
CS/ECE 552 Lecture Notes: Chapter 2 1© 2000 by Mark D. Hill

Performance of Computers

Which computer is fastest?

Not so simple

• scientific simulation - FP performance

• program development - Integer performance

• commercial work - I/O

CS/ECE 552 Lecture Notes: Chapter 2 2© 2000 by Mark D. Hill

Performance of Computers

Want to buy the fastest computer for what you want to do

• workload is important

Want to design the fastest computer for what they want to pay

• BUT cost is an important criterion

CS/ECE 552 Lecture Notes: Chapter 2 3© 2000 by Mark D. Hill

Forecast

Time and performance

Iron law

MIPS and MFLOPS

Which programs and how to average

Amdahl’s law

CS/ECE 552 Lecture Notes: Chapter 2 4© 2000 by Mark D. Hill

Defining Performance

What is important to who

Computer system user

• minimize elapsed time for program = time_end - time_start

• called response time

Computer center manager

• maximize completion rate = #jobs/second

• called throughput

CS/ECE 552 Lecture Notes: Chapter 2 5© 2000 by Mark D. Hill

Response Time vs. Throughput

Is throughput = 1/av. response time?

• only if NO overlap

• with overlap, throughput > 1/av.response time

• e.g., a lunch buffet - assume 5 entrees

• each person takes 2 minutes at every entree

• throughput is 1 person every 2 minutes

• BUT time to fill up tray is 10 minutes

• why and what would the throughput be, otherwise?
because there are 5 people (each at 1 entree)
simultaneously; if there is no such overlap throughput = 1/10

CS/ECE 552 Lecture Notes: Chapter 2 6© 2000 by Mark D. Hill

What is Performance for us?

For computer architects

• CPU execution time = time spent running a program

Because people like faster to be bigger to match intuition

• performance = 1/X time

• where X = response, CPU execution, etc.

Elapsed time = CPU execution time + I/O wait

We will concentrate mostly on CPU execution time

CS/ECE 552 Lecture Notes: Chapter 2 7© 2000 by Mark D. Hill

Improve Performance

Improve (a) response time or (b) throughput?

• faster CPU

• both (a) and (b)

• Add more CPUs

• (b) but (a) may be improved due to less queueing

CS/ECE 552 Lecture Notes: Chapter 2 8© 2000 by Mark D. Hill

Performance Comparison

 Machine A is n times faster than machine B iff

• perf(A)/perf(B) = time(B)/time(A) = n

Machine A is x% faster than machine B iff

• perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

E.g., A 10s, B 15s

• 15/10 = 1.5 => A is 1.5 times faster than B

• 15/10 = 1 + 50/100 => A is 50% faster than B

CS/ECE 552 Lecture Notes: Chapter 2 9© 2000 by Mark D. Hill

Breaking down Performance

A program is broken into instructions

• H/W is aware of instructions, not programs

At lower level, H/W breaks intructions into cycles

• lower level state machines change state every cycle

E.g., 500 MHz PentiumIII runs 500M cycles/sec, 1 cycle = 2 ns

E.g., 2 GHz PentiumX will run 2G cycles/sec, 1 cycle = 0.5 ns

CS/ECE 552 Lecture Notes: Chapter 2 10© 2000 by Mark D. Hill

Iron law

Time/program = instrs/program x cycles/instr x sec/cycle

sec/cycle (a.k.a. cycle time, clock time) - ‘heartbeat’ of computer

• mostly determined by technology and CPU organization

cycles/instr (a.k.a. CPI)

• mostly determined by ISA and CPU organization

• overlap among instructions makes this smaller

instr/program (a.k.a. instruction count)

• instrs executed NOT static code

• mostly determined by program, compiler, ISA

CS/ECE 552 Lecture Notes: Chapter 2 11© 2000 by Mark D. Hill

Our Goal

Minimize time which is the product, NOT isolated terms

Common error to miss terms while devising optimizations

• E.g., ISA change to decrease instruction count

• BUT leads to CPU organization which makes clock slower

CS/ECE 552 Lecture Notes: Chapter 2 12© 2000 by Mark D. Hill

Other Metrics

MIPS and MFLOPS

MIPS = instruction count/(execution time x)

 = clock rate/(CPI x)

BUT MIPS has problems

10
6

10
6

CS/ECE 552 Lecture Notes: Chapter 2 13© 2000 by Mark D. Hill

Problems with MIPS

E.g., without FP H/W, an FP op may take 50 single-cycle instrs

with FP H/W only one 2-cycle instr

Thus adding FP H/W

• CPI increases (why?) The FP op goes from 50/50 to 2/1

• but instrs/prog decreases more (why?) each of the
FP op reduces from 50 to 1, factor of 50

• total execution time decreases

• For MIPS

• instrs/prog ignored

• MIPS gets worse!

