
CS/ECE 552: Introduction to Computer Architecture

Prof. David A. Wood

Midterm Exam
March 9, 2010

7:15-9:15pm, B371 Chemistry
Approximate Weight: 25%

CLOSED BOOK
ONE SHEET OF NOTES

NAME: _____Solution______

DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

Read over the entire exam before beginning. Verify that your exam includes all 8 pages. It is a long exam,
so use your time carefully. Budget your time according to the weight of the questions, and your ability to
answer them. Limit your answers to the space provided, if possible. If not, write on the BACK OF THE
SAME SHEET. Use the back of the sheet for scratch work. WRITE YOUR NAME ON EACH SHEET.

Problem
Possible
Points

Points

Problem 1 15

Problem 2 15

Problem 3 20

Problem 4 25

Problem 5 25

Total 100

NAME: _______________________________________

Page 2 of 8

Problem 1: (15 points)

Part A: (3 points)

What is the iron law of performance?

Time/Program = Instructions/Program * Cycles/Instruction * Time/Cycle

Part B: (3 points)

An out-of-order pipelined processor fetches and dispatches instructions in order, executes them (poten-
tially) out of program order, then re-orders and commits (aka retires) them in order. Why does it reorder
them?

Reordering instructions before commit allows the processor to enforce precise exceptions (i.e., sequential
semantics). Precise exceptions requires that all instructions before the excepting instruction must complete,
all instructions after it must appear to have never begun (i.e., flushed from the pipeline without modifying
architectural state), and the address of the excepting instruction must be passed to the exception handler.
Commiting instructions in order makes this easy to do.

Part C: (3 points)

The VAX instruction set has very large instructions (up to 61 bytes). Explain why the VAX is not consid-
ered a VLIW (Very Large Instruction Word) instruction set architecture?

A VLIW instruction combines a group of potentially different operations into a single instruction. For exam-
ple, the IA-64 architecture combines three independent instructions into a 128-bit instruction bundle. Each
instruction can operate on different data (e.g., different registers) and specify different operations (e.g., add
or sub). (Most) VAX instructions perform a single (perhaps complex) operation on one set of operands.

Part D: (3 points)

Explain the difference between a dependence and a hazard.

A dependence is a property of the instructions in a program, for example a true dependence arises when one
instruction uses the value produced by an earlier instruction.

A hazard is a potential problem in a pipeline that may arise from a dependence. For example, a true data
dependence causes a hazard when the value produced by the earlier instruction is not yet available in the reg-
ister file when the dependent instruction attempts to fetch it.

Part E: (3 points)

The MIPS instruction set has fixed size instructions with only three instruction formats with key fields
always occuring in the same place. Explain why these two properties make it easier to implement a pipe-
lined processor. Give brief examples.

Fixed size instructions means that it is, in the absence of a control hazard, possible to determine the next
instruction before decoding the current instruction. This allows fetch of instruction i+1 to proceed in parallel
with the decode of instruction i.

Fixed field placement makes it easier to decode instructions in parallel and perhaps partially overlap execu-
tion. For example, in MIPS it is possible to read the register file in parallel with instruction decode because
the source register specifiers are always in the same place.

NAME: _______________________________________

Page 3 of 8

Problem 2: (15 points)

Part A: (5 points)

Indicate the true data dependences in the following MIPS code sequence:

add $4, $3, $1

sw $4, 0($2)

add $4, $4, $1

lw $1, 0($4)

add $4, $3, $1

Part B: (5 points)

What is meant by a name dependence? Are there any examples of name dependences in the code above?

A name dependence can arise between two instructions that use the same register (or memory location) to
hold different values. Output dependences and anti-dependences are both name dependences. An output
dependence occurs between two instructions that write different values to the same register (or memory
location). An anti-dependence occurs between an instruction that reads a register (or memory location) and a
subsequent instruction writes a new value to the same location.

Output dependences exist between the three add instructions, which all write to register $4

An anti-dependence exists between the lw instruction, which reads $4, and the last add instruction, which
overwrites $4 with a new value.

