CS 252 Homework 5 Solutions

1) The addressability of a memory is the number of bits in each location. So if a memory's addressability is 32 bits, then each location is 32 bits long. The MDR has the same size as the memory locations, so the MDR is 32 bits long. The size of the MAR is determined by the number of locations, which is not mentioned here, so we cannot determine the size of the MAR.
2)

a. We need a unique address for each memory location, so we nee $\log _{2} 256$ $=8$ bits of address.
b. Since PC-offsets are 2's complement, to specify a location which is +/15 locations away from current instruction, we need 5 bits.
c. When the current instruction is at location 3, the PC would have value 4 (since PC points to the next instruction to execute). So the PC-relative offset of location 12 would be (12-4) = 8 .
3) If there are 32 registers, each of $D R, S R 1, S R 2$ field in the add instruction would be 5 bits long, so the operands would take $5+5+5=15$ bits to specify. Combined with 4 bits for the opcode, the total length of the add instruction would be $4+15=19$ bits long, but LC3 instructions cannot be more than 16 bits long.
4)
a. There are several ways of doing it. In all the examples below we want to move contents of R3 to R1
i. Using A AND $A=A$, we can write $\mathrm{R} 1<-\mathrm{R} 3$ AND R3
ii. Using add-immediate, we can write R1<-R3+0
b. Using and-immediate, we can write R3 <- R3 AND 0
c. Consider the add-immediate instruction $\mathrm{R} \mathbf{1}<-\mathrm{R} \mathbf{1}+\mathbf{0}$. The contents of R1 are not changed. But the condition codes ' n ',' z ',' p ' are set according to the result of the add instruction which is nothing but the contents of R1 itself.
d. As seen earlier, subtraction can be converted to addition by negating the second operand. So first we calculate the 2's complement of R2 and then add it to R3.
i. R2 <- NOT R2
ii. R2 <- R2 + 1
iii. R1 <- R3 + R2
e. No. Every instruction which changes the condition codes changes all the three bits. And at any one time, only one of the three bits can be ' 1 '. So you cannot have two bits set to ' 1 ' at the same time.
5) Let us decode the instructions

Location	Instruction	Decoded instruction
0×4400	1001011001111111	$R 3<-$ NOT R1
0×4401	0001011011100001	$R 3<-R 3+1$
0×4402	0001011010000011	$R 3<-$ R2 + R3
0×4403	0000100001000000	BR[n=1] to PC $+0 \times 40$

So if the sequence of operations caused the last branch statement to execute, the ' n ' condition code must have been ' 1 ', which means that the result of the 3 rd instruction was negative. Since R3 is the 2's complement of R1, the 3 rd instruction effectively was R3 <- R2-R1. So if R2-R1 was negative, we can conclude R2 was less than R1.
6) Consider each instruction
a. $0001001001100000=>\mathrm{R} 1<-\mathrm{R} 1+0$. No register content is modified by this instruction, but the condition codes are modified. So this cannot be used as NOP.
b. 0000000000000010 => This is the branch instruction, but it branches only when all ' n ',' $z^{\prime}, ' p$ ' are 0 , which cannot happen. So this is a branch which never executes so can be used as a NOP.
c. 0000111000000001 => This is the branch instruction, which branches when either of ' n ', ' z ',' p ' are 1 , which is always the case. So this is an unconditional branch. But this cannot be used as NOP because the branch would skip over one instruction (PC already points to next instruction and this would move PC by one more).
The only thing ADD does different is that it modifies the condition codes.
7) This is by demorgan's law: A OR $B=$ NOT(NOT A AND NOT B)
a. $1001011001111111=>$ R3 <- NOT R1
b. $1001101010111111=>$ R5 <- NOT R2
c. $0101110011000101=>$ R6 <- R3 AND R5
d. 1001100110111111 => R4 <- NOT R6
8) Lets consider each instruction one by one
a. $1110011000111111=>$ LEA: R3 <- PC + offset. Here offset is $0 \times 3 F$. Since PC not points to 0×3011, R3 will have value $0 \times 3011+0 \times 3 F=$ 0×3050.
b. $0110100011000000=>$ LDR: R4 <- M[R3+0]. So R4 will get memory value at address 0×3050 which is $0 \times 70 \mathrm{~A} 4$.
c. $0110101100000000=>$ LDR: R5 <- M[R4+0]. So R5 will get memory value at address $0 \times 70 \mathrm{~A} 4$ which is $0 \times A B C D$.

So the final value at R5 is $0 \times A B C D$.

We can replace this by a single instruction located at 0×3010 by using indirect addressing. The operation which we carried out was to load M[M[PC + offset]] into R5, which can be done using indirect addressing in one instruction.

LDI R5, $0 \times 3 \mathrm{~F}=>1010101000111111$
9)

