CS/ECE 252: Introduction to Computer Engineering Computer Sciences Department University of Wisconsin, Madison Midterm III

Professor David Wood

Friday, April 10th 2009

This exam is closed book. There is to be nothing used during the exam. There are 7 pages in this exam not counting this cover sheet. See the back page for the LC-3 instruction set.

Last Name:
First Name:
\qquad
Section:
Student ID:

Question	Points	Score
1	10	
2	10	
3	12	
4	20	
5	24	
6	24	
Total:	100	

1. (10 points) Machine Language to Pseudo Code:

Translate the binary value to pseudo code to and give the value of R3 in binary after execution of the code fragment. The first line is filled in for you.

Binary Value	Pseudo Code
0101010010100000	$\mathrm{R} 2 \leftarrow \mathrm{R} 2$ AND 0
0001010010000010	
1001011010111111	
0010001000000000	
1100000001000000	

$\mathrm{R} 3=$

Solution:

Binary Value	Pseudo Code
0101010010100000	$\mathrm{R} 2 \leftarrow \mathrm{R} 2$ AND 0
0001010010000010	$\mathrm{R} 2 \leftarrow \mathrm{R} 2$ AND R2
1001011010111111	$\mathrm{R} 3 \leftarrow \mathrm{NOT} \mathrm{R} 2$
0010001000000000	$\mathrm{R} 1 \leftarrow \mathrm{MEM}[\mathrm{PC}+0]$
1100000001000000	$\mathrm{PC} \leftarrow \mathrm{R} 1$

$R 3=1111111111111111$
2. (10 points) Pseudo Code to Machine Language:

Translate the pseudo code to binary machine language and give the value of R4 in binary after execution of the code fragment. The first line is filled in for you.

Binary Value	Pseudo Code
0101011011100000	$\mathrm{R} 3 \leftarrow \mathrm{R} 3$ AND 0
	$\mathrm{R} 4 \leftarrow \mathrm{R} 3+11$
	$\mathrm{R} 5 \leftarrow \mathrm{PC}+-1$
	$\mathrm{MEM}[\mathrm{PC}+5] \leftarrow \mathrm{R} 4$
	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+\mathrm{R} 3$

$\mathrm{R} 4=$

Solution:

Binary Value	Pseudo Code
0101011011100000	R3 $\leftarrow \mathrm{R} 3$ AND 0
0001100011101011	$\mathrm{R} 4 \leftarrow \mathrm{R} 3+11$
1110101111111111	$\mathrm{R} 5 \leftarrow \mathrm{PC}+-1$
0011100000000101	MEM $[\mathrm{PC}+5] \leftarrow \mathrm{R} 4$
0001100011000100	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+\mathrm{R} 3$

$R 4=0000000000001011$
3. (12 points) Note that there is no OR instruction in the LC-3 ISA. Complete the code so that the following 4 instruction sequence stores the result of R1 OR R2 in the register R3.
(1):
(2): 1001100001111111
(3): 0101110100000101
(4):

Solution:

(1): 100110101011 1111; R5 \leftarrow NOT R2
(2): 100110000111 1111; R4 \leftarrow NOT R1
(3): 010111010000 0101; R6 \leftarrow R4 AND R5
(4): 100101111011 1111; R3 \leftarrow NOT R6
4. (20 points) Addressing:

Let R0,R1,R2, and R3 be initialized to 0 . The PC initially has value x3000. What are the values of $R 0, R 1, R 2$, and $R 3$ when we terminate.

