
CS 252 Homework 5 Solutions 

1) The addressability of a memory is the number of bits in each location. So if a 

memory’s addressability is 32 bits, then each location is 32 bits long. The MDR 

has the same size as the memory locations, so the MDR is 32 bits 32 bits 32 bits 32 bits longlonglonglong. The size 

of the MAR is determined by the number of locations, which is not mentioned 

here, so we cannot determine the size of the MAR. 

2)  

a. We need a unique address for each memory location, so we nee log2 256 

= 8 bits8 bits8 bits8 bits of address. 

b. Since PC-offsets are 2’s complement, to specify a location which is +/- 

15 locations away from current instruction, we need 5 bits5 bits5 bits5 bits. 

c. When the current instruction is at location 3, the PC would have value 4 

(since PC points to the next instruction to execute). So the PC-relative 

offset of location 12 would be (12-4) = 8888. 

3) If there are 32 registers, each of DR,SR1,SR2 field in the add instruction would 

be 5 bits long, so the operands would take 5 + 5 + 5 = 15 bits to specify. 

Combined with 4 bits for the opcode, the total length of the add instruction 

would be 4 + 15 = 19 bits long,  but LC3 instructions cannot be more than16 

bits long. 

4)  

a. There are several ways of doing it. In all the examples below we want to 

move contents of R3 to R1 

i. Using A A A A ANDANDANDAND    A = AA = AA = AA = A, we can write RRRR1111    <<<<----    RRRR3333    AND RAND RAND RAND R3333 

ii. Using add-immediate, we can write R1R1R1R1    <<<<----    RRRR3333    + + + + 0000 

b. Using and-immediate, we can write R3 <R3 <R3 <R3 <----    R3 AND R3 AND R3 AND R3 AND 0000 

c. Consider the add-immediate instruction R1 <R1 <R1 <R1 <----    R1 + R1 + R1 + R1 + 0000. The contents of 

R1 are not changed. But the condition codes ‘n’,’z’,’p’ are set according 

to the result of the add instruction  which is nothing but the contents of 

R1 itself. 

d. As seen earlier, subtraction can be converted to addition by negating the 

second operand.  So first we calculate the 2’s complement of R2 and then 

add it to R3. 



i.i.i.i. R2 <R2 <R2 <R2 <----    NOT R2NOT R2NOT R2NOT R2    

ii.ii.ii.ii. R2 <R2 <R2 <R2 <----    R2 R2 R2 R2 ++++    1 1 1 1     

iii.iii.iii.iii. R1 <R1 <R1 <R1 <----    R3 R3 R3 R3 ++++    R2R2R2R2    

e. NoNoNoNo. Every instruction which changes the condition codes changes all the 

three bits. And at any one time, only one of the three bits can be ‘1’. So 

you cannot have two bits set to ‘1’ at the same time. 

5) Let us decode the instructions 

Location Instruction Decoded instruction 

0x4400 1001 011 001 111111 R3 <- NOT R1 

0x4401 0001 011 011 100001 R3 <- R3 + 1 

0x4402 0001 011 010 000011 R3 <- R2 + R3 

0x4403 0000 100 001 000000 BR[n=1] to PC + 0x40 

So if the sequence of operations caused the last branch statement to execute, 

the ‘n’ condition code must have been ‘1’ , which means that the result of the 

3rd instruction was negative. Since R3 is the 2’s complement of R1, the 3rd 

instruction effectively was R3 <- R2 – R1. So if R2 – R1 was negative, we can 

conclude R2 was less than R1R2 was less than R1R2 was less than R1R2 was less than R1. 

6) Consider each instruction 

a. 0001 001 001 1 00000 => R1 <- R1 + 0. No register content is 

modified by this instruction, but the condition codes are modified. So 

this cannot be used as NOP.  

b. 0000 000 000000010 => This is the branch instruction, but it 

branches only when all  ‘n’,’z’,’p’ are 0, which cannot happen. So this 

is a branch which never executes so can be used as a NOP. 

c. 0000 111 000000001 => This is the branch instruction, which 

branches when either of ‘n’,’z’,’p’ are 1, which is always the case. So 

this is an unconditional branch. But this cannot be used as NOP 

because the branch would skip over one instruction (PC already points 

to next instruction and this would move PC by one more). 

The only thing ADD does different is that it modifies the condition 

codes. 

7) This is by demorgan’s law: A OR B = NOT( NOT A AND NOT B) 

a. 1001 011 001 111111  => R3 <- NOT R1  

b.b.b.b. 1001 1001 1001 1001 101010101 01 01 01 010101010    111111111111111111111111        => R5 => R5 => R5 => R5 <<<<----    NOT R2NOT R2NOT R2NOT R2    

c. 0101 110 011 000 101 => R6 <- R3 AND R5 

d.d.d.d. 1001 1001 1001 1001 100100100100    110110110110    111111111111111111111111        => R4=> R4=> R4=> R4    <<<<----    NOT R6NOT R6NOT R6NOT R6    



    

8) Lets consider each instruction one by one 

a.  1110 0110 0011 1111 => LEA: R3 <- PC + offset. Here offset is 0x3F. 

Since PC not points to 0x3011, R3 will have value 0x3011 + 0x3F = 

0x3050. 

b. 0110 1000 1100 0000  => LDR: R4 <- M[R3+0]. So R4 will get memory 

value at address 0x3050 which is 0x70A4. 

c. 0110 1011 0000 0000  => LDR: R5 <- M[R4+0]. So R5 will get memory 

value at address 0x70A4 which is 0xABCD. 

So the final value at R5 is 0xABCD0xABCD0xABCD0xABCD.  

We can replace this by a single instruction located at 0x3010 by using indirect 

addressing. The operation which we carried out was to load M[ M[ PC + offset ] ] 

into R5, which can be done using indirect addressing in one instruction. 

LDI R5, 0x3F => 1010 1010 0011 1111 

9)  

 


