
CS/ECE 552 Lecture Notes: Chapter 4 1© 2000 by Mark D. Hill

 Back to Arithmetic

Before, we did

• Representation of integers

• Addition/Subtraction

• Logical ops

Forecast

• Integer Multiplication

• Integer Division

• Floating-point Numbers

• Floating-point Addition/Multiplication

CS/ECE 552 Lecture Notes: Chapter 4 2© 2000 by Mark D. Hill

Integer Multiplication

Recall decimal multiplication from grammar school (non negative)

multiplicand 1000 base ten

multiplier 1001 base ten

partial 1000

products 0000

 0000

1000

 1001000 base ten

CS/ECE 552 Lecture Notes: Chapter 4 3© 2000 by Mark D. Hill

Integer Multiplication

Convert to binary

Use carry-save adders in a wallace tree

n bits times m bits = n+m bits (32 + 32 = 64)

Example next (Figure 4.27)

• Multiplicand = 2 = 0010

• Multiplier = 3 = 0011

• Product = 6 = 0110

CS/ECE 552 Lecture Notes: Chapter 4 4© 2000 by Mark D. Hill

Example (Fig 4.25)

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

CS/ECE 552 Lecture Notes: Chapter 4 5© 2000 by Mark D. Hill

Example (Fig. 4.26)

D
on

e

1.
 T

es
t

M
ul

tip
lie

r0

1a
. A

dd
 m

ul
tip

lic
an

d
to

 p
ro

du
ct

 a
nd

pl
ac

e
th

e
re

su
lt

in
 P

ro
du

ct
 re

gi
st

er

2.
 S

hi
ft

th
e

M
ul

tip
lic

an
d

re
gi

st
er

 le
ft

1
b

3.
 S

hi
ft

th
e

M
ul

tip
lie

r r
eg

is
te

r r
ig

ht
 1

b

32
nd

 re
pe

tit
io

n?

S
ta

rt

M
ul

tip
lie

r0
 =

 0
M

ul
tip

lie
r0

 =
 1

N
o:

 <
 3

2
re

pe
tit

io
n

Y
es

:
32

 re
pe

tit
io

ns

CS/ECE 552 Lecture Notes: Chapter 4 6© 2000 by Mark D. Hill

Integer Multiplication

Two optimizations

• observation: upper-half of 64 bits are all zero

• use 32-bit ALU and shift product right

• instead of multiplicand left (multiplier still goes right)

• observation: only half of product is used

• put multiplier in not-yet-used part of product

CS/ECE 552 Lecture Notes: Chapter 4 7© 2000 by Mark D. Hill

Integer Multiplication

Combinational multiplier

1000 * 1001

1000

 1 1000 AND bits to get partial products

 0 0000 ADD PPs in tree to get product

0 0000 Use carry-save addition: 3 to 2 reduction every step

 1 1000

 1001000

CS/ECE 552 Lecture Notes: Chapter 4 8© 2000 by Mark D. Hill

Integer Multiplication

What about negative multiplicand and/or multiplier

• grammar school

• Booth’s encoding

Grammar school

• sign-prod = sign-mplicand XOR sign-mplier; negative = 0

• if multiplicand < 0 {multiplicand = -multiplicand; negative++}

• if multiplier < 0 {multiplier = -multiplier; negative++}

• product = multiplicand*multiplier

• if negative == 1 product = -product

CS/ECE 552 Lecture Notes: Chapter 4 9© 2000 by Mark D. Hill

Integer Multiplication

Booth encoding -- mind bending like carry-lookahead

Skipping over 9’s in decimal - look for beginning and end of 9’s

 12345

* 09990 = -10 + 10000

 -123450 12345*10

 +123450000 12345*10000

 123326550

But in decimal only works for 9’s - 1 less than base (10)

