CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
 COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN-MADISON

Prof. Mark D. Hill \& Prof. Mikko H. Lipasti
TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie Enright Jerger, \& Guoliang Jin
Midterm Examination 4
In Class (50 minutes)
Friday, December 14, 2007
Weight: 15\%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, \& COMPUTER.
The exam in two-sided and has TEN pages, including two blank pages and a copy of the Standard ASCII Table, some Trap Service Routines description and the LC-3 Instruction Set handout on the final page (please feel free to detach this final page, but insert it into your exam when you turn it in).

Plan your time carefully, since some problems are longer than others.

NAME: \qquad

SECTION: \qquad

ID\# \qquad

Problem Number	Maximum Points	Points Awarded
1	4	EH
2	2	SR
3	7	SJ
4	8	NEJ
5	7	GJ
6	2	SR
Total	30	

Problem 1 (4 points): Short Answers

a. What is the problem with using the string NOT as a label in an LC-3 assembly language program?

Using an instruction as a label confuses the assembler because it treats the label as the opcode itself so the label NOT will not be entered into the symbol table. Instead the assembler will give an error in the second pass.
b. What single instruction is equivalent to the following two LC-3 instructions?

LEA R7, \#1
JMP R2, \#0
JSRR R2
c. The LC-3 assembly process is done in two complete passes through the entire assembly language program. What is the objective of the first pass?

To identify the actual binary addresses corresponding to the symbolic names (or labels). This set of correspondences is known as the symbol table.
d. What is the purpose of .ORIG pseudo-op?
.ORIG tells the assembler where in memory to place the LC-3 program.

Problem 2 (2 points): Memory-Mapped I/O

Suppose an ISA has a 16-bit address space. All addresses wherein bits[15:12] = 1111 are allocated to I/O device registers.
a. What is the minimum address of I/O device registers?

1111000000000000
b. What is the maximum address of I/O device registers?

$$
1111111111111111
$$

Problem 3 (7 points): Two-Pass Assembly Process
An assembly language LC-3 program is given below:

1		.ORIG x3000	
2	ONE	LD R2, A	
3		ADD R1, R1, R2	
4		TWO	LD
5	R2, B		
5		ADD	R1, R1, R2
6		ST R1, SUM	
7		TRAP x25	
8	A	.FILL x1111	
9	B	.FILL x2222	
10	C	.FILL x3333	
11		.END	

a. Fill in the symbol table for the program:

Symbol	Address
ONE	x3000
TWO	$\mathbf{x 3 0 0 2}$
A	$\mathbf{x 3 0 0 6}$
\mathbf{B}	$\mathbf{x 3 0 0 7}$
\mathbf{C}	$\mathbf{x 3 0 0 8}$

b. Assuming that both passes of the assembler were to execute, write the binary word (machine language instruction) that would be generated by the assembler for the first instruction of the program.

0010010000000101
c. The programmer intended the program to add the values stored in memory locations A and B, and store the result into memory. There are two errors in the code. For each, describe the error and indicate whether it will be detected at assembly time or at run time.

Error 1:

Line 6: ST R1, SUM
SUM is an undefined label. This error will be detected at assembly time.
Error 2:
Line 3: ADD R1, R1, R2
R1 was not initialized before it was used; therefore, the result of this ADD instruction may not be correct. This error will be detected at run time.

Problem 4 (8 points): Trap Routines and Save/Restore Problem
Suppose we define a new service routine starting at memory location x4200. This routine reads in a character and echoes it to the screen. Suppose memory location x0062 contains the value x 4200 . The service routine is shown below.

01		.ORIG	x4200	
02		ST	R0,	SAVERA
03		ST	R7	, SAVERB
04		GETC		
05		OUT		
06		LD	R0,	SAVERA
07		LD	$\underline{\text { R7 }}$,	SAVERB
08		RET		
09	SAVERA	.FILL	x0000	
10	SAVERB	.FILL	x0000	

a. Fill the blanks in the above program.
b. Identify the instruction that will invoke this routine.

TRAP x62
c. Line 10 is the RET instruction, will a BR (Unconditional branch) instruction work instead? Why or why not?

