
Course Project for CS736, Fall 2001

DMSort: A PennySort and Performance/Price Sort

Aaron Darling
�

Alex Mohr
�

University of Wisconsin, Madison

Abstract

This work describes our approach to creating a fast and
low-cost sorting system. The goal of this work is to win
the 2002 PennySort and Performance/Price sort. We
have designed a sorting program called DMSort that is
capable of more than double the performance of previ-
ously published results when run on our system con-
figuration. This paper discusses the DMSort system
alongside a discussion of topics relevant to PennySort
and Performance/Price sort. In particular, the DMSort
sorting algorithm, hardware system, system implemen-
tation, and performance characteristics are discussed in
detail.

1 Introduction

Sorting data is one of the fundamental problems of
Computer Science. Much research was done on the the-
oretical aspects of sorting algorithms during the 1950s
and 60s [11, 8], and the general sorting problem is
considered solved. Even so, external disk-to-disk sort-
ing competitions (where the data set is typically much
larger than physical memory) have become popular
in more recent years. These competitions do not of-
ten present theoretical results to the field of sorting.
Rather, they act as benchmarks and provide quantita-
tive measures of hardware and software system perfor-
mance. External sorts are considered well-rounded sys-

���
darling,amohr � @cs.wisc.edu

tem benchmarks because they can tax the disk I/O sub-
system, the CPU, the memory and bus performance,
and the software subsystem implementations concur-
rently. This way, external sort benchmarks can be
used to expose performance deficiencies in these sys-
tem components (or their interactions), and to track the
relative performance improvements of different subsys-
tems over time.

There are many different external sort benchmarks of
this type, characterized by different sets of rules. The
earlier external sort competitions simply measured how
fast a fixed dataset could be sorted, or how much data
could be sorted in a fixed timeframe. These competi-
tions led to large, expensive, and elaborate systems that
were often only practical for sorting large amounts of
data and similar applications.

Because of this impracticality, more recent external sort
benchmarks have added system cost into the perfor-
mance metric to obtain high relative performance/price
ratios. Since the largest market and much of the compe-
tition for computers are found in the consumer segment,
prices tend to be minimized. Thus many of the competi-
tors and all of the current winners of these competitions
use consumer-grade machines.

The PennySort competition that DMSort competes in
was introduced in 1998. Unlike many other sort bench-
mark competitions, this competition takes the sorting
system’s cost into account. The PennySort measures
how much data a system can sort for “one penny’s
worth” of compute time. To determine a penny’s worth
of computing time, the system’s value is assumed to de-
preciate at a constant rate over three years. Therefore
we take the number of seconds in three years and divide
by the system cost in pennies to determine a running
time for one penny.

To do PennySort well, the whole computer system in-
cluding the hardware, the system software, and the sort-
ing application software must function well together.
Since we can choose any possible combination of sys-



Course Project for CS736, Fall 2001

tem components, operating systems, file systems, and
sorting algorithms, the number of parameters is very
large and they are often interdependent. This makes se-
lecting a set of components that performs well difficult.

This paper presents our sorting system, DMSort. We
begin with a review of related work, followed by a
discussion of previous relevant PennySort competitors.
Next we examine DMSort’s sorting algorithm from a
high level, and compare it to some other PennySort
competitors’ algorithms to provide context for a dis-
cussion of hardware system design issues. We then
present our selected system components, followed by a
detailed description of the sorting software on our cus-
tom hardware configuration. Finally, we analyze the
performance of our system and compare it to previous
PennySort entrants.

2 Related Work

The original sorting benchmark came from the fa-
mous paper, “A Measure of Transaction Processing
Power” [3]. This benchmark became known as Data-
mation. The task for Datamation is to sort 100,000,000
bytes (one million 100-byte records) as fast as possible,
and results are scored by the amount of time required to
perform this task. This tests the operating system’s file
system performance, disk performance, and processor
speed. This has inevitably led to larger, more expesive,
and more specialized systems. In fact the winner for
the year 2000 used a dedicated hardware-based sorting
device [2].

The first Datamation sort result we found was one
hour [5] while the record at the time of this writing
is under a half second [10]. This is certainly an ex-
cellent improvement; however, as the sort time be-
comes smaller, the machines become more complex,
and 100,000,000 bytes becomes a small dataset. There-
fore, Datamation has become less useful as a measure
of general system performance.

