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 Back to Arithmetic

Before, we did

• Representation of integers

• Addition/Subtraction

• Logical ops

Forecast

• Integer Multiplication

• Integer Division

• Floating-point Numbers

• Floating-point Addition/Multiplication
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Integer Multiplication

Recall decimal multiplication from grammar school (non negative)

multiplicand  1000 base ten

multiplier       1001 base ten

partial             1000

products         0000

                      0000

1000

                     1001000  base ten
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Integer Multiplication

Convert to binary

Use carry-save adders in a wallace tree

n bits times m bits = n+m bits (32 + 32 = 64)

Example next (Figure 4.27)

• Multiplicand = 2 = 0010

• Multiplier =  3 = 0011

• Product = 6 = 0110
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Example (Fig 4.25)

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits
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Example (Fig. 4.26)
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Integer Multiplication

Two optimizations

• observation: upper-half of 64 bits are all zero

• use 32-bit ALU and shift product right

• instead of multiplicand left (multiplier still goes right)

• observation: only half of product is used

• put multiplier in not-yet-used part of product
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Integer Multiplication

Combinational multiplier

1000  * 1001

1000

       1       1000          AND bits to get partial products

     0        0000           ADD PPs in tree to get product

0 0000 Use carry-save addition: 3 to 2 reduction every step

  1         1000

            1001000
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Integer Multiplication

What about negative multiplicand and/or multiplier

• grammar school

• Booth’s encoding

Grammar school

• sign-prod = sign-mplicand XOR sign-mplier; negative = 0

• if multiplicand < 0 {multiplicand = -multiplicand; negative++}

• if multiplier < 0 {multiplier = -multiplier; negative++}

• product = multiplicand*multiplier

• if negative == 1 product = -product
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Integer Multiplication

Booth encoding -- mind bending like carry-lookahead

Skipping over 9’s in decimal - look for beginning and end of 9’s

    12345

*  09990   = -10 + 10000

        -123450  12345*10

 +123450000  12345*10000

   123326550

But in decimal only works for 9’s - 1 less than base  (10)
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Booth’s Encoding

In binary

• works for 1’s - 1 less than 2

• we already are fast on zeroes

current bit bit to right info

1 0 start 1’s -1

1 1 middle of 1’s 0

0 1 end of 1’s +1

0 0 middle of 0’s 0
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Booth’s Encoding

-2k 1k 512 256 128 64 32 16  8 4 2 1 0

  1   1   1     0      0    1    1   1  0  1 0 0 0

  0   0  -1     0     +1  0    0   -1 +1 -1 0 0 0

       0          -2          +2        -1      +1      0

-2048 + 1024 + 512 + 64 + 32 + 16 + 4

 -1*512 + 1*128 + -1*16 + 1*8 + -1*4

  -2*256  + 2 *64 + -1*16 + 1*4

all equivalent
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Booth Encoding

1010  -> -6     8 bits = 11111010  -(-6) = 00000110

0110 -> +6       Boothenc = +1 0 -1 - = +0-0

11111010 *0 = 0

1111010_ *-  = 00001100

111010__ *0 = 0

11010___ *+ = 11010000

   11011100 = -36
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Booth Encoding

negative multiplier

1010 = -6

1110 = -2  booth enc 000-0

0000110_ = 00001100 = +12

b * a2 a1 a0  =

• (a1-a2)*b*22 + (a0-a1)*b*21 + (0-a0)*b*20

• -a2*b*22+ (2*a1-a1)*b*21+ (2*a0-a0)*b*20

• [a2*-22 + a1*21+ a0*20] !!
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Redundant Representations

Normally

• d2*b2 + d1*b1 + d0
*b0; b base, di usually (0, 1, . . . base-1}

Booth Encoding

• b = 2, di = {-1, 0, +1}

Carry-Save addition

• b = 2, di = { 0, 1, 2, 3}

2-bit Booth Encoding

• b = 4, di  = {-2, -1, 0, +1, +2}
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2-bit Booth Encoding

n-bit encoding retires n multiplier bits at a  time

Eg.,

  1   1   1     0      0    1    1   1  0  1  0 0  “0”

  0   0  -1     0     +1  0    0   -1 +1 -1 0 0       --------   1 bit enc

       0         -2          +2        -1     +1     0       --------   2 bit enc
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2-bit Booth Encoding

For each partial product, mux controlled by multiplier digits

-2 - 2’sC, shift left one bit

-1 - 2’sC

0

+1 pass through

+2 shift left one bit
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Integer Division

divisor - 1000  dividend 1001010 - grammar school

1000)1001010( 1001 - quotient

1000

                 10

                 101

                 1010

1000

                      10 - remainder
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Integer Division

But  hardware can’t inspect to see if divisor fits, so

Subtract

• if non-negative then set quotient to 1

• else set quotient to 0, add back the divisor (or “restore”)

Figure

Can do multiplication-like optimizations
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Integer Division

Non-restoring division - a key optimization in division

Recall restoring division:

divisor 1000, 2’sC 1 . . . 11000
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Integer Division

0010101

+  11000    -divisor*22

     11101  => < 0

  +01000    +divisor*22

     00101

     001010  next bit down

+111000  -divisor*22

       000010   (-d*22 + d*22) - d*21



CS/ECE 552 Lecture Notes: Chapter 4 21© 2000 by Mark D. Hill

Integer Division

Now non-restoring

0010101

+  11000    -divisor*22

     11101  => < 0

      111010    next bit down

+001000   +divisor*21

       000010   (-d*22+d*21) == -d*21
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Integer Division