CS/ECE 552 Lecture Notes: Chapter 4 10© 2000 by Mark D. Hill

Booth’s Encoding

In binary

• works for 1’s - 1 less than 2

• we already are fast on zeroes

current bit bit to right info

1 0 start 1’s -1

1 1 middle of 1’s 0

0 1 end of 1’s +1

0 0 middle of 0’s 0

CS/ECE 552 Lecture Notes: Chapter 4 11© 2000 by Mark D. Hill

Booth’s Encoding

-2k 1k 512 256 128 64 32 16 8 4 2 1 0

 1 1 1 0 0 1 1 1 0 1 0 0 0

 0 0 -1 0 +1 0 0 -1 +1 -1 0 0 0

 0 -2 +2 -1 +1 0

-2048 + 1024 + 512 + 64 + 32 + 16 + 4

 -1*512 + 1*128 + -1*16 + 1*8 + -1*4

 -2*256 + 2 *64 + -1*16 + 1*4

all equivalent

CS/ECE 552 Lecture Notes: Chapter 4 12© 2000 by Mark D. Hill

Booth Encoding

1010 -> -6 8 bits = 11111010 -(-6) = 00000110

0110 -> +6 Boothenc = +1 0 -1 - = +0-0

11111010 *0 = 0

1111010_ *- = 00001100

111010__ *0 = 0

11010___ *+ = 11010000

 11011100 = -36

CS/ECE 552 Lecture Notes: Chapter 4 13© 2000 by Mark D. Hill

Booth Encoding

negative multiplier

1010 = -6

1110 = -2 booth enc 000-0

0000110_ = 00001100 = +12

b * a2 a1 a0 =

• (a1-a2)*b*22 + (a0-a1)*b*21 + (0-a0)*b*20

• -a2*b*22+ (2*a1-a1)*b*21+ (2*a0-a0)*b*20

• [a2*-22 + a1*21+ a0*20] !!

CS/ECE 552 Lecture Notes: Chapter 4 14© 2000 by Mark D. Hill

Redundant Representations

Normally

• d2*b2 + d1*b1 + d0
*b0; b base, di usually (0, 1, . . . base-1}

Booth Encoding

• b = 2, di = {-1, 0, +1}

Carry-Save addition

• b = 2, di = { 0, 1, 2, 3}

2-bit Booth Encoding

• b = 4, di = {-2, -1, 0, +1, +2}

CS/ECE 552 Lecture Notes: Chapter 4 15© 2000 by Mark D. Hill

2-bit Booth Encoding

n-bit encoding retires n multiplier bits at a time

Eg.,

 1 1 1 0 0 1 1 1 0 1 0 0 “0”

 0 0 -1 0 +1 0 0 -1 +1 -1 0 0 -------- 1 bit enc

 0 -2 +2 -1 +1 0 -------- 2 bit enc

CS/ECE 552 Lecture Notes: Chapter 4 16© 2000 by Mark D. Hill

2-bit Booth Encoding

For each partial product, mux controlled by multiplier digits

-2 - 2’sC, shift left one bit

-1 - 2’sC

0

+1 pass through

+2 shift left one bit

CS/ECE 552 Lecture Notes: Chapter 4 17© 2000 by Mark D. Hill

Integer Division

divisor - 1000 dividend 1001010 - grammar school

1000)1001010(1001 - quotient

1000

 10

 101

 1010

1000

 10 - remainder

CS/ECE 552 Lecture Notes: Chapter 4 18© 2000 by Mark D. Hill

Integer Division

But hardware can’t inspect to see if divisor fits, so

Subtract

• if non-negative then set quotient to 1

• else set quotient to 0, add back the divisor (or “restore”)

Figure

Can do multiplication-like optimizations

CS/ECE 552 Lecture Notes: Chapter 4 19© 2000 by Mark D. Hill

Integer Division

Non-restoring division - a key optimization in division

Recall restoring division:

divisor 1000, 2’sC 1 . . . 11000

CS/ECE 552 Lecture Notes: Chapter 4 20© 2000 by Mark D. Hill

Integer Division

0010101

+ 11000 -divisor*22

 11101 => < 0

 +01000 +divisor*22

 00101

 001010 next bit down

+111000 -divisor*22

 000010 (-d*22 + d*22) - d*21

CS/ECE 552 Lecture Notes: Chapter 4 21© 2000 by Mark D. Hill

Integer Division

Now non-restoring

0010101

+ 11000 -divisor*22

 11101 => < 0

 111010 next bit down

+001000 +divisor*21

 000010 (-d*22+d*21) == -d*21

CS/ECE 552 Lecture Notes: Chapter 4 22© 2000 by Mark D. Hill

Integer Division

But quotient bits are {1, 1}

quotient bit = 1 if partial remainder is >= 0 (i.e., subtract)