Because Datamation sort times became so small,
MinuteSort—a measure of how much data can be
sorted in a minute, was introduced in 1994 [9]. Min-
uteSort fixes the amount of time allowed for sorting,
rather than fixing the amount of data as in Datamation.
While MinuteSort allows datasets to scale arbitrarily,
there is no penalty for high system cost, encouraging

extravagant machines [5] as in Datamation.

These benchmarks are useful for measuring very large
and expensive systems but are not particularly useful
for those people who must consider system cost. We
believe that this is the large majority.

The first proposed sort benchmark accounting for price,
and a precursor to PennySort was the DollarSort, which
measures the number of 100-byte records that can be
sorted for a dollar [4]. “One dollar’s worth” of comput-
ing time is computed using linear depreciation in the
same manner as PennySort. The DollarSort benchmark
was quickly revised to the PennySort benchmark when
it was noticed that a $2,000 system would run for nearly
50,000 seconds, or just over 13 hours [4].

2.1 Penny Sort

As mentioned earlier, the PennySort simply measures
the number of 100-byte records that can be sorted for
one penny assuming linear depreciation. A $1,000 sys-
tem, for example, would be allowed to sort for 946
seconds, or almost 16 minutes. Benchmarks like Pen-
nySort that take price into account create an interesting
tradeoff: one can use a very cheap system and spend
a long time sorting, or one can use a very expensive
system and spend a short time sorting. All the past
winners in this category have used a reasonably priced
consumer-grade system [5, 7].

Most recently, there has been impetus to migrate
from PennySort to a more general Performance/Price
sort [4]. Performance/Price sort is similar to PennySort,
but it fixes the sort time at one minute, and scores a
system by computing its sorted GB per dollar. This
revision was proposed to allay fears of PennySort be-
coming a “shopping competition,” and also to reduce
the run cycle time. However, recent trends in system
cost have had an interesting effect in conjunction with
this competition’s fixed time limit. This is addressed in
Section 4.

PennySort has two divisions: Indy and Daytona. The
Indy division is open to any sorting hardware and soft-
ware. The Daytona division is only open to commer-
cially available sorting software. DMSort is a research
sorting system that is not supported so we compete in
the Indy division.

The winners of the first PennySort competition in 1998

2



Course Project for CS736, Fall 2001

were PostmanSort in the Daytona category and NTSort
in the Indy category. PostmanSort sorted 1.27GB us-
ing a MSB radix sort algorithm on a Windows NT ma-
chine with two disks. NTSort is the command line sort
program provided with Windows 2000, and it sorted
1.45GB using a quicksort and merge technique [4].

Since 1999, PennySort has been dominated by Steno-
graph LLC’s product, HMsort. HMsort sorted 2.58GB
in 1999 and 4.2GB in 2000 and 2001 on a $1010 Win-
dows/Intel system. HMsort is a commercially available
sort for Windows. Its approach to sorting is similar to
NTSort’s in that it creates several small sorted files on
the first pass and merges them into a single file on the
second. Unlike NTsort, HMsort effectively overlaps
computation with I/O by employing a multithreaded de-
sign. In their 1999 results they cite disk seek overhead
as the primary bottleneck in their system [6].

The goal of DMSort is to win the 2002 Indy-class Pen-
nySort. The trend in PennySort scores during the past
several years suggests that we need to at least double
the previous winner’s score to be successful. Since
the previous winners sorted 4.2GB, our aim is to sort
8.4GB for one penny.

3 The DMSort Algorithm

For any sorting problem, a good choice of sorting al-
gorithm is critical for high performance. In particular,
since we have many hundreds of seconds to run and
our goal is to sort over 80 million records, our algo-
rithm choice must scale well with large data sizes. We
chose to base our sorting algorithm on most-significant-
byte radix sort. We chose radix sort instead of a
pairwise-comparison sort like quicksort because radix
sort has asymptotic complexity ������� while pairwise-
comparison sorts are �����	��
����� .
Sorting a large amount of data which doesn’t fit in
memory cannot be implemented as a linear scan over
the data—there must be at least two passes. Therefore
DMSort divides the sorting into two phases. The first
phase does a “rough” sort where the sort data is di-
vided by key value into a fixed set of “bins”. These
bins are recorded on disk for the second phase. The
second phase processes the bin files generated in phase
one, reading, sorting, and writing each one sequentially
to the output file. The process is illustrated in Figure 1

Figure 1: An overview of the DMSort algorithm. Sorting is di-
vided into two phases. The first phase reads data from disk 1 on the
left, collects it into bins based on its key values, and writes these
bin files to disk. The second phase reads the bin files produced in
phase one, sorts them, and writes them in order to the output file
back on disk 1.

and described below.