CS/ECE 552 Lecture Notes: Chapter 2 14© 2000 by Mark D. Hill

Problems with MIPS

Ignore program

Usually used to quote peak performance

• ideal conditions => guarantee not to exceed!!

When is MIPS ok?

• same compiler and same ISA

• e.g., same binary running on Pentium Pro and Pentium

• why? instrs/prog is constant and may be ignored

CS/ECE 552 Lecture Notes: Chapter 2 15© 2000 by Mark D. Hill

Other Metrics

MFLOPS = FP ops in program/(execution time x)

Assuming FP ops independent of compiler and ISA

• Assumption not true

• may not have divide in ISA

• optimizing compilers

Relative MIPS and normalized MFLOPS

• adds to confusion! (see book)

10
6

CS/ECE 552 Lecture Notes: Chapter 2 16© 2000 by Mark D. Hill

Rules

 Use ONLY Time

 Beware when reading, especially if details are omitted

 Beware of Peak

CS/ECE 552 Lecture Notes: Chapter 2 17© 2000 by Mark D. Hill

Iron Law Example

Machine A: clock 1 ns, CPI 2.0, for a program

Machine B: clock 2 ns, CPI 1.2, for same program

Which is faster and how much

Time/program = instrs/program x cycles/instr x sec/cycle

Time(A): N x 2.0 x 1 = 2N

Time(B): N x 1.2 x 2 = 2.4N

Compare:Time(B)/Time(A) = 2.4N/2N = 1.2

So, Machine A is 20% faster than Machine B for this program

CS/ECE 552 Lecture Notes: Chapter 2 18© 2000 by Mark D. Hill

Iron Law Example

Keep clock of A at 1 ns and clock of B at 2 ns

For equal performance, if CPI of B is 1.2, what is CPI of A?

Time(B)/Time(A) = 1 = (N x 2 x 1.2)/(N x 1 x CPI(A))

CPI(A) = 2.4

CS/ECE 552 Lecture Notes: Chapter 2 19© 2000 by Mark D. Hill

Iron Law Example

Keep CPI of A 2.0 and CPI of B 1.2

For equal performance, if clock of B is 2 ns, what is clock of A?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)

clock(A) = 1.2 ns

CS/ECE 552 Lecture Notes: Chapter 2 20© 2000 by Mark D. Hill

Which Programs

Execution time of what

Best case - you run the same set of programs everyday

• port them and time the whole “workload”

In reality, use benchmarks

• programs chosen to measure performance

• predict performance of actual workload (hopefully)

+ saves effort and money

– representative? honest?

CS/ECE 552 Lecture Notes: Chapter 2 21© 2000 by Mark D. Hill

How to average

Example (page 70)

One answer: total execution time, then B is how much faster than A?9.1

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Total 1001 110

CS/ECE 552 Lecture Notes: Chapter 2 22© 2000 by Mark D. Hill

How to average

Another: arithmetic mean (same result)

Arithmetic mean of times: for n programs

AM(A) = 1001/2 = 500.5

AM(B) = 110/2 = 55

500.5/55 = 9.1

Valid only if programs run equally often, so use “weight” factors

Weighted arithmetic mean:

time i()
1

n
∑

 
 
 

n⁄

weight i() time i()×()
1

n
∑

 
 
 

n⁄

CS/ECE 552 Lecture Notes: Chapter 2 23© 2000 by Mark D. Hill

Other Averages

E.g., 30 mph for first 10 miles

90 mph for next 10 miles. averatge speed?

Average speed = (30+90)/2 WRONG

 Average speed = total distance / total time

• (20 / (10/30+10/90))

• 45 mph

CS/ECE 552 Lecture Notes: Chapter 2 24© 2000 by Mark D. Hill

Harmonic Mean

Harmonic mean of rates =

 Use HM if forced to start and end with rates

Trick to do arithmetic mean of times but using rates and not times

1

1
rate i()

1

n
∑

 
 
 

n⁄

CS/ECE 552 Lecture Notes: Chapter 2 25© 2000 by Mark D. Hill

Dealing with Ratios

E.g.,

If we take ratios, with respect to Machine A

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Machine A Machine B

Program 1 1 10

Program 2 1 0.1

CS/ECE 552 Lecture Notes: Chapter 2 26© 2000 by Mark D. Hill

Dealing with Ratios

average for machine A is 1, average for machine B is 5.05

If we take ratios, with respect to Machine B

average for machine A = 5.05, average for machine B = 1

can’t both be true!