quotient bit = 1 if partial remainder is < 0 (i.e., add)

convert the weird quotient into 2’sC

for any 2’sC negative numbers:

quotient bit = 1 if partial remainder and divisor are same sign

quotient bit = 1 if partial remainder and divisor are opposite sign

CS/ECE 552 Lecture Notes: Chapter 4 23© 2000 by Mark D. Hill

SRT Division and Pentium Bug

Normalize so 1 <= dividend, divisor < 2

Use radix 4 for divisor

• base = 2

• get 2 bits of quotient per iteration

Use redundant quotient representation

• digits {-2, -1, 0, +1, +2} instead of {0,1,2,3}

CS/ECE 552 Lecture Notes: Chapter 4 24© 2000 by Mark D. Hill

Pentium Bug

partial-remainder = dividend

loop {

• determine next quotient digit

• subtract quotient-digit*divisor from partial-remainder (CSA)

• shift over 2 bits (radix 4)

}

CS/ECE 552 Lecture Notes: Chapter 4 25© 2000 by Mark D. Hill

Pentium Bug

Determine next quotient digit

conceptually - a table-lookup into table[partial-remainder, divisor]

guess next 2 quotient bits

some part of the table is not “accessible”

so optimized as don’t cares in PLA

But some of the don’t cares (5) actually occur in practice!

CS/ECE 552 Lecture Notes: Chapter 4 26© 2000 by Mark D. Hill

Pentium Bug

Incomplete testing did not expose,

• since the algorithm self-corrects

• as long as the partial-remainder is “in range”

incorrect quotient for some dividend, divisor pairs

1.14*10-10 fail on random

Max error in 5th significant digit,

• because you can’t get out of range for many iterations

CS/ECE 552 Lecture Notes: Chapter 4 27© 2000 by Mark D. Hill

Pentium Bug

Analysis

• There are are actually much worse errors in Pentium

• Errata book (and other microprocessors)

• These can cause completely incorrect results

• People believe hardware is always perfect

• (for software you pay for their bugs!!)

• Pentium bug caught public attention

• and Intel handled poorly

CS/ECE 552 Lecture Notes: Chapter 4 28© 2000 by Mark D. Hill

Booth 2-bit Encoding

curr bits bit to right info Op

00 0 mid of 0’s 0

00 1 end of 1’s +1

01 0 single 1 +1

01 1 end of 1’s +2

10 0 beg of 1’s -2

10 1 single 0 -1

11 0 beg of 1’s -1

11 1 mid of 1’s 0

CS/ECE 552 Lecture Notes: Chapter 4 29© 2000 by Mark D. Hill

Non-restoring Division

Final step may need correction if

• remainder and dividend opp signs, correction needed

• dividend, divisor same sign, remainder += D, quotient -=ulp

• dividend, divisor opp sign, emainder -= D, quotient +=ulp

convert wierd quotient to 2’sC : 1 is 1, 1 is 0

shift left by one bit

complement MSB

shift 1 into LSB

CS/ECE 552 Lecture Notes: Chapter 4 30© 2000 by Mark D. Hill

Floating-Point Numbers

want to represent real numbers

But uncountably infinite

Recall scientific notation

• 3.15576 *109 (#seconds in a century!)