In the first phase, the sort data is read one segment at a
time. When a segment is read into memory, each data
record inside is first examined and then placed based
on its key value in a “bin” in memory. There are a fixed
number of these bins (set by the user), and each corre-
sponds to a distinct range of key values. When a bin’s
allocated memory fills, its data is written to a corre-
sponding temporary “bin file” on disk. There is one bin
file for each bin in memory. Each bin in memory can
be considered a cache for its corresponding bin file on
disk. Thus, as the first phase progresses, these bin files
accumulate data records that are guaranteed to all have
keys in a specific non-overlapping range.

The second phase takes as input the bin files generated
by phase one. Each bin file is read in order according
to the range of key values it contains. When one is
fully read into memory, it is sorted using a hybrid radix
and quicksort technique and written to the output file in
order.

In this algorithm, each phase must read data, process
data, and write data to disk. To take full advantage of
a system’s hardware, none of these tasks should wait
for another one to finish unnecessarily. That is, read-
ing, processing, and writing should all happen concur-
rently when possible. Concurrency can be obtained in
the sorting algorithm by using multiple threads or by
writing code that switches internally between tasks with
fine granularity.

3



Course Project for CS736, Fall 2001

There is a subtle issue regarding the concurrency of
reading and writing. In a system with two disks, two
blocks can be accessed concurrently. That is, one disk
can write a block while the other is reading a block. In
a system with only one disk, however, only one block
can be accessed at a time. Thus if � blocks must be
read and � blocks must be written, and � and � are
constant factors representing the relative difference be-
tween read and write performance, the single disk ma-
chine takes ��������� time to perform the operation,
whereas the two disk machine takes 	�
� ����������� � . So
if � and � are close in value, then the two disk ma-
chine will double the performance of the single disk
machine. This argument generalizes to multiple disks
in a straightforward manner. Therefore it is desirable to
use at least two disks for our algorithm, and to ensure
that the read/write performance is similar for both.

3.1 Theoretical Performance

DMSort overlaps reading, writing, and computation.
All the sorted data passes through each of these sec-
tions during each phase. Therefore, assuming perfect
overlap, the expected total time taken for a phase is
	���� ����������� � where � is reading time, � is the writ-
ing time and � is processing time in seconds. In prac-
tice, our algorithm is limited by I/O and we get nearly
perfect overlap of � with � and � . Therefore, we shall
model performance as 	���� ������� � . Given this model,
DMSort’s total performance measured as bytes per sec-
ond is given by

�

	���� ��������� � �!�"	���� ����#����$# �

where
�

is the number of bytes in the sort data size,
and �&% and �'% refer to the reading and writing times
for each phase of the algorithm.

HMSort’s algorithm operates in a similar manner to
DMSort’s, so with good overlapping of computation
and I/O, the theoretical performance is similar. How-
ever, NTSort does not overlap tasks, so it has a differ-
ent theoretical performance. It’s expected running time
is �(�)�*�+� . This is clearly a poor design for high-
performance sorting.

4 Hardware and System Software
for Sorting

DMSort uses a hardware configuration designed to
maximize the algorithm’s performance while minimiz-
ing cost. Given our algorithm’s theoretical perfor-
mance, it is important to select a system with at least
two disks and each disk should have similar read/write
performance.

The two predominant disk interfaces for consumer ma-
chines are SCSI and IDE. While SCSI disks offer
higher rotational speeds and better average seek times,
their performance/price ratios are much poorer than
IDE disks. Therefore we chose what we thought to be
the best of the consumer-grade IDE disks at the time,
the 60GB IBM Deskstar 60GXP. We clocked the raw
device access of these disks at about 38 MB/s; about
1.25 times the bandwidth of HMSort 2000’s disks.

In order to support fast I/O we selected a motherboard
with two onboard IDE disk controllers. We chose this
style of motherboard because it has four IDE channels,
allowing us to use up to four disks simultaneously, and
because it was only slightly more expensive than the
motherboard without the extra controller.

We selected a 1GHz AMD Athlon processor for our
CPU. These processors are very inexpensive, and pro-
vide performance comparable to alternative processors
which are more than twice the price. For memory, we
chose 768 MB of PC133 memory because it is also very
inexpensive and provides good performance.