Don’t use arithmetic mean on ratios (normalized numbers)

Machine A Machine B

Program 1 0.1 1

Program 2 10 1

CS/ECE 552 Lecture Notes: Chapter 2 27© 2000 by Mark D. Hill

Geometric Mean

Use geometric mean for ratios

geometric mean of ratios =

 Use GM if forced to use ratios

Independent of reference machine (math property)

In the example, GM for machine A is 1, for machine B is also 1

• normalized with respect to either machine

ratio i()
1

n
∏n

CS/ECE 552 Lecture Notes: Chapter 2 28© 2000 by Mark D. Hill

But..

Geometric mean of ratios is not proportional to total time

AM in example says machine B is 9.1 times faster

GM says they are equal

If we took total execution time, A and B are equal only if

• program 1 is run 100 times more often than program 2

Generally, GM will mispredict for three or more machines

CS/ECE 552 Lecture Notes: Chapter 2 29© 2000 by Mark D. Hill

Summary

Use AM for times

Use HM if forced to use rates

Use GM if forced to use ratios

Better yet, use unnormalized numbers to compute time

CS/ECE 552 Lecture Notes: Chapter 2 30© 2000 by Mark D. Hill

Benchmarks: SPEC95

System Performance Evaluation Cooperative

Latest is SPEC2K but Text uses SPEC95

8 integer and 10 floating point programs

• normalize run time with a SPARCstation 10/40

• GM of the normalized times

CS/ECE 552 Lecture Notes: Chapter 2 31© 2000 by Mark D. Hill

SPEC95

Benchmark Description

go AI, plays go

m88ksim Motorola 88K chip simulator

gcc Gnu compiler

compress Unix utility compresses files

li Lisp Interpreter

ijpeg Graphic (de)compression

perl Unix utility text processor

vortex Database program

CS/ECE 552 Lecture Notes: Chapter 2 32© 2000 by Mark D. Hill

Some SPEC95 Programs

Benchmark INT/FP Description

m88ksim Integer Motorola 88K chip simulator

gcc Integer Gnu compiler

compress Integer Unix utility compresses files

vortex Integer Database program

su2cor FP Quantum physics; Monte carlo

hydro2d FP Navier Stokes equations

mgrid FP 3-D potential field

wave5 FP Electromagnetic particle simulation

CS/ECE 552 Lecture Notes: Chapter 2 33© 2000 by Mark D. Hill

 Amdahl’s Law

Why does the common case matter the most?

Speedup = old time/new time = new rate/old rate

Let an optimization speed f fraction of time by a factor of s

Spdup =

 =

1 f–() f+[] oldtime× 1 f–() oldtime×[] f s⁄ oldtime×+()⁄

1 1 f– f s⁄+()⁄

CS/ECE 552 Lecture Notes: Chapter 2 34© 2000 by Mark D. Hill

Amdahl’s Law Example

Your boss asks you to improve Pentium Posterior performance by

• improve the ALU used 95% of time, by 10%

• improve the memory pipeline used 5%, by a factor of 10

Let f = fraction sped up and s = the speedup on that fraction

• new_time = (1-f)*old_time + (f/s)*old_time

• Speedup = new_rate / old_rate = old_time / new_time

• Speedup = old_time / ((1-f)*old_time + (f/s)*old_time)

Amdahl’s Law: Speedup = 1 / ((1-f) + (f/s))

CS/ECE 552 Lecture Notes: Chapter 2 35© 2000 by Mark D. Hill

Amdahl’s Law Example, cont.

Your boss asks you to improve Pentium Posterior performance by

• improve the ALU used 95% of time, by 10%

• improve the memory pipeline used 5%, by a factor of 10

f s Speedup

95% 1.10 1.094

5% 10 1.047

5% 1.052∞

CS/ECE 552 Lecture Notes: Chapter 2 36© 2000 by Mark D. Hill

Amdahl’s Law: Limit

 = => Make common case fast
1

1 f– f s⁄+
--------------------------- 

 
s ∞→
lim 1

1 f–

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

S
pe

ed
up

f

CS/ECE 552 Lecture Notes: Chapter 2 37© 2000 by Mark D. Hill

Summary of Chapter 2

Time and performance: Machine A n times faster than Machine B

• iff Time(B)/Time(A) = n

Iron Law: Time/prog = Instr count x CPI x Cycle time

Other Metrics: MIPS and MFLOPS

• Beware of peak and omitted details

Benchmarks: SPEC95

Summarize performance: AM for time, HM for rate, GM for ratio

Amdahl’s Law: Speedup = - common case fast1 1 f– f s⁄+()⁄

