Nanophotonic Barriers

Nathan Binkert?, Al Davis®, Mikko Lipastif, Robert Schreiber, Dana Vantrease'
tHewlett-Packard Laboratories, $University of Utah TUniversity of Wisconsin - Madison

Abstract

Multi-threaded programs employ barriers to temporally
synchronize across threads. All threads must reach the bar-
rier before any thread may advance past the barrier. A bar-
rier is a form of global synchronization; the efficiency with
which the barrier is processed extends the program’s crit-
ical path. Large delays between the time the last thread
reaches a barrier and when all threads receive notification
that the barrier has been released can add significantly to
program execution time.

In this paper, we show how nanophotonic devices can
be configured to provide low latency, low power hardware
barriers. The mechanism uses the presence of light in a
waveguide to indicate that all threads have arrived at the
barrier. DWDM (dense wave division multiplexing) allows
multiple barriers to be processed in parallel with only a sin-
gle physical waveguide.

1 Introduction

Multicore chips allow low-latency communication be-
tween cores, making fine-grained parallelism and on-chip
data sharing cheap. However, global operations, such as
barriers, are still expensive. Prior work has shown that bar-
riers can consume a large portion of program execution time
[11, 2]. This is problematic from an application program-
mer’s perspective since barriers are a simple way to achieve
synchronization and enforce correct ordering of memory ac-
cesses, but the penalty of using them can be surprisingly
high.

Software barriers enjoy great popularity, in part because
they are flexible and easy to implement. Mellor-Crummey
and Scott [6] survey a variety of software barrier implemen-
tations and their tradeoffs. Software barriers are inherently
interprocessor communication abstractions. Their perfor-
mance is determined by the latency of a cache to cache
transfer across the machine, a cost measured in hundreds
of cycles. The best software barriers incur O(log N) such
communications where N is the number of barrier partici-
pants.

Several efficient electrical hardware barrier mechanisms
have been proposed and built to overcome the performance

limitations of software barriers. Most have been proposed
for SMP systems and use a dedicated barrier-interconnect
network[4, 1, 5, 8]. In chip-multiprocessors, Sampson et al
[7] propose using a hardware-assisted barrier, implemented
in a shared level of the memory hierarchy. Their barrier
takes hundreds of cycles between the last thread arriving
and all threads being notified. Alternatively, they report a
completely dedicated, centralized electronic barrier mecha-
nism of Beckmann and Polychronopoulos [1], at 64 nodes,
has approximately a 40 cycle latency.

To the best of our knowledge, there is only one prior pro-
posal for an optical barrier mechanism [3]. In this proposal,
each node broadcasts its identity onto an optical waveguide
bus when it reaches a barrier. All other nodes listen to the
broadcast and use the broadcaster’s identity to decrement a
locally maintained counter. If more than one node tries to
simultaneously use the broadcast channel, then the conflict-
ing accesses must be resolved in a serial manner. Finally, it
performs the barrier function electronically, not optically.

In this paper, we show that it is possible to use nanopho-
tonics to build a simple, fast, all-optical barrier.

2 Photonic Barrier

2.1 Implementation

In general, a barrier mechanism must complete the fol-
lowing steps: (1) barrier initialization, (2) collecting ar-
rivals, (3) barrier release/notification. Often the steps above
are repeated during seperate dynamic invocations of a static
barrier.

The nanophotonic barrier network is a single waveguide,
as shown in Figure 1(a). Each of the N nodes has both a
light diverter and a light detector that are attached to the
waveguide. The diverters and detectors are specialized in-
carnations of the ring resonator [12]. There are many possi-
ble layouts, but the key is that the waveguide passes by all
nodes twice. In Figure 1, for example, the waveguide wraps
around the nodes, with the diverters on one side of the nodes
and the detectors on the other.