Part C: (5 points)

What problems, if any, do name dependences cause in the MIPS 5-stage pipeline that we have analyzed in
class? Explain.

Name dependences do not cause any problems in the MIPS 5-stage pipeline.

Output dependences are not a problem because all instructions write to the register file (and memory) in pro-
gram order.

Anti-dependences are not a problem because all instructions execute in order and always read the register
file before they write it (i.e., read in Decode and write in Writeback), thus preventing a later instructions
write from occuring before an earlier instructions read.

NAME: _______________________________________

Page 4 of 8

Problem 3: (20 points)

Consider two implementations A and B of
the MIPS instruction set, both built using the
same technology, but using different pipe-
lines. Both machines have a base CPI of 1.0,
but have different cycle times and different
stalls for control and data hazards. In partic-
ular, the pipelines stall differently for taken
and not-taken branches, when loads are fol-
lowed by dependent instructions, and
Machine B stalls a cycle on all stores.

Part A: (12 points)

For the two workloads below, assume that 65% of branches are taken and 40% of loads are followed by a
dependent instruction.

Compute the SCPIs and overall CPI for both datapaths.

Workload
%

Branches
% Loads % Stores % Other

W1 10% 30% 15% 45%

W2 20% 20% 10% 50%

Machine A Machine B

WI W2 W1 W2

SCPIbranch-taken .065 .13 .325 .65

SCPIbranch-nottaken 0 0 .035 .07

SCPIload-use .12 .08 .36 .24

SCPIstores 0 0 .15 .1

CPI 1.185 1.21 1.87 2.06

Machine A Machine B

Cycle time 500ps 300ps

Taken branch stalls 1 5

Not-taken branch stalls 0 1

Load-use stalls 1 3

Store stalls 0 1

NAME: _______________________________________

Page 5 of 8

Part B: (4 points)

Which machine is faster? Compute the Speedup of Machine B over Machine A (i.e., Machine A is the
“old” machine). Show your work.

SpeedupB = TimeA / TimeB = (N x CPIA x 500ps) / (N x CPIB x 300ps)

W1: 1.185 * 500 / 1.87 * 300 = 1.06

W2: 1.21 * 500 / 2.06 * 300 = 0.98

Part C: (4 points)

The slower machine would perform better with a faster clock. How fast would the slower machine’s clock
need to be to have the same performance as the faster machine? Show your work.

CPIslow * Cycleslow = CPIfast * Cyclefast

W1: 1.185 * C = 1.87 * 300

W2: 1.21 * 500 = 2.06 * C

Workload Speedup of B
Faster

machine?

W1 1.06 B

W2 0.98 A

Workload
Slower

Machine
Clock cycle time to achieve

equal performance

W1 A 473ps

W2 B 294ps

NAME: _______________________________________

Page 6 of 8

Problem 4: (25 points)

A 16-bit carry-lookahead adder composes multiple 4-bit carry-lookahead blocks into a two level tree structure.

Write the boolean equation for each output signal listed in the table below. The equations should be opti-
mized to minimize the delay from module inputs to outputs, where the modules are the full adder (FA), and
the first- and second-level lookahead blocks. Compute the delays using the model below. The worst case
module delay is the critical path from any input of a module to the output. The critical path delay is the
critical path from the basic inputs ai, bi and c0, which are assumed to change at time 0. Assume that you
have only AND and OR gates available, but that each gate generates both the true output f and its comple-
ment f. You also have the complements of the basic inputs available as well. The delay is computed using
the formula delay = (5 + 4n)τ, where n is the number of inputs to the gate. Thus a 2-input AND gate has
delay 13τ and the logic function f = ab + cde has delay 30τ (2-input OR with delay 13τ plus a 3-input
AND with delay 17τ).

