CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN - MADISON

Prof. David A. Wood
TAs Spyros Blanas, Priyananda Shenoy \& Shengnan Wang
Midterm Examination 1
In Class (50 minutes)
Monday, February 18, 2008
Weight: 15\%

CLOSED BOOK, NOTE, CALCULATOR, PHONE \& COMPUTER

The exam consists of four two-sided pages and one scratch sheet at the end.
Plan your time carefully, since some problems are longer than others.

NAME: \qquad KEY \qquad

SECTION: \qquad

ID\# \qquad

Problem Number	Maximum Points	Actual Points
1	4	
2	3	
3	3	
4	4	
5	4	
6	4	
7	4	
8	4	
Total	30	

Problem 1 (4 points)

a) What is the largest (most positive) integer that can be represented as an unsigned integer using 10 bits?

```
2^10-1 = 1023
```

b) What is the largest (most positive) integer that can be represented as a two's complement integer using 10 bits?
$2^{\wedge}\{10-1\}-1=511$

Problem 2 (3 points)
Consider bitwise logical operations: Compute (1011 AND 0101) OR (NOT 1011)

1011 and $0101=0001$, $\operatorname{not} 1011=0100$, ans $=0101$

Problem 3 (3 points)

Convert the number -91 (base ten) into two's complement representation with 8 bits.
$91=01011011,-91=10100100+1=10100101$

Problem 4 (4 points)

Consider the 8-bit binary bit pattern 11000101. What is its decimal (base ten) value if the bit pattern is interpreted as:
a) An unsigned integer?

197
b) A two's complement integer?
$00111010+1=00111011=-59$

Problem 5 (4 points)

a) Add the following 5-bit two's complement binary numbers: $01111+00110$. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.
$01111+00110=10101,15+6=-11$, overflow
b) Add the following 5-bit two's complement binary numbers: $10110+01101$. Express your answer in 5-bit two's complement. Please indicate if there was an overflow.

```
10110 + 01101 = 00011, -10 + 13 = 3, no overflow
```


Problem 6 (4 points)

a) Convert the binary value 011000010011001000000000 into an ASCII string.
$011000010011001000000000=0 \times 613200=" a 2 "$
b) Convert the null-terminated string " $\mathbf{m P 3}$ " into binary. (See attached ASCII table.)

0x6D503300 = 01101101010100000011001100000000

Problem 7 (4 points)

a) What is the base ten (decimal) value represented by binary 110.1011 ?

$$
4+2+0+1 / 2+0+1 / 8+1 / 16=6.6875
$$

b) The bits for an IEEE floating point number are allocated as follows:

$\operatorname{sign}(1 \mathrm{bit})$	exponent (8 bits)	fraction (23 bits)

where $\mathrm{N}=(-1) \mathrm{S} \times 1$.fraction $\times 2$ exponent-127
Convert 11010100110100000000000000000000 to decimal.
-1 * e\{169-127 $\}$ * $1.101=-1.625 *{ }^{2 \wedge 42}$

Problem 8 - Circle the correct answer (2 points each)

I. Which of the following does the definition of a Turing machine include?
a. A set of states.
b. A monitor.
c. A set of input/output symbols.
d. A fan.
e. A hard disk.
f. One or more halting states.
g. A printer.
h. A unit which takes two 32-bit integers as input and writes the sum at the output.
i. A mop.
j. One initial state.
k. A power supply unit.

1. A state transition table.
m. Random access memory (RAM).

II. Pair each level of abstraction with its definition.

a. Problem.
b. Algorithm.
c. Language.
d. Instruction set architecture.
e. Microarchitecture.
f. Circuit.
g. Device.

1) An interface between the program and the underlying computer hardware.
2) A precisely stated step-by-step procedure that is guaranteed to terminate.
3) An unambiguous, artificial system of symbols and rules that controls the behavior of a computer.
4) A network of "black boxes" which evaluate logic expressions.
5) A pMOS transistor.
6) The organization of the hardware resources in a specific processor.
7) A description, in natural language, of a series of steps.

A	B	C	D	E	F	G
7	2	3	1	6	4	5

ASCII Table

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nul	00	sp	20	@	40		60
soh	01	!	21	A	41	a	61
stx	02	"	22	B	42	b	62
etx	03	\#	23	C	43	c	63
eot	04	\$	24	D	44	d	64
enq	05	\%	25	E	45	e	65
ack	06	\&	26	F	46	f	66
bel	07	,	27	G	47	g	67
bs	08	(28	H	48	h	68
ht	09)	29	I	49	i	69
lf	0A	*	2A	J	4A	j	6A
vt	0B	+	2B	K	4B	k	6B
ff	0C	,	2 C	L	4C	1	6C
cr	0D	-	2D	M	4D	m	6D
so	0E	.	2E	N	4E	n	6E
si	0F	/	2F	O	4F	o	6F
dle	10	0	30	P	50	p	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	s	73
dc4	14	4	34	T	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	y	79
sub	1A	:	3A	Z	5A	Z	7A
esc	1B	;	3B	[5B	\{	7B
fs	1 C	<	3 C	1	5 C	I	7 C
gs	1D	$=$	3D]	5D	\}	7D
rs	1E	>	3 E	\wedge	5E	\sim	7E
us	1F	?	3F	-	5F	del	7F

Scratch Sheet (in case you need additional space for some of your answers)

