
CS/ ECE 252 Introduction to Computer Engineering

Homework 8 – Due at Lecture on Monday, May 4
th

Instructions: You should do this homework in a group of TWO or THREE students from the

SAME 252 section. You should hand in ONE copy of the homework. Front page of the answer

sheet should contain

 Name and UW ID of the students in that group

 Section number (Lec 001 or Lec 002)

 Multiple pages should be stapled.

Warning: Most home works will use questions from your textbook, Patt and Patel's Introduction

to Computing Systems, which we abbreviate (ItCS)

First contact for questions is TA Maheswaran Venkatachalam (kvmakes@cs.wisc.edu)

Solution of Problem 5 should be mailed to kvmakes@gmail.com with the subject CS252-HW_8

Problem 1

Output the following string on to the monitor with quotes.

―This is the first question of the last homework!‖

Problem 2

Why is handshaking necessary in the case of asynchronous I/O?

Problem 3

Which is more efficient, interrupt-driven I/O or polling? Explain.

Problem 4

Give the differences between memory mapped I/O and Special I/O instructions

Problem 5

Here, we are going to design the ―Connect Four‖ game. For this, we use a simulator called

PennSim. The resources for PennSim are available in the course web page.

http://pages.cs.wisc.edu/~david/courses/cs252/Spring2009/includes/computing1.html

Make sure that you download the lc3os for PennSim only from here. Please don’t download it

from anywhere else.

mailto:kvmakes@gmail.com
http://pages.cs.wisc.edu/~david/courses/cs252/Spring2009/includes/computing1.html

http://pages.cs.wisc.edu/~david/courses/cs252/Spring2009/includes/handouts/lc3os.asm

Connect Four (also known as Plot Four, Find Four, Four in a Row, and Four in a Line) is a two-

player game in which the players take turns in dropping alternating colored blocks into a

vertically-suspended grid. The object of the game is to connect four singly-colored blocks in a

row—vertically, horizontally, or diagonally—before your opponent can do likewise.

Here is the URL to play the game online

http://www.mathsisfun.com/games/connect4.html

You will be writing this game in assembly language, but using the keyboard to control which

column the block will fall rather than the mouse. Be sure to try the online game so you have

some idea of how it works.

You are provided with a assembly code that draws the board and fills the next appropriate block

in the column in which the player wishes to drop the block. Your job is to write the modules

mentioned below.

Subroutine Next_move

Input: R0 = current slider position (value is in [0-5])

 R1 = Current player’s number ((value is in {0, 1})

Output: R0 = new slider position (value is in [0-5])

Purpose: This routine is called by the main routine to determine the next player's move. The

color of the slider determines whose turn it is, so call Print_Slider to print the slider with the

current player's color. Call Get_input to read the player's keyboard input to update the slider

position or drop a ball. If the player attempts to move the slider outside the legal range (i.e. move

left when the slider is in position 0 or move right when the slider is in position 5), then ignore the

move. If the slider position changes, call Print_Slider to display the new slider position. Repeat

until Get_input indicates that the player has dropped the ball.

Subroutine Get_input

Input: Keyboard input only

Output: R0 = change in slider position or move (value is in {-1, 0, 1})

Purpose: Read one valid input character from the keyboard. Players indicate they want to move

the slider left one position by typing the 'h' character, move the slider one position right by

typing the 'j' character, or drop the ball by entering '\n' (the return key). All other inputs are not

valid inputs and are ignored (i.e., Get_input discards them and does NOT return). The return

values indicate: -1 ==> move slider left, 0 ==> drop ball, +1 ==> move slider right.

http://pages.cs.wisc.edu/~david/courses/cs252/Spring2009/includes/handouts/lc3os.asm
http://www.mathsisfun.com/games/connect4.html

Subroutine Print_slider

Input: R0 = current slider position (value is in [0-5])

 R1 = current player (value is in {0,1})

Ouptut: display output

Purpose: print the slider to indicate which column the ball will be dropped into. You have to

store the colors for drawing the slider for each player in P0_COLOR (for player 0) and

P1_COLOR (for player 1). If the input that you get in register R1 says it is player 0's turn, you

should load the color from P0_COLOR. Similarly, if the input that you get says it is player 1's

turn, you should load the color from P1_COLOR. You can get the color values from PennSim

manual in the course web page. The location of the slider is determined by the current slider

position. The slider should be 10 pixels high by 10 pixels wide. The top left pixel for each

position is xC190, xC1A0, xC1B0, xC1C0, xC1D0, and xC1E0.

See the PennSim manual for details on how to use the video display.

You are REQUIRED to follow the following parameter passing convention between your

subroutines. Return address (R7) and return value (R0 and maybe R1) are caller saved. All other

registers should be callee saved.

The output window shows the status of the game. It tells whether the game ended in a It’s a Tie

or Player 0 wins!! or Player 1 wins!! or Not there, it’s Full!

This is how the grid and output window look like.

It’s a tie: Tie occurs when the grid is completely filled with blocks (i.e. there are 36 blocks in the

grid) and it doesn’t contain 4 blocks of the same color connected in a row—vertically,

horizontally, or diagonally.

Player 1 or Player 0 Wins: When the grid contains 4 blocks of the same color connected in a

row—vertically, horizontally, or diagonally.

Not there, it’s full: This gets displayed when you try to place the block in a column which

already contains 6 blocks.

Important Note: In order for the Keyboard input to work, make sure that you click in the
box/window right below the drawing area after to press ‘continue’. Refer to the figure below.

Find below the flow of the code

NEXT_MOVE

Returns where the player

wanted to drop the ball

GET_INPUT

PRINT_SLIDER

WIN

or

TIE

HALT

MAIN

INIT

Draws the grid

NEXT_PLAYER

Alternates between

player1 and player2

PAINT

Drops the blocks where

the player wanted it to be

CHK_WIN

Checks for the

termination condition

YES

NO

