
CS 252 Spring 2008 Homework 4CS 252 Spring 2008 Homework 4CS 252 Spring 2008 Homework 4CS 252 Spring 2008 Homework 4

1a.

When O is 0, the MUXes choose the B inputs directly so the sum obtained is (A+B).

When O is 1, the MUXes choose the negated bits of B (i.e. 1’s complement of B). Also

the carry-in of the left most adder is set to 1, the net effect of which is that the 2’s

complement of B is computed, and the result is A+(-B) = A – B.

b. An overflow occurs when the most significant bits of the input are the same, but the

MSB of the output differs from the input. When the MSBs of the inputs are different, no

overflow can happen. So we can detect overflows by looking at A3,B3 and F3

A3 B3 F3 OVF

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0

1 1

1 1

The expression corresponding to OVF is

BBBB3333 and and and and F3F3F3F3))))

2

a.

1

0

1

expression corresponding to OVF is (A(A(A(A3333 and Band Band Band B3333 and and and and not not not not F3F3F3F3) OR () OR () OR () OR (

0

1

0

) OR () OR () OR () OR (not not not not AAAA3333 andandandand not not not not

The output for each of the states is:

States

A B C D

E

F G

H

b.

We add a new input PPPP corresponding to the Pedestrian button.

(states A ,B ,C ,D) the state changes to amber (state E) if the button is pressed. In all

other cases the button is ignored

3.

The output for each of the states is:

Output

00110

01010

10001

10010

corresponding to the Pedestrian button. If vehicle light is green,

tate changes to amber (state E) if the button is pressed. In all

other cases the button is ignored.

vehicle light is green,

tate changes to amber (state E) if the button is pressed. In all

Each state corresponds to the number of balls left in the

all the balls are gone, i.e. state is ‘0’.

‘P1=1’ means Player 1 picked 1 ball from the pile.

4. The idea of universality still holds. Consider two machines A and B with A’s word

length being greater than B’s.

the extra bits. What about B?

multiple operations which achieve the same result.

add numbers of size ‘a’ (A’s word length)

‘b’(B’s word length) bits at a time, making sure that t

between additions. Similarly all operations that

5.

1. Type1 = 100%, Type2 = 0%, Type3 = 0%

“Average” number of cycles per instruction

= (100 * 1 + 0 * 20 + 0 * 500

Number of instructions per second = (2 Billion) / 1 = 2 Billion

2. Type1 = 95%, Type2 =

“Average” number of cycles per i

= (95 * 1 + 4

Each state corresponds to the number of balls left in the pile. The game is over when

gone, i.e. state is ‘0’. Each transition is labeled by player’s choice:

‘P1=1’ means Player 1 picked 1 ball from the pile.

4. The idea of universality still holds. Consider two machines A and B with A’s word

being greater than B’s. A can do all the operations that B can do, by ignoring

What about B? Well, B can simulate A’s operation by carrying out

hich achieve the same result. Taking addition for example,

(A’s word length) by carrying out two or more additions, taking

bits at a time, making sure that the carry is propagated correctly

Similarly all operations that A can do, B can simulate.

Type1 = 100%, Type2 = 0%, Type3 = 0%

“Average” number of cycles per instruction

100 * 1 + 0 * 20 + 0 * 500)/ 100 = 1

instructions per second = (2 Billion) / 1 = 2 Billion

%, Type2 = 4%, Type3 = 1%

“Average” number of cycles per instruction

4 * 20 + 1 * 500)/ 100 = 6.75

pile. The game is over when

Each transition is labeled by player’s choice:

4. The idea of universality still holds. Consider two machines A and B with A’s word

B can do, by ignoring

Well, B can simulate A’s operation by carrying out

Taking addition for example, B can

carrying out two or more additions, taking

he carry is propagated correctly

A can do, B can simulate.

instructions per second = (2 Billion) / 1 = 2 Billion

Number of instructions per second = (2 Billion) / 6.75 = 0.296 Billion

3. Type1 = 95%, Type2 = 1%, Type3 = 4%

“Average” number of cycles per instruction

= (95 * 1 + 1 * 20 + 4 * 500)/ 100 = 21.15

Number of instructions per second = (2 Billion) / 21.15 = 0.094 Billion

4. Type1 = 70%, Type2 = 20%, Type3 =10%

“Average” number of cycles per instruction

= (70 * 1 + 20 * 20 + 10 * 500)/ 100 = 54.7

Number of instructions per second = (2 Billion) / 54.7 = 0.037 Billion

6.

• Fetch – The next instruction is loaded from memory into the Instruction Register

of the Control Unit

• Decode – This phase evaluates the instruction in order to figure out what the

microarchitecture is being asked to do.

• Evaluate Address – This phase computes the address of the memory location

that is needed to process the instruction.

• Fetch Operands – This phase obtains the source operands needed to process the

instruction.

• Execute – This is when the actual execution of the instruction happens.

• Store result – The result is written to its destination.

