
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

Prof. David A. Wood
TAs Spyros Blanas, Priyananda Shenoy, Shengnan Wang

Midterm Examination 4
In Class (50 minutes)
Friday, May 9, 2008

Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam in two-sided and has TWELVE pages, including two blank pages and a copy
of the Standard ASCII Table, some Trap Service Routines description and the LC-3
Instruction Set handout on the final page (please feel free to detach this final page, but
insert it into your exam when you turn it in).

You are required to present a valid UW-Madison student ID card or other government-
issued photo ID to one of the teaching assistants who are proctoring this exam before
leaving the room. If you fail to do so, we cannot grade your exam.

Plan your time carefully, since some problems are longer than others.

NAME: ____________________KEY_________________________________

SECTION:___

ID# __

 “Green”

1

Problem
Number

Maximum
Points

Graded By

1 12 SW

2 8 SB

3 20 SB

4 25 PS

5 26 SW

6 9 PS

Total 100

2

Problem 1 (12 points): Short Answers

a. The LC-3 assembly process is done in two complete passes through the entire
assembly language program. What is the objective of the second pass?

Generates machine code for each instruction

b. What single instruction is equivalent to the following two LC-3 instructions?

LD R0, FooBar
LDR R0, R0, #0

LDI R0, FooBar

c. What single instruction is equivalent to the following one LC-3 instruction?

RET

JMP R7

d. What is the purpose of .BLKW pseudo-op?

Allocates a block of memory

Problem 2 (8 points): Memory-Mapped I/O

a) An LC-3 instruction loads from the address xFE02. How does the LC-3 know whether
to load from KBDR or from memory location xFE02?

All addresses in the range xFE00-xFFFF are reserved for I/O. The Address
Control Logic knows that the location xFE02 maps to the KBDR.

b) How are the bits in the KBSR defined?
KBSR[15] = is there a new character pressed.

KBSR[14-1] = 0

3

Problem 3 (20 points): Two-Pass Assembly Process

An assembly language LC-3 program is given below:

1 .ORIG x3000
2
3 MAIN
4 LEA R0, MSG
5 PUTS
6 JSR RL
7 HALT
8
9 RL
10 ST R7, RL_RETURN
11 LD R3, ENTER ; initialize R3 to 'enter char'
12 AND R1, R1, #0
13 ADD R1, R1, BUFFER ; initialize R1 to point to the
14 ; start of buffer
15
16 LD R0, PROMPT
17 OUT ; show prompt
18
19 RL_START
20 GETC
21 OUT ; read input and echo it back
22
23 NOT R4, R3
24 ADD R4, R4, #1
25 ADD R4, R0, R4
26 BRZ RL_END ; leave if user hits enter
27
28 STR R0, R1, #0
29 ADD R1, R1, #1
30 BR RL_START ; write char, increment pointer,
31 ; read next char
32
33 RL_END
34 RET
35
36 BUFFER .BLKW x000F
37 RL_RETURN .FILL x0000
38 PROMPT .FILL x003E ; '>' character
39 ENTER .FILL x000A ; 'enter' character
40 MSG .STRINGZ “Enter input:”
41
42 .END

4

a. Fill in the symbol table for the program:

Symbol Address
MAIN x3000

RL x3004
RL_START x300A

RL_END x3013
BUFFER x3014

RL_RETURN x3023
PROMPT x3024
ENTER x3025

MSG x3026

b. Assuming that both passes of the assembler were to execute, write the binary word
(machine language instruction) that would be generated by the assembler for the
instruction at line 11 of the program.

0010 000 0 0001 1111 = x201F

c. The programmer intended that the RL subroutine reads user input, writes it in
BUFFER and returns when user types enter. There are two errors in this subroutine.
For each, describe the error and indicate whether it will be detected at assembly
time or at run time.

Assembly time error: ADD R1, R1, BUFFER is not valid. It should be LEA
R1, BUFFER

Runtime Error: The trap GETC overwrites R7 so subroutine RL doesn't
return properly.

5

Problems 4,5,6 make use of the following program

.ORIG x3000
0 ST R0, SAVER0
1 ST R1, SAVER1
2 JSR SUBROUTINE1
3 LD R0, SAVER0
4 LD R1, SAVER1
5 HALT

6 SUBROUTINE1 ST R7, SAVER7
7 ST R2, SAVER2
8 ST R3, SAVER3
9 CHECKPOINT1 LEA R4, BUFFER
10 LD R3, DELIM
11 NOT R3, R3
12 ADD R3, R3, #1
13 LOOP_START JSR SUBROUTINE2
14 ADD R2, R0, R3
15 BRz LOOP_END
16 STR R0, R4, #0
17 ADD R4, R4, #1
18 BR LOOP_START
19 LOOP_END AND R0, R0, #0
20 STR R0, R4, #0
21 LD R2, SAVER2
22 LD R7, SAVER7
23 LD R3, SAVER3
24 RET