All of the previous entrants to PennySort have used
Windows NT as their operating system. In the 2000
PennySort winner’s system, Windows cost about $120
or 12% of the total system cost (Figure 2). Today we
find Windows still retails for at least $110, while the
price of other system components has dropped signif-
icantly. For a system between $500 and $1000, Win-
dows consumes between 10% and 20% of the system
cost! However, in recent years Linux has become a ma-
ture and well supported operating system and it is free.
Assuming these operating systems have similar perfor-
mance, it is difficult to justify the increasing percentage
of total system cost consumed by Windows in light of
a free alternative. DMSort runs on both Windows 2000
and Linux, so we are able to compare the performance
of both. (Section 6.)

4



Course Project for CS736, Fall 2001

Figure 2: Breakdown of hardware component costs in our system as compared to the HMsort 2000 system. It is interesting to note that the
relative cost of hard drives has increased in our system, despite a decrease in their price. Also notable is the sharp increase in memory size
without a corresponding increase in price.

Based on the specifications of our disks we realized that
a linear scaling of the bandwidth of four disks would
saturate the 32-bit, 33MHz PCI bus in our system. Be-
cause IDE commands must go over the PCI bus as well,
it would be impossible get a four-fold performance in-
crease with four disks. However, there is a four-fold
price increase with four disks, so our performance/price
ratio drops. Using a faster bus could alleviate this prob-
lem but we were unable to find a motherboard with a
faster PCI bus at a reasonable price.

Restricting ourselves to three or fewer disks, we bench-
marked sequential disk performance in Linux and Win-
dows. The results were suprising. Raw device read
performance for two disks on separate controllers gives
almost the expected doubling, but reading from three
devices concurrently gives only an extra 5MB/sec of
bandwidth over two disks (Figure 3). Because this
is observed even when reading directly from the disk
(skipping the operating system’s file system layer) we
conclude that a driver level limitation exists. We did not
discover the root of this problem but instead decided to
operate with two disks.

Doing further analysis with two disks revealed another
problem. When reading from or writing through the
file system to a single disk at a time, we obtained very
fast performance. Reading from one disk and writing to
another (when they are on different IDE channels) can
proceed in parallel, so we expected to see nearly the
same performance as the in non-concurrent case. How-
ever, as Figure 4 shows, we did not obtain this scaling.
We contacted the Linux IDE subsystem maintainer, An-
dre Hedrick, about this problem. He explained that it is
a known problem with the IDE subsystem on Linux,
and he is working on a fixed version. Hoping to im-

Figure 3: Performance measurements of disk bandwidth on our
test system. From the left, the first two bars show about 38MB/sec
reading rate for both raw device access and reading through the file
system. The second two bars show concurrent read performance.
The aggregate bandwidth here is nearly double the single disk case,
as expected. However, in the three disk case, performance drops
severely and we obtain hardly any performance increase at all. Tests
performed under Linux.

prove performance, we tried our system on Windows
but got a similar performance measure for concurrent
operation.

Based on these and other measurements we concluded
that DMSort would do best using two disks and that
our maximum performance under Linux for each phase
would be at most 21 MB/s, assuming perfect sequential
access. Our final choice of system hardware with prices
is presented in Figure 2 along with the components and
prices of the most recent PennySort winner.

It is interesting to note the trends in component cost rel-
ative to the previous PennySort system. While memory
cost has remained about 14% of total system cost, our
systems memory is 13% of the target data set size, com-

5



Course Project for CS736, Fall 2001

Figure 4: Expected concurrent read/write performance. From
left to right, the single-disk read followed by the single-disk write
bandwidth are shown. Next we see the performance we might ex-
pect if we got a linear scaling of the single-disk cases. However,
we instead see only �� of this performance. This is attributed to an
interaction between the Linux IDE subsystem and the filesystem.

pared to only 3% for the previous winner. The rapid
increase in memory density and decrease in cost has
also significantly affected Performance/Price sort. Be-
cause disks remain very slow compared to memory size
and CPU speed, and memory prices have fallen signif-
icantly, the 60 second Performance/Price sort can now
be implemented as an internal sort using 1GB of mem-
ory. We conjecture that these trends will continue for
the near term. These trends imply that a fixed running
time for Performance/Price sort does not ensure that a
two-pass sort is practical. Thus, fixing the running time
may not make for good I/O subsystem benchmarking.

5 DMSort Implementation

DMSort was implemented for the system configuration
shown in Figure 2. The software works on both Linux
and Windows. All three fundamental operations, read-
ing, writing, and processing are overlapped for both
sort phases. Overlapped execution is accomplished by
switching internally between tasks with fine granular-
ity.

