CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
 COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN-MADISON

Prof. Mark D. Hill \& Prof. Mikko H. Lipasti
TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie Enright Jerger, \& Guoliang Jin
Midterm Examination 3
In Class (50 minutes)
Friday, November 16, 2007
Weight: 15\%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, \& COMPUTER.

The exam in two-sided and has TEN pages, including two blank pages and a copy of the LC-3 Instruction Set handout on the final page (please feel free to detach this final page, but insert it into your exam when you turn it in).

Plan your time carefully, since some problems are longer than others.

NAME: \qquad

SECTION: \qquad

ID\# \qquad

Problem Number	Maximum Points	Graded By
1	4	NEJ
2	4	NEJ
3	6	SJ
4	4	EH
5	4	SR
6	4	GJ
7	4	EH
Total	30	

Problem 1 (4 points)

The following LC-3 instruction is located at memory address x6000.
x6000: 0000101000000100
R0 contains 4
R1 contains 3
R2 contains 0
R3 contains 5
a. If the preceding instruction is the one shown below, what is the value of the PC after the instruction at 0×6000 is executed?
x5fff: 0001000001100001
x6000: 0000101000000100
0x6005
b. If the preceding instruction is the one shown below, what is the value of the PC after the instruction at 0×6000 is executed?
x5fff: 0101010011100000
x6000: 0000101000000100

0×6001

Problem 2 (4 points)

Imagine the DR and BaseR fields of the LDR instruction are each 4 bits wide
If the instruction is 011000010010 xxxx

R0	x0
R1	x0
R2	x0208
R3	xFF
R4	x123

a. What is the maximum and minimum address that the above instruction could load from?

0x0200 to 0x020F

b. What is the maximum number of registers for DR ?

16

Problem 3 (6 points)

The program below checks to see if the value stored in R 0 is greater than or equal to the value stored in R4. If R0 is smaller than R4, the value of R4 is copied to R0. Otherwise nothing is done. Insert the missing LC-3 machine language instructions. Adding comments to each machine language instruction will assist in awarding partial credit.

Address	ISA Instruction								
x3000	100	0101	0011	1111	;	NOT	R2		
x3001	000	0100	1010	0001	;	ADD	R2	R2,	
x3002	000	0110	0000	0010	;	ADD	R3	R0,	
x3003	000	0110	0000	0001	;	BRzp	x	005	
x3004	000	0001	0010	0000	;	ADD	R0	R4,	
x3005	111	0000	0010	0101	;	HLT			

Problem 4 (4 points)

There is something wrong with the following code sequence. This code is supposed to continuously decrement the value stored in R5 until it is equal to zero, and then exit. Explain what happens when we try to execute this code. Comments are provided to save you the effort of decoding the machine language.

| Address | ISA Instruction | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x3000 | 0001 | 1011 | 0111 | 1111 | $;$ | ADD R5, R5, \#-1 |
| x3001 | 0000 | 0111 | 1111 | 1110 | $;$ | BRzp x3000 |
| x3002 | 1111 | 0000 | 0010 | 0101 | $;$ | HLT |

Explanation of what is wrong:

Because the instruction at location $x 3001$ branches on the zero condition code, the loop will have an extra iteration.

Problem 5 (4 points)
a. Briefly describe 2 ways to partially execute a program while debugging it.
(Any 2 of 3)
Single Step: execute 1 instruction at a time
Breakpoint: tell simulator/program to stop executing when it reaches a specific instruction

Watchpoint: tell simulator/program to stop executing when the value in specific register or memory location changes
b. Briefly describe the 3 ways to decompose a program into subtasks

Sequential: do subtask 1 followed by subtask 2
Conditional: if condition is true, do subtask 1. If condition is false, do subtask 2 Iterative: repeat subtask over and over until test condition is false

Problem 6 (4 points)

We are about to execute the following program:

| Address | ISA Instruction | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\times 3000$ | 0010 | 0000 | 0000 | 0101 | $;$ LD R0, x005 |
| X3001 | 0110 | 0000 | 0000 | 0000 | $;$ LDR R0, R0, x0 |
| x3002 | 0010 | 0010 | 1111 | 0000 | $;$ LD R1, x0F0 |
| x3003 | 0110 | 0100 | 0000 | 1110 | $;$ LDR R2, R0, x0E |
| x3004 | 1111 | 0000 | 0010 | 0101 | $;$ HALT |

The state of the machine before the program starts is given below:

Memory Address	Memory Contents
x3006	xABCD
xABCD	x2220
x2FFF	x4567
x222E	x8765
xABDB	x0001
x30F3	x0020
x200E	x3258
x2257	$x 0000$
x300E	$x 92 F E$
$x 3005$	$x 3010$

What will be the final contents of registers R0-R3 when we reach the HALT instruction? Write your answers in hexadecimal format.

Register	Initial contents	Final contents
R0	x200E	$\mathbf{0 x 2 2 2 0}$
R1	x200E	$\mathbf{0 x 0 0 2 0}$
R2	x3001	$\mathbf{0 x 8 7 6 5}$
R3	x3001	$\mathbf{0 x 3 0 0 1}$

Problem 7 (4 points)

a. If the value stored in R 0 is 1 at the end of the execution of the following instructions, what can be inferred about R5?

Address	Instruction
0x3000	$0101 \quad 000000100000 ; \mathrm{R} 0 \quad \mathrm{R} 0$ AND \#0
0×3001	$01011001011000001 ; \mathrm{R} 4 \quad$ R5 AND \#1
0×3002	$00000100000000001 \quad ; \mathrm{BRz}$ \#1
0×3003	$0001000000100001 \quad ; \mathrm{R} 0 \quad$ R0 + \#1

a. R5 is even
b. R5 is odd
c. R5 is equal to 1
d. R5 is equal to 0

Answer: b

b. Which of the following LC-3 instructions at address 0×0200 will always clear register R5 (i.e. set the contents of R5 to all zeroes) ?
a. 0001101101100000
b. 1110101000000000
c. 0010101000000000
d. 0101101101100000

Answer: d

Scratch Sheet 1 (in case you need additional space for some of your answers)

Scratch Sheet 2 (in case you need additional space for some of your answers)

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)
P^{\prime} : incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A. SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT (immediate) : zero-extend immediate to 16 bits. Page 2 has an ASCII character table.