Address	Value	Translation
x3000	x2009	$\mathrm{R} 0 \leftarrow \mathrm{MEM}[\mathrm{PC}+9]$
x3001	xA20B	$\mathrm{R} 1 \leftarrow \mathrm{MEM}[\mathrm{MEM}[\mathrm{PC}+11]]$
x3002	xC000	$\mathrm{PC} \leftarrow \mathrm{R} 0$
x3003	x6448	$\mathrm{R} 2 \leftarrow \mathrm{MEM}[\mathrm{R} 1+8]$
x3004	x6647	$\mathrm{R} 3 \leftarrow \mathrm{MEM}[\mathrm{R} 1+7]$
x3005	xF025	HALT
x3006	x3000	$\operatorname{MEM}[\mathrm{PC}+0] \leftarrow \mathrm{R} 0$
x3007	x3001	$\operatorname{MEM}[\mathrm{PC}+1] \leftarrow \mathrm{R} 0$
x3008	x3002	$\operatorname{MEM}[\mathrm{PC}+2] \leftarrow \mathrm{R} 0$
x3009	x3003	$\operatorname{MEM}[\mathrm{PC}+3] \leftarrow \mathrm{R} 0$
x300A	x3004	$\operatorname{MEM}[\mathrm{PC}+4] \leftarrow \mathrm{R} 0$
x300B	x3005	$\operatorname{MEM}[\mathrm{PC}+5] \leftarrow \mathrm{R} 0$
x300C	x3006	$\operatorname{MEM}[\mathrm{PC}+6] \leftarrow \mathrm{R} 0$
x300D	x3007	$\mathrm{MEM}[\mathrm{PC}+7] \leftarrow \mathrm{R} 0$
x300E	x3008	$\operatorname{MEM}[\mathrm{PC}+8] \leftarrow \mathrm{R} 0$
x300F	x3009	$\mathrm{MEM}[\mathrm{PC}+9] \leftarrow \mathrm{R} 0$

Solution: x3000 LD R0, \#9; R0 $\leftarrow \operatorname{MEM}[x 3000+1+9]=$ x3004
x 3001 LDI R1, \#11; R1 $\leftarrow \operatorname{MEM}[\operatorname{MEM}[\mathrm{x} 3001+1+\mathrm{B}]]=\operatorname{MEM}[\mathrm{x} 3007]=\mathrm{x} 3001$ x3002 JMP R0
x3003 LDR R2, R1, \#8; R2 $\leftarrow \operatorname{MEM}[R 1+8]=\mathrm{x} 3003$ (never run)
x3004 LDR R3, R1, \#7; R3 $\leftarrow \operatorname{MEM}[\mathrm{R} 1+7]=\mathrm{x} 3002$
x 3005 HALT
x3006 x3000
x3007 x3001
x3008 x3002
x3009 x3003
x300A x3004
x300B x3005
x300C x3006
x300D x3007
x300E x3008
x300F x3009
Therefore $\mathrm{R} 0=\mathrm{x} 3004, \mathrm{R} 1=\mathrm{x} 3000, \mathrm{R} 2=0, \mathrm{R} 3=\mathrm{x} 3003$
5. (24 points) Iteration:

Everytime a register is written write the new value update the table. Updating the table consists of finding the registers row, and writing in hex the value that is written. The first 3 entries to the table have been written for you corresponding the the first 3 lines of the program. Complete the partially filled table to match the execution of the program.

Address	Value	Translation
x3000	0101011011100000	R3 $\leftarrow \mathrm{R} 3$ AND 0
x3001	0001011011100010	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+2$
x3002	0101101101100000	$\mathrm{R} 5 \leftarrow \mathrm{R} 5$ AND 0
x3003	0101100100100000	$\mathrm{R} 4 \leftarrow \mathrm{R} 4$ AND 0
x3004	0001100100100010	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+2$
x3005	0001101101100011	$\mathrm{R} 5 \leftarrow \mathrm{R} 5+3$
x3006	0001101101000011	$\mathrm{R} 5 \leftarrow \mathrm{R} 5+\mathrm{R} 3$
x3007	0001100100111111	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+-1$
x3008	0000001111111101	BRp -3
x3009	0001011011111111	R3 $\leftarrow \mathrm{R} 3+-1$
x300A	0000001111111000	BRp -8
x300B	0001110101100101	R $6 \leftarrow \mathrm{R} 5+5$
x300C	1111000000100101	HALT