Before running DMSort, the sort data resides on disk 1.
The first phase of the sorting process reads the sort data
and bins it as described in Section 3. Bins in memory
are written to disk 2 as they fill. Because bins fill rela-
tively evenly in memory, blocks of binned data are writ-
ten to disk in an unpredictable order. The second phase
reads the bin files from disk 2 in order. Because the

bin file blocks are interleaved on disk during phase one,
phase two’s reading rate suffers due to seeking. When
each bin file is finished reading, its records are sorted
using MSB radix sort. Once they have been placed into
a user-definable number of radix bins, the sort is fin-
ished off with quicksort on each radix bin. Finally, the
sorted bins are written in order to the output file on disk
1.

Asynchronous I/O can be implemented in several ways,
and a common method employed in PennySort in the
past is multithreading [7]. However, Windows provides
a specific asynchronous I/O implementation (via Read-
FileEx() and WriteFileEx()), and Linux has two asyn-
chronous I/O implementations available (KAIO from
SGI [1], and glibc’s POSIX asynchronous I/O imple-
mentation). When designing DMSort, we conjectured
that the more general asynchronous I/O implementa-
tions would give us good performance, because asyn-
chronous I/O is a common problem. From our testing
and experiments, we found no significant performance
limitations of asynchronous I/O for the kinds of access
patterns we require, so we continue to employ it.

DMSort has a number of configurable parameters. For
example, the number of bin files, the size of internal
buffers, the amount of memory allocated to the sort-
ing process, and the operational granularity may be set.
Finding the best set of parameters for DMSort is diffi-
cult, but permits experimentation and fine grain bench-
marking of operating system and hardware behavior.

6 Performance and Results

As mentioned in Section 3.1, we model DMSort’s ex-
pected best running time for each phase as 	 ��� ������� �
where � and � are the read and write running times.
Read and write performance are measured in MB/sec.
As shown in Figure 3, the concurrent reading and writ-
ing bandwidths of our disks are 28.6 and 21.1 MB/sec
respectively. Assuming that � ��� � # and � ��� � # ,
we can set the upper bound on our throughput to 21.1
MB/sec for phase one and phase two, for an overall
throughput of 10.5 MB/sec. We emphasize that this fig-
ure is a conservative upper bound. In practice we will
not achieve it because the disk I/O is not fully sequen-
tial.

DMSort on Linux is able to sort 125 million 100 byte

6



Course Project for CS736, Fall 2001

records on our system in 1380 seconds. The total sort-
ing rate is 8.64 MB/sec. The binning rate (phase 1) is
18.45 MB/sec and the sorting rate (phase 2) is 16.31
MB/sec. Compared to the 2000 and 2001 results for
HMSort, DMSort sorts 2.7 times as much data and
achieves a sorting rate 1.78 times greater.

To draw a different comparison to year 2000 HMsort,
we measured DMSort in Windows 2000. Since our
system is cheaper than the HMSort system, comparing
sheer volume of data sorted is of dubious value. In-
stead the total sorting throughput makes a better point
of comparison since the sort is I/O bound. Furthermore,
we must take into account that our disks are 25% faster
than theirs. Our measured sorting throughput under
Windows when sorting 80 million records is 7.38 MB/s,
while HMsort 2000 achieved 4.84 MB/s sorting 45 mil-
lion records. DMSort shows an improvement of 52%,
which is beyond what might be expected given the 25%
increase in disk bandwidth. We have concluded that our
system’s larger amount of RAM relative to the data set
size allows us to achieve better locality on the tempo-
rary storage disk, hence reducing seek time. This im-
plies that HMsort could do at least as well as DMSort in
Windows if it were run on a system with a large amount
of memory.

Because Linux is the primary platform for DMSort and
it provides a longer PennySort running time, all of the
following measurements were taken under Linux.

