
cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14

beq IF ID EX MEM WB

xor * * * IF ID EX MEM WB

and IF ID EX MEM WB

sub IF ID EX MEM WB

add IF ID* ID* ID EX MEM WB
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Problem Set #4 Solutions 

Problem 4 – 15 Points 

Consider the following code sequence and the datapath in figure 4.51 on page 

362 of COD4e. Assuming the first instruction is fetched in cycle 1 and the 

branch is not taken, in which cycle does the 'add' instruction write its 

value to the register file? What if the branch IS taken? (Assume no branch 

prediction). Show pipeline diagrams. 
          beq    $2, $1, loc 

          xor    $1, $4, $3 

          and    $3, $6, $7 

          sub    $7, $5, $8 

    loc:  add    $3, $6, $7  

 

Not Taken:  (assuming bypassing register file)  

 

Taken: 

cycles 1 2 3 4 5 6 7 8 9

beq IF ID EX MEM WB

add * * * IF ID EX MEM WB  

 

Problem 5 – 15 Points 

Indicate all of the true, anti-, and output-dependencies in the following 

segment of MIPS assembly code: 
    sub    $2, $7, $3 

    add(1) $4, $5, $6 

    or     $1, $4, $5 

    add(2) $5, $2, $5 

    sw     $4, 20($1) 

    xor    $4, $1, $4  

For the code above, which of the dependencies will manifest themselves as 

hazards in the pipeline in Figure 4.41 on page 355 of COD4e? How are these 

hazards resolved in this pipeline? Assuming the 'sub' instruction enters 

fetch (F) in cycle 1, in what cycle does the 'xor' instruction enter 

writeback (W)? Show your work in a pipeline diagram. (Assume that the 

register file cannot read and write the same register in the same cycle and 

get the new data.) 



How does your answer change if you consider the pipeline in figure 4.60, on 

page 375 of COD4e? (Assume that the register file contains internal bypassing 

and can read and write the same register in the same cycle and get the new 

data.) 

Answer: 

There  are 11  total  dependencies,  6  of  which  are true.  
 
True  Dependencies  (Read  After  Write): 
1.  sub$2       ->  add$2 
2.  add(1)$4  ->  or$4 
3.  add(1)$4  ->  sw$4 
4.  add(1)$4  ->  xor$4 
5.  or$1          ->  sw$1 
6.  or$1          ->  xor$1 
 
Anti  Dependencies  (Write  After  Read): 
7.  or$5 -> add(2)$5 
8.  add(1)$5 -> add(2)$5 
9.  sw$4 ->xor$4 
10. or$4 -> xor$4 
 
Output  Dependency  (Write  After  Write):  
11.  and(1)$4  ->  xor$4 
 
Or and sw cause hazards. 

cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

sub IF ID EX M WB                     

add(1)   IF ID EX M WB                   

or     IF ID* ID* ID* ID EX M WB           

add(2)       IF* IF* IF* IF ID EX M WB         

sw            IF ID* ID* ID EX M WB   

xor                 IF* IF* IF ID EX M WB 

All hazards resolved. 
cycles  1 2 3 4 5 6 7 8 9 10 

sub IF ID EX MEM WB           

add(1)   IF ID EX MEM WB         

or     IF ID EX MEM WB       

add(2)       IF ID EX MEM WB     

sw         IF ID EX MEM WB   

xor           IF ID EX MEM WB 

 
 
 
 



Problem 6 – 10 Points 

Consider the pipeline in Figure 4.51 on page 362; assume predict-not-taken 

for branches and assume a "Hazard detection unit" in the ID stage as shown on 

page 379. Can an attempt to flush and an attempt to stall occur 

simultaneously? If so, do they result in conflicting actions and/or 

cooperating actions? If there are any cooperating actions, how do they work 

together? If there are an conflicting actions, which should take priority? 

What would you do in the design to make sure this works correctly? You may 

want to consider the following code sequence to help you answer this  

question: 
        beq $5, $2, loc  #assume that the branch is taken 

        lw  $3, 40($4) 

        add $2, $3, $4 

        sw  $2, 40($4) 

loc:    or  $5, $5, $2 

 

 Answer 

A stall and flush can occur at the same time.  This results in both cooperating and conflicting actions.  
Recall that a flush will turn all pipe stages into a nop and load the PC with a new value, while a stall will 
maintain the state of pipe stages prior  to the stalling  stage,  turn the stage following into  a nop,  and  
keep the PC  unchanged.  The cooperating nop actions need no further attention; however an 
arbitration mechanism for dealing with conflicting actions must be implemented.  The flush actions 
should take priority because its action removes the hazard that causes the stall.  To make sure this 
works correctly, the hazard detection unit that decides on a stall should take the flush signal into 
account. 

 

Problem 7 – 15 Points 

Consider a pipeline where branches are predicted not-taken, and a taken branch introduces three-cycle penalty. 

Suppose you are considering adding a delayed branch slot to your instruction set architecture, so that taken branches 

would only have a two-cycle penalty. 