No. TRAP routines need to be able to return to the instruction after the TRAP initiation. The location of this instruction will differ between TRAP instances, and could be anywhere. The RET instruction solves this problem by using the address stored in R7, which is the next PC address that was saved when the TRAP occurred. The BR instruction will always jump to the same PC-relative address, which cannot work in the general case. Also note that the RET instruction is base + offset and the BR instruction is PC-relative, so the BR instruction might have insufficient reach (partial credit answer).
d. What do instructions in line 02 and 06 do? Will the service routine work without these two lines? Why or why not?

Save and Restore R0.
Yes, this routine will work. But whatever value was in R0 before TRAP x62 is executed will be overwritten during the subroutine, so caller needs to save and restore $R 0$ if the value in $R 0$ will be used by caller after TRAP $x 62$.

Problem 5 (7 points): I/O Basic
An assembly language LC-3 program is given below:

				.ORIG x3000	
	LD	R0, ASCII			
	LD	R1, NEG			
LOOP	LDI	R2, DSR			
	BRzp	LOOP			
	STI				
	ADD, DDR				
	ADD R0, R0, \#1				
	BRnz LOOP R1				
	HALT				
ASCII	.FILL x0047				
NEG	.FILL xFFB3				
DSR	.FILL xFE04	; Address of DSR			
DDR	.FILL xFE06	; Address of DDR			
	.END				

a. What does this program do?

The program displays the letters GHIJKLM in the screen (LC3 Console).
b. What is the purpose of the Display Status Register (DSR)?

The Display Status Register (DSR) controls the synchronization of the fast processor and the slow monitor display. Bit[15] of the DSR is 1 when the device is ready to display another character on screen. When data is written to DDR, DSR[15] is set to 0 and remains at 0 until monitor finishes processing the character on screen.
c. What problem could occur if the display hardware does not check the DSR before writing to the DDR?

If DSR[15] is 1 , the data contained in the DDR has not been displayed by the monitor. Thus, if the display hardware does not check the DSR before writing to the DDR, the previous value in DDR could be lost.
d. Circle the correct combination that describes this program?
a. Memory mapped and interrupt driven
b. Special opcode for I/O and interrupt driven
©. Memory mapped and polling
d. Special opcode for I/O and polling

Problem 6 (2 points): Professional Ethics
Regarding the assigned reading "RFID Inside" on RFID implants, do you support RFID implants? Why or why not? Give two different reasons to support your position.

Support. RFID implants can be used as a life saving device in an emergency. RFID implants can be used as a source of authentication for security.

Do not support. RFID implants are Invasion of employee's privacy. An employee should have the right to bodily integrity.

Scratch Sheet 1 (in case you need additional space for some of your answers)

ASCII Table

CharacterHex CharacterHexCharacterHex CharacterHex

nul	00	sp	20	@	40		60
soh	01	$!$	21	A	41	a	61
stx	02	"	22	B	42	b	62
etx	03	\#	23	C	43	c	63
eot	04	\$	24	D	44	d	64
enq	05	\%	25	E	45	e	65
ack	06	\&	26	F	46	f	66
bel	07		27	G	47	g	67
bs	08	(28	H	48	h	68
ht	09)	29	I	49	i	69
lf	0A	*	2A	J	4A	j	6A
vt	0B	+	2B	K	4B	k	6B
ff	0C	,	2 C	L	4C	1	6C
cr	0D	-	2D	M	4D	m	6D
so	0E	.	2E	N	4E	n	6E
si	0F	/	2 F	O	4 F	o	6F
dle	10	0	30	P	50	p	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	S	73
dc4	14	4	34	T	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	y	79
sub	1A	:	3A	Z	5A	z	7A
esc	1B	;	3B	[5B	\{	7B
fs	1C	<	3C	।	5C	I	7C
gs	1D	$=$	3D]	5D	\}	7D
rs	1 E	>	3 E	\wedge	5E	\sim	7E
us	1F	?	3F	-	5F	del	7F

Trap Service Routines

Trap Vector	Assembler Name	Description
x20	GETC	Read a single character from the keyboard. The Character is not echoed onto the console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.
		Write a character in R0[7:0] to the console display.
x21	OUT	Halt execution and print a message on the console.
x25	HALT	

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)
PC': incremented PC. setcc() : set condition codes N, Z, and P. mem[A]:memory contents at address A. SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT (immediate) : zero-extend immediate to 16 bits. Page 2 has an ASCII character table.