25 SUBROUTINE2 LDI R1, KBSR
26 BRzp SUBROUTINE2
27 LDI R0, KBDR
28 CHECKPOINT2 RET

29 SAVER1 .FILL x0000
30 SAVER2 .FILL x0000
31 SAVER7 .FILL x0000
32 SAVER0 .FILL x0000
33 SAVER3 .FILL x0000
34 DELIM .FILL x003B
35 KBSR .FILL xFE00
36 KBDR .FILL xFE02
37 BUFFER .BLKW x0030

.END

6

Problem 4 (20 points): Traps and Subroutines

a) In the program in page 6, what registers are callee-saved, and what registers are caller-
saved?

Caller Saved: R0,R1
Callee Saved: R7,R2,R3

b) Is there a register which cannot be callee-saved? If yes, why not?

R7. There is no point in saving R7 in the callee, since R7 gets overwritten by the JSR
instruction.

c)What will be the value in R7:
1. If you put a breakpoint at Checkpoint1?

x3003

2. If you put a breakpoint at Checkpoint2?

x300E

d) Can interrupts use R7 to hold the return address? If no, why not?

 No. Interrupts can occur at any time, so the programmer cannot save-restore
values as could be done in the case of subroutines.

7

Problem 5 (26 points): Input/Output

a) In the program in page 6, what does the subroutine SUBROUTINE2 do?

Polls the keyboard until it gets a character

b) When does the loop in SUBROUTINE1 terminate?

When the key pressed is ';'

c) What does the subroutine SUBROUTINE1 do?

Reads characters from keyboard and copies it into a buffer, terminates when a ';' is
pressed

d) What does this program do?

Reads characters from keyboard and copies it into a buffer

e) Assume that the label BUFFER points to address x3037. If the user types the following
sequence:

A B C ; K M \ +
What would be the contents of the following memory locations

Address ASCII value

x3037 'A'

x3038 'B'

x3039 'C'

x303A 0

8

Problem 6 (9 points): Input/Output

a) What is the purpose of the Keyboard Status Register?

The keyboard status registers maintains a flag indicating “has the character in KBDR
been read?”. If it's 0, that means the character has already been read, if it's 1 it means
the character is new and has not been read.

b) What problem could occur if the keyboard hardware doesn't check the KBSR before
writing to the KBDR?

The previously typed value in KBDR will be lost.

c) Circle the correct combination that describes the program on page 6.
1. Special Opcode for I/O and interrupt driven
2. Special Opcode for I/O and polling
3. Memory mapped and interrupt driven
4. Memory mapped and polling

9

Scratch Sheet 1 (in case you need additional space for some of your answers)

10

ASCII Table

Characte
r

He
x

Characte
r

He
x

Characte
r

He
x

Characte
r

He
x

 nul 00 sp 20 @ 40 ` 60
 soh 01 ! 21 A 41 a 61
 stx 02 " 22 B 42 b 62
 etx 03 # 23 C 43 c 63
 eot 04 $ 24 D 44 d 64
 enq 05 % 25 E 45 e 65
 ack 06 & 26 F 46 f 66
 bel 07 ' 27 G 47 g 67
 bs 08 (28 H 48 h 68
 ht 09) 29 I 49 i 69
 lf 0A * 2A J 4A j 6A
 vt 0B + 2B K 4B k 6B
 ff 0C , 2C L 4C l 6C
 cr 0D - 2D M 4D m 6D
 so 0E . 2E N 4E n 6E
 si 0F / 2F O 4F o 6F
 dle 10 0 30 P 50 p 70
 dc1 11 1 31 Q 51 q 71
 dc2 12 2 32 R 52 r 72
 dc3 13 3 33 S 53 s 73
 dc4 14 4 34 T 54 t 74
 nak 15 5 35 U 55 u 75
 syn 16 6 36 V 56 v 76
 etb 17 7 37 W 57 w 77
 can 18 8 38 X 58 x 78
 em 19 9 39 Y 59 y 79
 sub 1A : 3A Z 5A z 7A
 esc 1B ; 3B [5B { 7B
 fs 1C < 3C \ 5C | 7C
 gs 1D = 3D] 5D } 7D
 rs 1E > 3E ^ 5E ~ 7E
 us 1F ? 3F _ 5F del 7F

Trap Service Routines

Trap Vector Assembler Name Description
x20 GETC Read a single character from the keyboard. The Character
 is not echoed onto the console. Its ASCII code is copied
 into R0. The high eight bits of R0 are cleared.
x21 OUT Write a character in R0[7:0] to the console display.
 … … …

x25 HALT Halt execution and print a message on the console.

11

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.
Page 2 has an ASCII character table.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ß PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ß PC’, PC ß BaseR, R7 ß temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

12