• 3,155,760,000

• exponent says where the decimal point “float”

Recall normalization

• use 3.14*1010 NOT 0.314*1011 or 31.4*109

• MSD is [1,9] except for 0.0

CS/ECE 552 Lecture Notes: Chapter 4 31© 2000 by Mark D. Hill

Floating-Point Numbers

computer floating-point is similar except binary

• number is -1s * f * 2e (note base is not stored)

• IEEE 754 uses base 2

• reduce relative error (wobble)

• most significant bit is always 1, so don’t store it

For IEEE FP, store s, e,f as S, E, F

• S E F range n bias

• 1 8 23 single-precision 2*10+/-38 23 127

• 1 11 52 double-precision 2*10+/-308 52 1023

CS/ECE 552 Lecture Notes: Chapter 4 32© 2000 by Mark D. Hill

Floating-Point Numbers

usually

• s = S

• e = E - bias

• f = 1+ F/2n

• e.g., -1s * (1.F) * 2(E-1023)

CS/ECE 552 Lecture Notes: Chapter 4 33© 2000 by Mark D. Hill

Floating-Point Numbers

Exceptions

• S E F number

• 0 0 0 0

• 0 max 0 +inf

• 1 max 0 -inf

• x max !=0 NaN

• x 0 !=0 denorm f = 0 + F/2n

see book for table

CS/ECE 552 Lecture Notes: Chapter 4 34© 2000 by Mark D. Hill

Floating-Point Addition

Like scientific notation

 9.997 * 102

+ 4.631 * 10-1

First step: align decimal points, second step: add

 9.997 * 102

+ 0.004631 * 102

 10.001631 * 102

CS/ECE 552 Lecture Notes: Chapter 4 35© 2000 by Mark D. Hill

Floating-Point Addition

Third step: normalize the result

• often already normalized

• otherwise move only one digit

1.0001631 * 103

Example presumes infinite precision; with FP must round

Figure

CS/ECE 552 Lecture Notes: Chapter 4 36© 2000 by Mark D. Hill

Floating-Point Subtraction

Subtraction similar

• when adding different signs

• subtracting same signs

CS/ECE 552 Lecture Notes: Chapter 4 37© 2000 by Mark D. Hill

Floating-Point Multiplication

Example:

• 3.0 * 101

• 5.0 * 102

• algorithm: multiple mantissas, add exponents

• check exponent in bounds --> exception

• normalize (and round)

• set sign

CS/ECE 552 Lecture Notes: Chapter 4 38© 2000 by Mark D. Hill

Floating-Point Multiplication

Hardware: Figure

Exponent:

e+ = e1 + e2

E+ = e+ + 1023 = E1 - 1023 + E2 -1023 + 1023

E+ = E1 + E2 - 1023

-1023 = -(1111111111) = 0000000000 + 1 = +1

With 2’sC E+ = E1 + E2 + carryin!

CS/ECE 552 Lecture Notes: Chapter 4 39© 2000 by Mark D. Hill

Floating-Point Multiplication

Significand

23 or 52 bit non-negative integer multiplier

carry save adders in a wallace tree

a shifter to normalize

CS/ECE 552 Lecture Notes: Chapter 4 40© 2000 by Mark D. Hill

Floating-Point Division

E/ = E1 - E2 + 1023 = E1 - (E2 - 1) = E - (1’sC(E2))

For significand, use integer SRT with radix 4 or 16 (la Pentium)

CS/ECE 552 Lecture Notes: Chapter 4 41© 2000 by Mark D. Hill

Rounding

6-9 up

5 to even to make unbiased

1-4 down

0 unchanged

xxxx.1 . . . 1 .. up

xxxxx.10000 to even

xxx.0 1 .. . down

xxx.0000000000 unchanged

CS/ECE 552 Lecture Notes: Chapter 4 42© 2000 by Mark D. Hill

Rounding

Need infinite bits? No - hold least significant bits

• guard bits - used for normalization - one bit right of LSB

• round bit - main round bit - one bit right of guard bit

• sticky - logical OR of all less significant bits

• round sticky

• 1 1 round up

• 1 0 round even

• 0 1 round down

• 0 0 no round

CS/ECE 552 Lecture Notes: Chapter 4 43© 2000 by Mark D. Hill

Rounding

IEEE FP bounds error to 1/2 “units of the last place” ULP

Keeping error small and unbiased is important

• can accumulate after billions of operations

other rounding modes

Mixing small and large numbers in FP

(3.1415 ... + 6 *1022) - 6 *1022 != 3.1415 .. + (6 *1022 - 6 *1022)

