1a. The program loads the value 11 into R4, and executes the loop while R4 remains non-negative. In each execution of the loop, R4 is decremented by 3. 1b. 4 times.

2a. The program loads the value $x 0803$ into R1, and executes the loop while R1 is positive. In each execution of the loop, 4 is added to R2. The net effect is multiplying x0803 by x0004.

2b. x200C = \#8204.
2c.

//Symbol Name	Page Address	
//	DONE	3007
//	LOOP	3003
//	MO	300 B
//	M1	300 C
//	RESULT	3009
//	ZERO	300 A

3a. The loop must terminate when R 2 reaches 0 . But the instruction "ADD R3,R3,R3" changes the condition code so the branch is not correctly taken.

3b. Switch the instructions in the following manner:
From:
LOOP BRz DONE
ADD R2, R2, \#-1
ADD R3, R3, R3
BR LOOP
to:
LOOP BRz DONE
ADD R3, R3, R3
ADD R2, R2, \#-1
BR LOOP

4a.

4b.
(a) LDR R3, R1, \#0
(b) NOT R4, R4
(c) ADD R4, R4, \#1

4c.

LD R1, FIRST
LD R2, SECOND

LOOP	LDR R3, R1, \#0
	BRz S1ZERO

; first string not ended
LDR R4, R2, \#0
BRz DIFF
; both strings not ended
ADD R1, R1, \#1
ADD R2, R2, \#1
NOT R4, R4
ADD R4, R4, \#1
ADD R3, R3, R4
BRz LOOP
;this is executed if both strings are different
DIFF AND R5, R5, \#0
ADD R5, R5, \#1
BRnzp DONE
;this is executed if both strings are the same
SAME AND R5, R5, \#0

BRnzp DONE

;this is executed if first string has ended

S1ZERO	LDR R4, R2, \#0
	BRz SAME
	BRnzp DIFF

DONE TRAP $\times 25$
FIRST .FILL x4000
SECOND .FILL x4100
.END
5.
.orig x3000
LDI R1, X
LDI R2, Y
NOT R2, R2
ADD R2, R2, \#1
AND R3, R3, \#0

LOOP ADD R1, R1, R2
BRn DONE
ADD R3, R3, \#1
BR LOOP

DONE HALT

X .fill x3200
Y .fill x3201
.end

