CS/ ECE 252 Introduction to Computer Engineering

Homework 4 – Due at Lecture on Wednesday, March 4th

Instructions: You should do this homework in a group of **TWO** or **THREE** students from the SAME 252 section. You should hand in **ONE** copy of the homework. Front page of the answer sheet should contain

- Name and UW ID of the students in that group
- Section number (Lec 001 or Lec 002)
- Multiple pages should be **stapled**.

Warning: Most home works will use questions from your textbook, Patt and Patel's *Introduction to Computing Systems*, which we abbreviate (*ItCS*)

First contact for questions is TA Maheswaran Venkatachalam (kvmakes@cs.wisc.edu)

Problem 1

A - 2-bit input $\{A[1] A[0]\}$

B - 2-bit input $\{B[1] B[0]\}$

Y - 3-bit output $\{Y[2] Y[1] Y[0]\}$

 $Y = F(A, B) = NOT(A) + B (+ \rightarrow binary addition. Don't confuse with OR)$

a. Draw the truth table for the function F(A,B).

A[1]	A[0]	B[1]	B[0]	Y[2]	Y[1]	Y[0]
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

- b. Implement Y[0] using AND/ OR/ NOT gates.
- c. Given the blocks for implementation of Y[2], Y[1], Y[0], implement the logic that will indicate if F(A,B) is equal to 6.

Problem 2

You are assigned the task of designing a circuit with some sequential logic elements and logic gates. The circuit should turn on a light when the input remains 1 (High) for 3 consecutive clock cycles. Once the light is turned on, it should be in ON position irrespective of the changes in the input. You have to design the circuit using one-hot-encoding for state machines. One hot encoding uses one flip-flop for each state (one active flip-flop per state).

The table below shows how states are represented by bits.

States	S_0 S_1 S_2
A	1 0 0
В	0 1 0
С	0 0 1

- a. Draw the state diagram as in figure 3.31 on page 78 ItCS. How many flip-flops do we need?
- b. Show the truth table for the circuit.
- c. Show the block diagram of the circuit and the combinational logic used as in figures 3.32a and 3.32b on page 79 of ItCS.
- d. How many fewer flip-flops would it have taken using binary state encoding?

Problem 3

With a 2:1 MUX, we can implement any two variable function F(A,B) by appropriately connecting 0,1,A, NOT(A), B,NOT(B) to the various inputs.

- a) Design a 2 input OR gate using only a 2:1 MUX
- b) Design a 2 input AND gate using only a 2:1 MUX (Note: No additional logic elements are to be used)

Problem 4

If you see the figure 4.3 in page 102 of ItCS, there is one register called PC (Program Counter). It is a 16 bit register and has an input which loads the program counter.

Your job is to design the program counter using master-slave flip-flops (You can use AND/ OR/ NOT/ MUX). When the enable pin is active, new value should be loaded into the register. When the enable pin is low, the register must retain its value. A single master-slave flip-flop can store 1 bit. Hence, you can go for a hierarchical design – show a 4 bit register using 4 master-slave flip-flops. Combine 4 of this type to get the 16 bit register (PC).

Constraint: Input to the clock terminal of the flip-flop should only be clock signal (i.e. you are not allowed to combine the clock signal with any other signal and input that at the clock terminal of the flip-flop)

Problem 5

State the phases of instruction cycle and briefly describe what operations occur in each phase of the instruction cycle.

Problem 6

A 32 bit instruction has the following format. DR, SR1 and SR2 are registers.

OPCODE	DR	SR1	SR2	Unused bits
				(if any)

If there are 255 opcodes and 64 registers,

- a) What is the minimum number of bits required to represent the OPCODE?
- b) What can be the maximum number of bits that can represent the OPCODE?
- c) What can be the maximum number of the unused bits?
- d) What could be the potential advantage of using more than the minimum required number of bits for representing the OPCODE?

Problem 7

- a) If the machine cycle is 4 nanoseconds (i.e. $4*10^{-9}$ seconds), how many machine cycles occur each second?
- b) If the computer requires on average 5 cycles to process each instruction, and the computer processes instructions one at a time from beginning to end, how many instructions can the computer process in 1 second?