right where demand is
randomly assigned to senders. In both cases, the low-demand
senders get all the bandwidth they need. The high demand
senders are treated nearly equally, except that the two closest
to the home node get more service than they deserve. But
none starves, and the allocation is quite close to a max-min
allocation of the aggregate achieved bandwidth. The figures
also show the max-min allocation of the full channel band-
width; the difference between the achieved service and the
max-min service is caused by less than full channel utilization
and the extra service for the two closest senders.

Finally, Figure 12 shows results from running 1024-threaded
instances of SPLASH-2 benchmarks. Some of the workloads,
such as Barnes, use the interconnect little and are indifferent
to the arbitration policy.

We have presented performance results for a 64-node ar-
biter. Because of its scaling properties, we believe the arbiter

can scale as far as an MWSR interconnect can scale. At some
point, the propagation time of a transmission becomes intoler-
able and a hierarchical MWSR, with arbitration at each level,
will be necessary.

7. POWER MODEL
There are two main contributors to power consumption: the

laser and the rings.
Laser power comes from a static off-chip source. The laser

power must overcome losses due to electrical-optical conver-
sion inefficiencies as well as transmission losses in the waveg-
uide. All losses target the 17nm process and were calculated
with a link-loss approaching using prior results [28] and nu-
merical simulations.

Ring resonators are the other major power budget contrib-
utor. All rings in the system must be electrically or thermally
adjusted (or “trimmed”) to compensate for fabrication error.
Trimming helps to keep off-resonance rings in their untuned
range (approximately one-half mode spacing from resonance).
A ring is brought into resonance by further adjusting its index
of refraction. Finally, a modulating ring will dissipate extra
power, as it needs a charge of 3×10−14 C/pulse at 5 GHz [1].
The ring resonators also contribute to the laser power calcula-
tion; for example, we account for the slight attenuation when
a signal passes by an off-resonance ring.

Figure 13(a) demonstrates power estimates for a 64-node
arbiter. Power numbers were derived using the values in Ta-
ble 2. We assumed worst-case power consumption under the
condition that every node was arbitrating to its full extent.
We modeled two values of m, where m corresponds to the
maximum number of outstanding requests a node may nom-
inate. Bars for m = 16 represent the model we arrived at in
Section 5, while m = 64 represent an aggressive model where
every node may have a nomination for each and every other
node. All arbiters, except the baseline, show sensitivity to the
increased activity of the ring resonators when we vary m. The
baseline is insensitive to this change because all nodes must
repeat all tokens, regardless of outstanding nominations.

Ring Trim and Ring Resonance power dominates all config-
urations. Ring trim stays constant while we vary m, because
the ring count also stays constant. Allowing more rings to
resonate, by increasing m, linearly affects the ring resonance
power.



Device Value Description
Ring Resonator:

Trim 22 µW Adjust for fabrication error
Biasing 91 µW “Biasing” into resonance
Modulation 474 µW Modulation at 10 Gbit/s

Laser:
Waveguide

Single-Mode 1.0 dB/cm Passing by ring banks
Multi-Mode 0.3 dB/cm Passing between ring banks

Non-Res. Ring
Insertion 0.017 dB Loss at neighbor λ ring
Scattering 0.001 dB Loss at non-neighbor λ ring

Distribution
Coupling 1 dB Laser coupling loss
Beam Splitter 0.1 dB Power distrib loss per-split
Ge RCEPD 3.0 dB Detector γ → e− efficiency
Efficiency 5.0 dB Laser e− → γ efficiency
Detected fJ/b 0.15 fJ Detecting 1k e−/bit
Splitter Ratio 5% Power lost at broadcast split

Table 2: Optical Device Power Consumption. Note:
Two-thirds of the Ring Resonator power budget is set
aside for analog drivers.
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Figure 13: Power Consumption of Arbitration Sys-
tems. m corresponds to the maximum number of out-
standing requests a node may nominate (or detectors
it may have active).

Configurations that have fewer rings (as inferred by the
height of the Ring Trim Power bar) and that have lower values
of m consume the least amount of power. Fairness comes at
a cost, because the protocols require more resources to be
added and thus more power consumed. Nonetheless, Fair Slot
consumes less than half of the power of Channel w/ FF.

8. RELATED WORK
Ha and Pinkston [10] and Kodi and Louri [14], advocated

token-based protocols to arbitrate for optical off-chip MWSR
interconnects. They processed tokens electrically at each node
by converting the optical signal to an electrical signal, pro-
cessing the token, and converting it back to an optical sig-
nal. Marsan et. al [17] propose a collisionless arbitration
strategy for optical LAN and MAN MWSRs that relies on
inspecting channel slot headers, a technique analogous to re-

questing tokens. The authors above targeted off-chip inter-
connects, which have latency and bandwidth requirements
different from on-chip interconnects.

An optical arbiter, which like our proposal communicates
reservations with light, can be found in Qiao and Melhem [23].
Requesting nodes send optical pulses downstream while de-
tecting pulses that may be coming from an upstream re-
quester. At the end of an arbitration, a successful requester
detects no light (no requesters) from upstream.

Our investigation focused on arbitrating for channels indi-
vidually, rather than allocating all channels in bulk. Alloca-
tion approaches to optical interconnects include Minkenberg
et. al [19] and Krishnamurthy, Franklin, & Chamberlain [16].
These approaches use centralized electrical allocators that
perform matchings with heuristic, iterative algorithms.

In Section 1 we discussed why SWMR interconnects do not
require arbitration and at what cost. Our proposals are not
directly applicable to meshes, like Shacham et. al’s [24] and
Cornell’s Phastlane [7]. Joshi et. al [11] propose at an optical
Clos network that performs all necessary arbitration in the
router. Finally, Kirman et. al [13] use a broadcast-based in-
terconnect that shares access to the medium using uses simple
local state machines that are globally synchronized. We be-
lieve our arbiters may be applied to this work to dynamically
adjust access according to demand.

The Metaring system [8] enforces distributed fairness in a
ring topology with the use of electrical SAT(isfied) tokens.
A SAT token travels in the opposite direction of data and
refreshes a node’s transmission quota with k credits. An un-
satisfied (or starved) node holds the SAT token, causing other
nodes’ quotas to deplete. The number of hops in a revolution
has an impact on k, because, under normal traffic circum-
stances, the credits should last an entire token revolution.
Although every starving node will be serviced eventually, it
may take as long as Nk units of time.

9. CONCLUSION
We have demonstrated a mechanism for optical arbitration

that provides full channel utilization, fairly across all sources,
and adds little to communication latency. We accomplish this
by taking full advantage of optics. Our protocols leave signals
in the optical domain until the information that they convey
can be used. Prior optical arbitration mechanisms convert
optical tokens to the electrical domain and back at each node
thereby increasing the latency of the system. Leaving signals
in the optical domain limits the ways in which information
can be conveyed; this work has examined in detail protocols
that cope with these limitations.
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