To initialize the barrier, each participating node diverts
light from the waveguide. Non-participating nodes do not
divert the light. As participating nodes arrives at the barrier,
they stop diverting the light. When all nodes have arrived

Off On On
(not lity ~ (lit)
Detector| 3) @
o O, ® [©] [©] o @® (o]
O T))) s T Py >
2 & 3 3 3 2 & ‘ B3 &1
o
Yt
m
© ® @® ® (o] @ [©) (@] o o o
<
2) (3 & (3 (3 (3 & 3 & & 3
o=
)
(a) Initialize (b) Collect Arrivals (c) Release

Figure 1: (a) Step 1: Initialize. Each participating node begins by diverting the light. No detectors detect light. (b)
Step 2: Collect Arrivals. As participants reach the barrier, diverters cease diverting. Thus far, PO and P,_; have
arrived at the barrier. No detectors detect light. (c) Step 3: Release. All nodes have arrived. As the unicast design
shows above, notification is serial, and each node must sequentially detect and then turn off its detector to allow
others a chance at the light. In the broadcast design, all nodes quickly detect the light with splitters.

at the barrier, the light passes by the inactive light diverters
and begins notification. In the next section, we describe two
optical notification alternatives.

Collecting arrivals (Step 2) is reflected in a software-
visible barrier arrival operation which turns off the node’s
light diverter. The node then zeros a barrier-status bit, in
memory or in a processor status register, and then waits for
this bit to be set. The arrival and sensing of the light signal
indicates that all nodes have arrived at the barrier. It’s arrival
triggers two things. First the barrier is re-initialized, and all
nodes must be made to divert the light again. Then, the lo-
cal status register bit is set, permitting the node to proceed.
To ensure that all nodes re-divert the light before any is al-
lowed to continue with computation, we set a timer at each
node that delays the next arrival at the barrier until enough
time elapses to ensure that all nodes have seen the light sig-
nal and re-initialized it. This timing interval is set to be the
maximum latency of the light path plus the diversion time.
Thus, an all-hardware mechanism is used.

With DWDM, the design can easily be extended to sup-
port several barriers simultaneously—each barrier is as-
signed a different wavelength and has its own status bit.

The optical barrier is scalable, in part because of the
technology and because of the distributed nature of the
mechanism. The distributed nature of the design allows
each node to perform its barrier-arrival operation indepen-
dently of the other nodes. That is, if two nodes arrive at
the barrier at the same time, they may both stop diverting

light in parallel, and thus the time between the last node’s
arrival at the barrier and when the participants are notified
is only dependent upon the time it takes light to traverse
the length of the waveguide. The electrical counterpart of
this approach would be a wired-OR structure which doesn’t
scale well due to the linear relationship between wire ca-
pacitance and wire length.

2.2 Unicast vs. Broadcast

The detectors shown in Figure 1 must all be able to sense
the presence and absence of light. In real implementations,
detecting the presence of light effectively removes the light
from the waveguide'. This leaves two implementation op-
tions for the barrier release operation: unicast and broad-
cast. Neither implementation is obviously better since there
is a tradeoff between latency and power/area.

The broadcast is implemented using a splitter device that
takes one waveguide and splits it into multiple waveguides,
where a fraction of the input power is sent down each sub-
sequent waveguide branch. Multiple splitters are employed
to build a broadcast tree. This tree requires O(N) power,
and requires a bundle of waveguides O(log N') wide. The
latency of barrier release is O(L) where L is the length of
the waveguide bundle.

The alternative, unicast, implementation avoids the need
for splitters and is O(1) in power and area, at the cost of the

11t is theoretically possible to remove only a fraction of the light, but
this sort of implementation is impractical for high node counts (V).

=
o

-— @ Unicast

Broadcast

ns between last arrival and
last notification

O Rr N W A U1 OO N ® O
L L L L

2 16 32 48
Nodes

Range in Notification Latency

1048576

==Broadcast
262144 - “

Unicast /
65536 /
16384

4096 -

Microwatts

1024 | 4

256

2 16 32 48 64
Nodes

Power

Figure 2: Latency analysis is for a 64-node system.
Power analysis is for a range of nodes and for a single
wavegduide containing 64 barriers.

latency being O(NN+L). The unicast alternative uses divert-
ers at the detector site to divert light to a detector. When the
barrier is initialized, in addition to all nodes turning on their
regular diverters, they also turn on their detectors. When
barrier release occurs, the first node node’s detector will re-
move the light from the waveguide and detect the presence
of the light. Once detected, that node then immediately dis-
ables its detector, allowing the light to continue propagating
down the waveguide to the next node. The process repeats
until all nodes have detected a barrier release.

