
Solution for Homework 2 

 

Problem 1 

a. What is the minimum number of bits that are required to uniquely represent the 

characters of English alphabet? (Consider upper case characters alone) 

The number of unique bit patterns using i bits is 2
i
. We need at least 26 unique bit 

patterns. The cleanest approach is to compute log2 26 and take the ceiling (round up). 

This yields 5 as the answer. Trial and error is also an acceptable solution. 

 

b. How many more characters can be uniquely represented without requiring additional 

bits? 

With 5 bits, we can represent up to 32 (2
5
) unique bit patterns; we can represent  

32 - 26 = 6 more characters without requiring additional bits.   

 

Problem 2 

 

Using 7 bits to represent each number, write the representations of 23 and -23 in signed    

magnitude and 2's complement integers 

   

 Signed Magnitude  1's Complement  2's Complement  

23 0010111  0010111  0010111  

-23 1010111 1101000  1101001  

 

Problem 3 

 

a. What is the largest positive number one can represent in a 12-bit 2's complement code? 

Write your result in binary and decimal. 

 

In Binary: 011111111111 

In Decimal: 2047 (Obtained by converting 011111111111 to decimal)  

(1024+ 512+ 256+ 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1) 

 

 

b. What is the greatest magnitude negative number one can represent in a 12-bit 2's 

complement code? Write your result in binary and decimal.  

 

In Binary: 100000000000  

In Decimal: -2048 (Obtained by converting 100000000000 to decimal)  

 - (Not (100000000000) + 1) = -(011111111111 + 1) = -2048 

 



c. What is the largest positive number one can represent in n-bit 2's complement code?  

2
n-1  

- 1 

 

d. What is the greatest magnitude negative number one can represent in n-bit 2's 

complement code? 

-2
n-1 

  

 

 

Problem 4 

 

What are the 8-bit patterns used to represent each of the characters in the string "CS/ECE 

252"? (Only represent the characters between the quotation marks.) 

Note: There is space between ECE and 252. 

 

From the ASCII Table, 

 

Character Hexadecimal Equivalent Binary Equivalent 

C 0x43 01000011 

S 0x53 01010011 

/ 0x 2F 00101111 

E 0x45 01000101 

C 0x43 01000011 

E 0x45 01000101 

sp 0x20 00100000 

2 0x32 00110010 

5 0x35 00110101 

2 0x32 00110010 

 

Hence the string “CS/ECE 252” is represented as  

0100001101010011001011110100010101000011 

0100010100100000001100100011010100110010 

 

 



Problem 5 

Convert the following 2's complement binary numbers to decimal. 

a. 0110    

 (0*8 + 1*4 + 1*2 + 0*1) = 6 

b. 1101      

- [NOT (1101) + 1] = - (0010 +1) = -3 

c. 01101111    

[0*128 + 1*64 + 1*32 + 0*16 + 1*8 + 1*4 + 1*2 + 1*1] = 111 

d. 1101101100011100    

- [NOT (1101101100011100) + 1] = - (0010010011100011 + 1) = -9444 

Problem 6 

Express the negative value -22 as a 2's complement integer, using eight bits. Repeat it for 16 

bits and 32 bits. What does this illustrate with respect to the properties of sign extension as 

they pertain to 2's complement representation? 

 8 bit 

The 8-bit binary representation of 22 is 00010110.  

So, -22 in 2’s complement form is (NOT (00010110) + 1) = (11101001 + 1) = 11101010 

  

 16 bit 

The 16-bit binary representation of 22 is 00000000 00010110.  

So, -22 in 2’s complement form is (NOT (00000000 00010110) + 1) = (11111111 11101001 + 1) 

= 11111111  11101010 

 

 32 bit 

The 8-bit binary representation of 22 is 00000000 00000000 00000000 00010110.  

So, -22 in 2’s complement form is (NOT (00000000 00000000 00000000 00010110) + 1) = 

(11111111 11111111 11111111 11101001 + 1) = 11111111 11111111 11111111 11101010 

 

The pattern that we see is that when we increase the number of bits in the 2's complement 

representation, we sign extend, meaning that we take the leftmost bit of the original 

representation and duplicate it into the added bits of the new representation.   

 



Problem 7 

Write the decimal equivalents for these IEEE floating point numbers. 

a. 0 01111111 00000000000000000000000 

(-1)*0 * 1.0*2
127-127

= (1.0)2 = (1)10 

b. 1 01111110 10000000000000000000000 

    (-1)*1 * 1.1*2
126-127

= (-0.11)2 = (-0.75)10 

Problem 8 

Describe what conditions indicate overflow has occurred when two 2's complement numbers 

are added. 

 When adding two numbers, overflow occurs when the two operands have the same 

leftmost bit and the leftmost bit of the answer is different.  

 When the operands have differing leftmost bits, overflow cannot occur when adding them 

together because we are adding a positive number with a negative number which means 

we are actually subtracting. It implies that the result cannot be bigger than the operands. 

So there is no possibility of overflow in this case. The leftmost bit is frequently referred 

to as the Most Significant Bit (MSB for short).   

 

Problem 9 

De Morgan’s Laws:   

i. NOT (P AND Q) = (NOT P) OR (NOT Q) 

ii. NOT (P OR Q) = (NOT P) AND (NOT Q) 

Verify these for P = 1011 and Q = 1101 

 

NOT (P) = NOT (1011) = 0100 

NOT (Q) = NOT (1101) = 0010 

 

i. (NOT P) OR (NOT Q) = 0110 

      NOT (1011 AND 1101) = NOT (1001) = 0110 

 NOT (P AND Q) = (NOT P) OR (NOT Q) 

 

 



ii. NOT (P OR Q) = NOT (1011 OR 1101) = NOT (11110 = 0000 

 NOT (P) AND NOT (Q) = 0100 AND 0010 = 0000 

NOT (P OR Q) = (NOT P) AND (NOT Q) 

Problem 10 

The following binary numbers are 4-bit 2's complement binary numbers. Which of the 

following operations generate overflow? Justify your answers by translating the operands and 

results into decimal. 

a. 0011 + 1100 

     Adding in decimal equivalent: 

 3 + -[NOT(1100)+1] = 3 –(0011+1)2= (3-4)10 = -110 

Adding in 2’s complement: 

0011 + 1100 = (1111)2 = -[NOT(1111)+1] = -110   (No Overflow) 

b. 0111 + 1111 

Adding in decimal equivalent: 

7 + -[NOT(1111)+1] =  7 -1 = 610 

Adding in 2’s complement: 

0111 + 1111 = (0110)2 = 610 (No Overflow) 

c. 1110 + 1000 

Adding in decimal equivalent: 

-[NOT(1110) + 1] – [NOT(1000) + 1] = -(10)2 – (1000)2  = -2 + - 8 = -10  

Adding in 2’s complement: 

1110 + 1000 = 0110 = 610 (Overflow!) 

d. 0110 + 0010 

     Adding in decimal equivalent: 

       6 + 2 = 8 

Adding in 2’s complement: 

      1 000 = - [ NOT(1000) + 1] = -(0111+1) = -(1000) = -8 (Overflow) 