Register	1st Val	2nd Val	3rd Val	4th Val	5th Val	6 th Val	7th Val	8th Val
R0								
R1								
R2								
R3	0000	0002						
R4								
R5	0000							
R6								
R7								

Solution:

Register	1st Val	2nd Val	3rd Val	4th Val	5th Val	6th Val	7th Val	8th Val
R0								
R1								
R2								
R3	0	2	1	0				
R4	0	2	1	0	0	2	1	0
R5	0	3	5	7	A	B	C	
R6	17							
R7								

6. (24 points) Debugging:

Recall that in homework 6 we wrote a program to compare 2 numbers. The following program does something similar but instead of comparing 2 numbers we compare 2 strings. The two strings are stored at memory locations x4000 and x5000 and are null terminated, that is end with x0000. You may assume that the strings are of the same length. The program was intended to have R1 be 0 if the two strings are equal and 1 otherwise. However, the program has 4 errors and does not behave as expected. Identify and correct the errors in the code, give the address for each error and the correction in Hex, and the pseudo code.

Memory:

Address	Hex Value	Translation
x3000	x5260	$\mathrm{R} 1 \leftarrow \mathrm{R} 1$ AND 0
x3001	x240C	$\mathrm{R} 2 \leftarrow \mathrm{MEM}[\mathrm{PC}+12]$
x3002	x260C	$\mathrm{R} 3 \leftarrow \mathrm{MEM}[\mathrm{PC}+12]$
x3003	x6880	$\mathrm{R} 4 \leftarrow \mathrm{MEM}[\mathrm{R} 2+0]$
x3004	x6A80	$\mathrm{R} 5 \leftarrow \mathrm{MEM}[\mathrm{R} 2+0]$
x3005	x0406	BRz 6
x3006	x14A1	$\mathrm{R} 2 \leftarrow \mathrm{R} 2+1$
x3007	x16E1	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+1$
x3008	x993F	$\mathrm{R} 4 \leftarrow \mathrm{NOT}$ R 4
x3009	x1922	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+2$
x300A	x1905	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
x300B	x0BF7	BRnp -9
x300C	x1261	$\mathrm{R} 1 \leftarrow \mathrm{R} 1+1$
x300D	xF025	HALT
x300E	x4000	JSRR R0
x300F	x5000	$\mathrm{R} 0 \leftarrow \mathrm{R} 0$ AND R0

Solution:			
	Address	Hex Value	Translation
	x3000	x5260	$\mathrm{R} 1 \leftarrow \mathrm{R} 1$ AND 0
	x3001	x240C	$\mathrm{R} 2 \leftarrow \mathrm{MEM}[\mathrm{PC}+12]$
	x3002	x260C	$\mathrm{R} 3 \leftarrow \mathrm{MEM}[\mathrm{PC}+12]$
	x3003	x6880	$\mathrm{R} 4 \leftarrow \mathrm{MEM}[\mathrm{R} 2+0]$
	x3004	x6AC0	$\mathrm{R} 5 \leftarrow \mathrm{MEM}[\mathrm{R} 3+0]$
	x3005	x0407	BRz 7
	x3006	x14A1	$\mathrm{R} 2 \leftarrow \mathrm{R} 2+1$
	x3007	x16E1	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+1$
	x3008	x993F	$\mathrm{R} 4 \leftarrow$ NOT R4
	x3009	x1921	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+1$
	x300A	$\mathrm{x} 1905$	$\mathrm{R} 4 \leftarrow \mathrm{R} 4+\mathrm{R} 5$
	x300B	x05F7	BRz-9
	x300C	x1261	R1 $\leftarrow \mathrm{R} 1+1$
	x300D	xFberse 6	of 7 HALT
	x300E	x4000	JSRR R0
	x300F	x5000	$\mathrm{R} 0 \leftarrow \mathrm{R} 0$ AND R0

Figure 1: Instruction Set from ItCS 2nd edition