The phase one bandwidth is very close to the upper
bound performance mentioned previously. This is not
surprising because the I/O proceeds sequentially. How-
ever, the second phase does significantly worse. We
first surmised that this was due entirely due to the disk
seek overhead when performing a non-sequential read
of the bin files. We modified the second phase of DM-
Sort to measure the read performance alone. The mod-
ified version simply read the bin files and discarded
the results, without sorting or writing. We obtained
31MB/sec of reading performance. This is 20% slower
than the measured sequential read performance on our
drives. Looking at our previous measurements of con-
current reading and writing, the sequential read perfor-
mance is 28MB/sec. If we assume that we lose 20%
of the concurrent read rate due to seeking, we would
expect about 22MB/sec read performance. This is sig-
nificantly higher than the observed 14-16MB/sec sort
rate. However, if we assume that the writing disk must
wait while the reading disk is seeking (for example,

Figure 5: A measure of the degree we are overlapping sorting
with I/O time. The pair of bars at the far left were obtained by run-
ning the second phase of DMSort modified to simply read back the
bin files and discard them. Since sorting and writing were disabled,
the reading time itself was measured. The next pair of bars to the
right show what happens to execution time when sorting is enabled.
Even though the sorting time has grown by more than a factor of 15,
the total sort rate has grown by less than a factor of 1.1. The sets
of bars on the right demonstrate DMSort runs with writing enabled
and obtaining nearly perfectly overlapped computation and I/O.

the block I/O layer might lock while one disk is op-
erating) and scale back the expected sequential concur-
rent write performance of 21MB/sec accordingly, we
get 16.8MB/sec. Given the numbers, this conjecture
seems plausible, but we have yet to find a way to test it.

We have performed “null-sort” experiments so that
DMSort simply reads the bin files and writes them to
disk without sorting. These experiments give almost
exactly the same performance results as when we are
sorting (Figure 5). This suggests that DMSort success-
fully overlaps sorting computation with I/O, and further
suggests that the slowdown in the second phase is a lim-
itation in the OS.

7 Conclusion and Future Work

We have presented a sorting system, DMSort, that beats
all previously published PennySort records. DMSort
obtains high PennySort scores using a combination of
inexpensive, high performance hardware, sorting soft-
ware that successfully overlaps operations, and a free
operating system.

7



Course Project for CS736, Fall 2001

This work shows that sorting benchmarks can expose
deficiencies in commodity hardware and software sub-
systems, like the Linux IDE concurrency problem. It
also highlights the relative rates of technological ad-
vances in hardware and software systems.

DMSort performs well but could be further improved.
At present it runs best on data which has keys evenly
distributed throughout the keyspace. An adaptive ap-
proach to dividing the keyspace would be necessary to
make DMSort robust. Furthermore, DMSort does not
cache the first several bins in memory between phase
one and two. Because memory sizes are so large (our
memory size is approaching 10% of our sort data size)
it could potentially save a significant amount of time
by retaining all or part of the first few bins in memory
between the sort phases.

8 Acknowledgments

We would like to thank Andrea Arpaci-Dusseau for
her insightful comments and suggestions on DMSort,
PennySort, and sorting benchmarks in general. We
would like to thank Remzi Arpaci- Dusseau for reas-
suring us that using two or more disks is a good idea
for PennySort. Finally, we would like to thank Nicole
T. Perna’s laboratory for sacrificing a workstation for
the cause.

References

[1] Rajagopal Ananthanarayanan and SGI. Posix asyn-
chronous i/o. http://oss.sgi.com/projects/kaio/.

[2] Shinsuke Azuma, Takao Sakuma, Tetsuya Takeo,
Takaaki Ando, and Kenji Shirai. Diaprism hardware
sorter – sort a million records within a second, 2000.

[3] Anon. et al. A measure of transaction processing
power, 1985.

[4] J. Gray, J. Coates, and C. Nyberg. Performance/price
sort and pennysort, 1998.

[5] Jim Gray. Sort benchmark home page.
http://research.microsoft.com/barc/SortBenchmark/.

[6] Brad Helmkamp and Keith McCready.
1999 performance/price sort and pennysort.
http://research.microsoft.com/barc/SortBenchmark/
HMsort 1999PennySort.doc, 1999.

[7] Brad Helmkamp and Keith McCready.
2000 performance/price sort and pennysort.
http://research.microsoft.com/barc/SortBenchmark/
Y2000 PennySort.pdf, 2000.

[8] C.A.R. Hoare. Quicksort, 1962.

[9] Chris Nyberg, Tom Barclay, Zarka Cve-
tanovic, Jim Gray, and Dave Lomet. Alpha-
sort: A cache-sensitive parallel external sort.
http://research.microsoft.com/barc/SortBenchmark/
AlphaSort.html, 1994.

[10] Florentina I. Popovici, John Bent, Brian Forney, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
Datamation 2001: A sorting odyssey. not sure what
journal..., 2001.

[11] D. L. Shell. A high-speed sorting procedure, 1959.

8


