Main Memory (Fig. 7.13)

CPU CPU
Cache Cache
Bus Bus Bus
R L — - L
Memory [| Memory [| Memory || Memory
MIEERY bank 0 || bank1 [bank2 || bank3
Memory b. Wide memory organization c. Interleaved memory organization

a. One-word-wide
memory organization

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Main Memory

Each memory access
* 1 cycle address

* 5 cycle DRAM (really 10+)
» 1 cycle data

» 4 word cache block

one word wide: (a=addr, d=delay, b=bus)
» adddddbdddddbdddddbdddddbdddddb
e1+4*5+1)=25

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Main Memory

Four word wide:
» adddddb

el+5+1=7

Interleaved (pipelined)

 adddddb

e ddddd b

e ddddd b

« ddddd b
*1+5+4=10

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Error Correcting Codes (ECC)

Assume small number of random errors - bit(s) get flipped
So in 1 word no errors > single error > two errors > >2 errors
Detection - signal a problem

Correction - restore data to correct value

Most common
* Parity - single error detection

« SECDED - single error correction; double bit detection

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

1-bit ECC

Power correct | #bits comments
nothing 0,1 1
SED 00, 11 2 01, 10 detect errors
SEC 000, 3 001, 010, 100 => 000
111 110, 101, 011 => 111
SECDED 0000, 4 one 1 => 0000
1111 two 1's => error
three 1's => 1111

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

ECC

For SECDED
e# 1s: 0O 1 2 3 4

eresult: 0 O error 1 1

Hamming distance
* no. of changes to convert one code to another

* All legal SECDED codes must be at Hamming distance 4

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

ECC

Reduce overhead by doing codes on word, not bit

 overhead

* # bits SED SECDED

o1 1(100%) 3 (300%)

« 32 1 (3%) 7 (22%)

* 64 1 (1.6%) 8 (13%)

°n 1 (1/n) 1 + logyn + a little
© 2000 by Mark . Hil CSIECE 552 Lecture Notes: Chapter 7

64-bit ECC

64 bits data 8 bits check
dddd....... d cceecece
use eight by 9 SIMMs = 72 bits

Intuition
 one check bit is parity
* other check bits point to
e error in data
« error in all check bits
* NO error

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

ECC

To store
* use datag to compute checkg

» store datag and checkg

To load
» read data; and check,

* use data; to compute checks,

 syndrome = check; xor check,

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

ECC Syndrome

Correction | Parity Implication
0 0 datal==data0l
n 0 flip bit n of datal

to get data0O

X 1 signal error

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

10

Virtual Memory

Basic idea
» move data from disk and main memory like

 caches to/from main memory

But
* miss penalty for first byte is 1M cycles, not 10-100

« therefore engineered differently

« later, we will return to the 4 questions

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 11

Virtual Memory

Blocks are called pages
o typically 4K-16K

« fixed size per system

Picture (draw program pages in memory & disk)

Architecture presents programs with a simple view
» memory addressed with 32-bit addresses

 lw $1, 0x100028 => 0x100028 is the “virtual address”
 system maps VA to physical address (PA)
» 0x100028 -> 0xF028 (page 15, offset 28 for 4K page)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 12

Virtual Memory

someone else and | run unrelated programs each
* lw $1, 0x100028

* VA must map to different PA

Thus, VA allows
» use more physical memory than system has

« think it is the only program running in memory
« think it always starts at address 0x0
* be protected from rogue programs

« start running when most of the program is still on disk

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Virtual Memory

13

A VA miss is called a page fault
 an exception that saves the PC

» OS gains control and initiates disk access
» OS usually runs someone else in the meantime
« interrupt when disk access is complete

* original instruction restarts

Unlike cache misses, why is OS used to handle a page fault?