Signal Equation
Worst case

module delay
Critical path

delay

p2 = a2 + b2 13τ 13τ

g2 = a2 b2 13τ 13τ

c4 = g3-0 + p3-0c0 26τ 68τ

c8 = g7-4 + p7-4g3-0 + p7-4p3-0c0 34τ 85τ

g11-8 = g11 + p11g10 + p11p10g9 + p11p10p9g8 42τ 55τ

p11-8 = p11p10p9p8 21τ 34τ

c11 = g10 + p10g9 + p10p9g8 + p10p9p8c8 42τ 127τ

s11 = (a11b11 + a11b11)c11 + (a11b11 + a11b11)c11 52τ 153τ

c12 = g11-8 + p11-8g7-4 + p11-8p7-4g3-0 + p11-8p7-4p3-0c0 42τ 93τ

c15 = g14 + p14g13+ p14p13g12 + p14p13p12c12 42τ 135τ

s15 = (a15b15 + a15b15)c15 + (a15b15 + a15b15)c15 52τ 161τ

Second-level lookahead

first-level lookahead

g3-0 p3-0

c0c4

p0g0

s0 a0 b0

g7-4 p7-4

s1 a1 b1

c1p1g1

FA FA FA FA

c8c12

s2 a2 b2

NAME: _______________________________________

Page 7 of 8

Problem 5: (25 points)

High performance datapaths use bypass paths (also known as data forwarding logic) to reduce pipeline
stalls. However, bypass paths are relatively expensive, especially in some wire constrained technologies.
To reduce the cost (and potential cycle time impact), some architects have explored omitting some of the
possible bypass paths. Consider the datapath illustrated above (note that the PC update logic and all control
logic is intentionally omitted). This pipelined datapath is similar to the one in the book, but has several dif-
ferences including limited bypass paths. BE SURE TO STUDY THE DATAPATH CAREFULLY! Assume
that the register file internally bypasses the value, so that if register $i is read and written in the same cycle,
then the read returns the new value. Assume that the control logic bypasses the data as soon as possible
using the given forwarding data paths, and stalls in decode otherwise. You may NOT add additional data
paths.

In this problem, you will look at how a program snippet performs on this pipeline. Recall that R-format
instructions have the form:

opcode rd, rs, rt

and I-format instructions have the form
opcode rt, imm(rs)

or
opcode rt, rs, imm

Use the table on the next page to show how the given instruction sequence flows through the pipeline and
where stalls are necessary to resolve hazards.

In
st

r
M

em
or

y

R
eg

ist
er

 F
ile

rs

rt

sign
ext

D
at

a
M

em
or

y

rd
A

L
U

P
C

IF/ID ID/EX EX/MEM MEM/WB

imm

da
ta

 in

rs

rt

m
u

x
m

u
x

ad
dr

NAME: ______________________________________

Page 8 of 8

Consider the code and pipeline schedule below. Show the execution timing of this code on the pipeline above.

For each cycle where a stall occurs, explain why below.

Cycle 3: Register $1 in the ‘sub’ instruction is dependent on the preceding ‘add’ instruction. Because $1 is the ‘rs’ register, it cannot forward from the XM latch (labelled
EX/MEM in this figure). Instead, it must stall in decode, which also stalls the fetch of the ‘or’ instruction. Because ‘rs’ can be forwarded from the MW latche (MEM/WB),
the stall is only a single cycle.

Cycle 7: Register $7 in the ‘lw’ instruction uses the value produced by the ‘and’ instruction. Because $7 is the ‘rs’ register it stalls for one cycle as above.

Cycle 9: Register $9 in the second ‘add’ instruction depends upon the value produced by the ‘lw’ instruction. Loads don’t produce their value until the end of the M (MEM)
stage, requiring a load-use stall for the ‘add’ in this cycle. This also stalls the ‘sw’ instruction in fetch.

Cycle 13 & 14: The ‘sw’ instruction cannot be implemented correctly with this datapath. The ‘rt’ mux needs to be set one way to calculate the address and a different way
to get the register $1 to memory. To obtain full credit, you needed to identify this problem with the datapath.

Cycle

Instructions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add $1, $2, $3 F D X M W

sub $4, $1, $5 F D D X M W

or $6, $1, $4 F F D X M W

and $7, $4, $8 F D X M W

lw $9, 4($7) F D D X M W

add $1, $9, $2 F F D D X M W

sw $1, 4($7) F F D X M W