But quotient bits are {1, 1}

quotient bit = 1 if partial remainder is >= 0 (i.e., subtract)

quotient bit = 1 if partial remainder is < 0 (i.e., add)

convert the weird quotient into 2’sC

for any 2’sC negative numbers:

quotient bit = 1 if partial remainder and divisor are same sign

quotient bit = 1 if partial remainder and divisor are opposite sign

CS/ECE 552 Lecture Notes: Chapter 4 23© 2000 by Mark D. Hill

SRT Division and Pentium Bug

Normalize so 1 <= dividend, divisor < 2

Use radix 4 for divisor

• base = 2

• get 2 bits of quotient per iteration

Use redundant quotient representation

• digits {-2, -1, 0, +1, +2} instead of {0,1,2,3}
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Pentium Bug

partial-remainder = dividend

loop {

• determine next quotient digit

• subtract quotient-digit*divisor from partial-remainder (CSA)

• shift over 2 bits (radix 4)

}
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Pentium Bug

Determine next quotient digit

conceptually - a table-lookup into table[partial-remainder, divisor]

guess next 2 quotient bits

some part of the table is not “accessible”

so optimized as don’t cares in PLA

But some of the don’t cares (5) actually occur in practice!
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Pentium Bug

Incomplete testing did not expose,

• since the algorithm self-corrects

• as long as the partial-remainder is “in range”

incorrect quotient for some dividend, divisor pairs

1.14*10-10 fail on random

Max error in 5th significant digit,

• because you can’t get out of range for many iterations
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Pentium Bug

Analysis

• There are are actually much worse errors in Pentium

• Errata book (and other microprocessors)

• These can cause completely incorrect results

• People believe hardware is always perfect

• (for software you pay for their bugs!!)

• Pentium bug caught public attention

• and Intel handled poorly
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Booth 2-bit Encoding

curr bits bit to right info Op

00 0 mid of 0’s 0

00 1 end of 1’s +1

01 0 single 1 +1

01 1 end of 1’s +2

10 0 beg of 1’s -2

10 1 single 0 -1

11 0 beg of 1’s -1

11 1 mid of 1’s 0
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Non-restoring Division

Final step may need correction if

• remainder and dividend opp signs, correction needed

• dividend, divisor same sign, remainder += D, quotient -=ulp

• dividend, divisor opp sign, emainder -= D, quotient +=ulp

convert wierd quotient to 2’sC :  1 is 1, 1 is 0

shift left by one bit

complement MSB

shift 1 into LSB
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Floating-Point Numbers

want to represent real numbers

But uncountably infinite

Recall scientific notation

• 3.15576 *109 (#seconds in a century!)

• 3,155,760,000

• exponent says where the decimal point “float”

Recall normalization

• use 3.14*1010 NOT 0.314*1011  or 31.4*109

• MSD is [1,9] except for 0.0
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Floating-Point Numbers

computer floating-point is similar except binary

• number is -1s * f * 2e (note base is not stored)

•  IEEE 754 uses base 2

• reduce relative error (wobble)

• most significant bit is always 1, so don’t store it

For IEEE FP, store s, e,f as S, E, F

• S E  F                                       range        n    bias

• 1 8 23  single-precision       2*10+/-38 23     127

• 1 11 52  double-precision     2*10+/-308  52   1023
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Floating-Point Numbers

usually

• s = S

• e = E - bias

• f = 1+ F/2n

• e.g., -1s * (1.F) * 2(E-1023)
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Floating-Point Numbers

Exceptions

• S   E    F     number

• 0   0     0      0

• 0   max 0    +inf

• 1   max 0    -inf

• x   max  !=0   NaN

• x     0      !=0 denorm  f = 0 + F/2n

see book for table
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Floating-Point Addition

Like scientific notation

   9.997 * 102

+ 4.631 * 10-1

First step: align decimal points, second step: add

   9.997 * 102

+ 0.004631 * 102

   10.001631 * 102
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Floating-Point Addition

Third step: normalize the result

• often already normalized

• otherwise move only one digit

1.0001631 * 103

Example presumes infinite precision; with FP must round

Figure
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Floating-Point Subtraction

Subtraction similar

• when adding different signs

• subtracting same signs
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Floating-Point Multiplication

Example:

• 3.0 * 101

• 5.0 * 102

• algorithm: multiple mantissas, add exponents

• check exponent in bounds  --> exception

• normalize (and round)

• set sign
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Floating-Point Multiplication

Hardware:   Figure

Exponent:

e+ = e1 + e2

E+ = e+ + 1023 = E1 - 1023 + E2 -1023 + 1023

E+ = E1 + E2 - 1023

-1023 = -(1111111111) = 0000000000 + 1 = +1

With 2’sC E+ = E1 + E2 + carryin!
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Floating-Point Multiplication

Significand

23 or 52 bit non-negative integer multiplier

carry save adders in a wallace tree

a shifter to normalize
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Floating-Point Division

E/ = E1 - E2 + 1023 = E1 - (E2 - 1) = E - (1’sC(E2))

For significand, use integer SRT with radix 4 or 16 (la Pentium)
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Rounding

6-9 up

5 to even to make unbiased

1-4 down

0 unchanged

xxxx.1 . . . 1 ..  up

xxxxx.10000   to even

xxx.0 .. . . 1 .. . down

xxx.0000000000 unchanged
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Rounding

Need infinite bits? No - hold least significant bits

• guard bits - used for normalization - one bit right of LSB

• round bit - main round bit - one bit right of guard bit

• sticky - logical OR of all less significant bits

• round sticky

• 1 1      round up

• 1 0      round even

• 0 1 round down

• 0 0 no round
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Rounding

IEEE FP bounds error to 1/2 “units of the last place” ULP

Keeping error small and unbiased is important

• can accumulate after billions of operations

other rounding modes

Mixing small and large numbers in FP

(3.1415 ... + 6 *1022 ) - 6 *1022  != 3.1415 .. + (6 *1022 - 6 *1022)