Re-arrange or re-write each of the fragments so that it will work correctly with a branch delay slot and maximize 

performance. (The dots represent an unknown amount of other code that you can't change.) What is the average 

number of cycles that were saved or lost in each case if you used the delayed branch architecture? (Assume branches 

are taken 60% of the time.) 

Consider the following three fragments of code: 
 

Fragment 1: 

        add $5, $5, $2 

        beq $5, $6, Target 

        lw $4, 0($2) 

        . 

        . 

        . 

Target: lw $1, 0($7) 

        ... 

 

Fragment 1: (with Delay Slot) 

        add $5, $5, $2 

        beqd $5, $6, Target 

        nop 

  lw $4, 0($2) 

        . 

        . 

        . 

Target: lw $1, 0($7) 

        ...



 

Here we cannot  place the first  lw into  the delay  slot  because  $4 is not  overwritten  on the taken  
path.  Likewise, the second lw cannot be placed in the delay slot because it is not known if $1 is 
overwritten on the not-taken path. Because the branch condition depends on $5, the add cannot be 
placed in the slot either.  The correct answer is to insert a nop in the delay slot. 
 
For the taken case, there is no performance difference from the original architecture (there is a three 
cycle delay in both). When the branch is not-taken, however, the performance is worse because not-
taken prediction would have started the first lw a cycle earlier.  Thus, the average cycles lost is: 60%*(0 
cycle lost) + 40% * (1 cycles lost) = .4 cycles lost on average. 
 
 

Fragment 2: 

 

        add $5, $5, $2 

        beq $5, $6, Target 

        lw $4, 0($7) 

        . 

        . 

        . 

Target: sub $4, $8, $3 

        ... 

 

(Incorrect but Accepted Answer) 

Fragment 2:  

 

        add $5, $5, $2 

        beqd $5, $6, Target 

 lw $4, 0($7) 

        . 

        . 

        . 

Target: sub $4, $8, $3 

        ...

One common answer here was to place the lw instruction into the delay slot.  This seems like it should 

work, because $4 and $7 are independent of any instruction that comes before the branch.  If the branch is 

not taken, the lw is executed normally.  If the branch i s  taken, the value of $4 will be overwritten immediately  

by the sub instruction, allowing normal execution.  The problem is that this solution does not address exceptions.  

By putting the lw into the delay slot, we could get an unexpected exception in the taken case. 

For this reason, compilers do not usually schedule loads in delay slots.  To appreciate this situation, consider the following code: 

 

  if (ptr != NULL) 

   a = *ptr; 

This would generate code that looks something like: 

   lw $4, PTR 

   beq $4, $0, null 

   lw $1, PTR 

   ... 

null: ... 

 

If you used delayed branches and moved the second lw into the delay slot, you will dereference *ptr even when it 

is null.  In fragment #2, this case could arise if $7 is invalid when $5 == $6. 
 

The correct answer involves duplicating the sub instruction.  Since we know that the taken branch 

happens more often, we can optimize for this case.  First, we put a copy of the sub instruction in the 

delay slot, and then jump to a new branch target called NewTarg, which sits one instruction after 



Target.  This way we’ve covered all of our bases: in the taken case, we have executed the sub correctly, 

in the non-taken case, the extra sub is overwritten immediately by the lw.  Here the average cycles gained 

is: 60%*(1 cycle ga i ned ) + 40% * (1 cycles lost) = .2 cycles gained on average. 

 

Fragment 2: 

 

        add $5, $5, $2 

        beq $5, $6, Target 

        lw $4, 0($7) 

        . 

        . 

        . 

Target: sub $4, $8, $3 

        ... 

 

 

Fragment 2:  (w/ Delay Slot) 

 

        add $5, $5, $2 

        beqd $5, $6, NewTarg 

        sub $4, $8, $3  

  lw $4, 0($7)  

        . 

        . 

        . 

Target:  sub $4, $8, $3 

NewTarg: ...

 

Fragment 3: 

 

        movei $2, 21   

        . 

        . 

        . 

        addi $4, $4, 1 

        beq $4, $2, Target 

        . 

        . 

        . 

Target: ... 

 

Fragment 3: (with Delay Slot) 

 

        movei $2, 21   

        . 

        . 

        . 

        addi $4, $4, 1 

        beqd $4, $2, Target 

  nop 

        . 

        . 

        . 

Target: ... 

 

In the above fragment, the only instruction that can be placed  in the delay slot is a nop.  One common  

answer  was to decrement the immediate value in the movei instruction to 20 and then place the addi in 

the delay slot.  However, because we don’t know what happens  to $2 between the movei and  addi,  this 

is not correct.  (for example,  imagine  that the instruction right after movei was another movei that 

loaded 21 again) 
 

Because we insert a nop into the delay slot, the effective penalty of the taken branch  is 3 cycles. Thus,  the 

average  cycles lost is: 60%*(0 cycle lost) + 40% * (1 cycles lost) = .4 cycles lost on average. 

 