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

14

Address Translation

VA -> PA
E.g., 4K pages

Use page tables of 4B PTEs
* index with page offset

« address of PTE = PTBR + page offset*4

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Address Translation

15

PTE contains
* page frame number

« valid bit

* protection bits

Each program has own PT, switch by chaging PTBR

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

16

Translation Buffer

VM causes 100% overhead - 2 memory accesses - PTE + data!
What to do?
» temporal and spatial locality

Translation (Lookaside) Buffer
» a cache of translations

evalid tag data
 valid page# page frame# rest of PTE
o1 20 20 127?

could make Fully/Set associative/Direct mapped

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Example (Fig. 7.25)

313029 ceverrenenenn 15141312111098---- 3210
Virtual page number Page offset |
J < | 12
Valid Dirty Tag Physical page number
TLB Q]
o=
TLB hit+—fe o=
()=
20
Physical page number I Page offset
[————————————————— Physical address 1
Physical address tag | Cache index Byte
offset
+1s 14 ,|3
Valid Tag Data

Cache

32

(=
Cache hit Data

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Other Issues

Virtual address caches are also possible
« faster

 but synonym problem

On context switch
» change PTBR

* either flush TLB or add PIDs to TLB tags

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Virtual Memory

19

4 Questions

Where is a page placed
« fully associative - any page on any frame

How is page found
* not associative search but indirection through PT

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

20

Virtual Memory

Which page is replaced
 approx LRU clock

* use page reference bit

What happens on a write
* write-backs

* use page dirty bit

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Protection

User VAs map to different PAs - no overlap

But may want sharing
* user-user
* user-kernel (mode bit, syscall interface)
* In PTE and TLB entry
* invalid (had before)
* read-only
* read-write (had before)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7

Page Table Size

How big is the PT?
e 232/4K * 4 = 4M per program

To make smaller
* define a limit register

* do limit registers for a few regions - stack, heap
* page a part of PT (terminate recursion)
» Segmented VA (noncontiguous alloc, segment table->PT)

 use Hash table to map PA-VA - called inverted PT

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 23

More Optimizations

Non-blocking caches
» handle hits under misses Interleaved/banked caches

» multiple requests simultaneously (poor-man’s multiporting)

Write Buffers
» miss penalty of dirty blocks

Out-of-order CPU
* tolerate cache hit and miss latencies

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 24

More Optimizations

Compiler optimizations
* get rid of memory accesses (register allocation, reuse)
 improve locality (blocking, tiling)

* insert prefetch code

« scheduling
© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 25
Real Stuff
DEC Alpha 21264 (550 MHz)
* L1 cache

* 4 way out-of-order CPU pipeline
* 2 loads/stores per cycle (phase pipelined)
* 3 cycles hit latency, 8+ GB/s bandwidth

» L2 cache
12 cycle hit latency, 4+ GB/s bandwidth
» System interface
* 64 bit bus, 80 cycle latency, 2+ GB/s bandwidth

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 26

Real Stuff

Charac Pentium Pro PowerPC
VA 32 bits 52 bits
PA 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, select-
able, 256 MB
TLB splitland D splitland D
4-way assoc 2-way assoc
pseudo random LRU
|1-32,D-64 | |-128,D-128
TLB miss H/W | TLB miss H/W
© 2000 by Mark . Hil CS/ECE 552 Lecture Notes: Chapter 7
Real Stuff
Charac Pentium Pro PowerPC
cache splitland D splitland D
size 8KB each 16 KB each
assoc 4-way 4-way
replace approx LRU LRU
block 32 bytes 32 bytes
write write-back write-back or

write-through

© 2000 by Mark D. Hill

CS/ECE 552 Lecture Notes: Chapter 7

Summary

Temporal and spatial locality, Memory hierarchy

Cache design - block size, associativity, write back/through
Multilevel cache hierarchies

Virtual memory, translation (VA -> PA), page table (PT)

VM design - page size, FA through PT, reference bit, dirty bit
Fast translations - TLB

Protection, page faults (exceptions)

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 29

Summary

4 Questions - cache, VM, TLB
* Where can a block be placed
» one (DM), a few (SA), any (FA)
* How is a block found
* indexing (DM), search (SA/FA), table lookup (PT)
* What is replaced on a miss
* LRU or random
* How are writes handled
 write through or write back; write back for VM

© 2000 by Mark D. Hill CS/ECE 552 Lecture Notes: Chapter 7 30