Figure 2 illustrates the tradeoffs. For latency, we looked
at the critical timing between the last node to arrive and the
last node to be notified. Our analysis assumes a Corona-
like snake [10] with an 1.6 ns (8-cycle) single round-trip
light-propagation latency. We assume that a node can cease
detection within 1 clock edge of a 5 GHz clock. For a 64-
node system, Figure 2 shows that, only when the number of
participants is small does the unicast barrier perform com-
petitively with the broadcast barrier.

For power, we use the power model described in [9]. We
assume the interconnect is 26 cm long for 64 nodes and
scale it linearly for smaller numbers of nodes. Broadcast’s

power increases at a much faster rate than unicast in part be-
cause the laser power must simultaneously be able to drive
all nodes. At 64 nodes, broadcast uses over one-half a watt,
approximately 12 times more power than unicast. As more
nodes are added, this gap will widen.

3 Future Work and Conclusions

Since there can only be a limited number of physical
hardware barriers, applications would either have to limit
their use or they must be shared among multiple threads.
Additionally, hardware barriers also do not readily cope
with dynamic thread scheduling and thread migration. We
plan to work on both problems by virtualizing our hardware
barrier.

Barriers are a conceptually simple and useful synchro-
nization construct for programmers. Unfortunately, they are
expensive to implement efficiently in many-core chips. In
this paper, we show how nanophotonic devices can be con-
figured to provide low-cost and low-latency hardware barri-
ers.

References

[1] C. J. Beckmann and C. D. Polychronopoulos. Fast barrier
synchronization hardware. In Supercomputing 90, pages
180-189, Los Alamitos, CA, USA, 1990. IEEE Computer
Society Press.

[2] P.Bryan, J. Beu, T. Conte, P. Faraboschi, and D. Ortega. Our
Many-core Benchmarks Do Not Use That Many Cores. In
Workshop on Duplicating, Deconstructing, and Debunking
(WDDD), 2009.

[3] M. Davis Jr and U. Ramachandran. A Distributed Hardware
Barrier in an Optical Bus-Based Distributed Shared Memory
Multiprocessor. In Proceedings of International Conference
on Parallel Processing, pages 1-228, 1992.

[4] W. T.-Y. Hsu and P.-C. Yew. An effective synchronization
network for hot-spot accesses. ACM Trans. Comput. Syst.,
10(3):167-189, 1992.

[5] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R.
Feynman, M. N. Ganmukhi, J. V. Hill, D. Hillis, B. C. Kusz-
maul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S.-W. Yang,
and R. Zak. The network architecture of the connection ma-
chine cm-5 (extended abstract). In SPAA ’92, pages 272-285,
New York, NY, USA, 1992. ACM.

[6] J. Mellor-Crummey and M. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems (TOCS), 9(1):65, 1991.

[7]1 J. Sampson, R. Gonzalez, J. Collard, N. Jouppi,
M. Schlansker, and B. Calder. Exploiting fine-grained
data parallelism with chip multiprocessors and fast barriers.
In MICRO-39, pages 235-246. IEEE Computer Society,
2006.

(8]

(9]

[10]

[11]

(12]

S. L. Scott. Synchronization and communication in the t3e
multiprocessor. In ASPLOS ’96, pages 26-36, New York,
NY, USA, 1996. ACM.

D. Vantrease, N. Binkert, R. Schreiber, and M. H. Lipasti.
Light Speed Arbitration and Flow Control for Nanophotonic
Interconnects. In MICRO-42, 2009.

D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren,
N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G.
Beausoleil, and J. H. Ahn. Corona: System Implications
of Emerging Nanophotonic Technology. In ISCA-35, pages
153-164, 2008.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In ISCA, Jun 1995.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-
scale silicon electro-optic modulator. Nature, 435, May
2005.

