
CS/ECE 552: Introduction to Computer Architecture

Prof. David A. Wood

Final Exam
May 9, 2010

10:05am-12:05pm, 2241 Chamberlin
Approximate Weight: 25%

CLOSED BOOK
TWO SHEETS OF NOTES

NAME: ___________________________________

DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

Read over the entire exam before beginning. Verify that your exam includes all 9 pages. It is a long exam,
so use your time carefully. Budget your time according to the weight of the questions, and your ability to
answer them. Limit your answers to the space provided, if possible. If not, write on the BACK OF THE
SAME SHEET. Use the back of the sheet for scratch work. WRITE YOUR NAME ON EACH SHEET.

Problem
Possible
Points

Points

Problem 1 20

Problem 2 15

Problem 3 20

Problem 4 25

Problem 5 20

Total 100

NAME: _______________________________________

Page 2 of 9

Problem 1: (20 points)

Ideally, the 5-stage pipeline discussed in class (and the book) will complete one instruction every cycle.
Stall Cycles Per Instruction (SCPI) is a metric that measures the average number of stalls (i.e., pipeline
bubbles) that get introduced per instruction. Thus the processor’s CPI = 1 + SCPI. SCPI can be expressed
as the sum of the SCPI’s of different (independent) factors. For example,

CPI = 1 + SCPIdata + SCPIbranch + SCPII-cache + SCPID-cache

breaks the CPI down into stalls due to data dependence stalls, branch stalls, instruction cache stalls, and
data cache stalls.

Consider a processor and memory system with the following properties:

• Branches are predicted not-taken and resolved in Execute.

• Cache hits stall the pipeline one cycle; cache misses stall the pipeline 15 cycles.

• The only data hazards that stall the pipeline are caused by load-use dependences (1 cycle).

The workload has the following properties:

• Loads are 30% of instructions; stores are 15% of instructions

• Branches are 12.5% of instructions; 60% of branches are taken

• 33% of load instructions are immediately followed by a dependent instruction

• 3% of instruction fetches miss; 5% of load and store instructions miss

Part A: (12 points) Complete the table below. Show both the equation and the final value.

Equation Value

SCPIdata 30% * 33% * 1 cycle .099

SCPIbranch 12.5% * 60% * 2 cycles .15

SCPII-cache 100% * (1 - 3%) hits * 1 + 3% * 15 1.42

SCPID-cache (30% + 15%) * ((1 - 5%) * 1 + 5% * 15) .765

CPI 1 + SCPIdata + SCPIbranch + SCPII-cache + SCPID-cache 3.43

NAME: _______________________________________

Page 3 of 9

Part B: (8 points)

Stalling on cache hits has a siginificant impact on performance. How much does the CPI change if we can
eliminate stalls on cache hits? Complete the table and calculate the speedup:

CPIold/CPInew = 3.43/2.04 = 1.68

Speedup (assuming cycle time remains constant): __1.68__

Equation Value

SCPII-cache 100% * 3% * 15 0.45

SCPID-cache (30% + 15%) * 5% * 15 .3375

CPI 1 + SCPIdata + SCPIbranch + SCPII-cache + SCPID-cache 2.04

NAME: _______________________________________

Page 4 of 9

Problem 2: (15 points)

Part A: (3 points) Show the 1-bit Booth recoding for the 8-bit multiplier -99ten.

-99ten = 10011101two = -1 0 1 0 0 -1 1 -1

Part B: (3 points) What is the 2-bit modified Booth recoding of the multiplier in Part A?

-2 2 -1 1

Part C: (4 points) A 16-bit multiplier has been recoded using the 2-bit modified Booth recoding algo-
rithm. The recoded multiplier is:

-1 1 2 0 -1 -2 1 -1

What is the original 16-bit two’s complement multiplier?

11 01 01 11 10 10 00 11

0-1 1-1 10 00 -11 -10 01 0-1

-1 1 2 0 -1 -2 1 -1

Part D: (5 points) How does recoding the multiplier using 2-bit modified Booth algorithm help improve
the speed of the multiplication?

Recoding the multiplier with 1-bit Booth simplifies the treatment of negative numbers, but
doesn’t really help improve the speed of the multiplication. However, using the 2-bit algo-
rithm reduces the number of partial products by half, which reduces the number of adders
we need in our multiplier (e.g., the number of inputs to the Wallace tree).

NAME: _______________________________________

Page 5 of 9

Problem 3: (20 points)

Consider a memory system with the following parameters. The virtual address has 56 bits. The physical
address has 48 bits. A unified (i.e., instructions and data) cache is writeback and has 64 kilobyte capacity
with 32-byte blocks, is 8-way set associative with pseudo-least-recently-used (pLRU) replacement (also
called hierarchical nMRU). The translation lookaside buffer (TLB) has 96 entries, is fully associative, and
is accessed before the cache. Pages are 4 kilobytes. All addresses are byte addresses.

Part A: (2 points) Show the breakup of a virtual address into virtual page number and byte offset within a
page. Indicate the number of bits in each field.

Virtual Page Number<55:12> . Page Offset <11:0>

Part B: (2 points) Show the breakup of a physical address into a page frame number and a byte offset with
the page frame. Indicate the number of bits in each field.

Page Frame Number<47:12> . PageOffset<11:0>

Part C: (3 points) How many bits of storage does it take to implement this TLB? Assume the minimum
number of bits possible to achieve a correct implementation of address translation.

TLB entry = VPN + PFN + valid bit + page dirty = 44 + 36 + 1 = 81 bits/entry

96 entries * 82 bits/entry = 7,776

Part D: (3 points) What other bits of state may a TLB maintain? What are these used for?

Reference = Used by OS to approximate LRU or other page replacement policy

Dirty = Used by OS to reduce writeback traffic to disk

Protection = Use by OS to limit access to pages

Part E: (2 points) Show the break up of the physical address into tag, index, and byte within block used
to access the cache. Indicate the number of bits in each field.

Tag<47:13> . Index <12:5> . BlockOffset<4:0>

Part F: (2 points) How many sets are there in the cache?

256 sets

Part G: (2 points) How many bits per set are needed to implement the pLRU replacement policy?

n-1 = 7

Part H: (4 points) How many total bits does it take to implement the cache (i.e., tags, state, data, LRU,
etc.).

35 bit tag + 1 valid + 1 dirty + 8 * 32 data = 293/block

8 * 293 + 7 = 2351 bits per set

256 sets * 2351 bits per set = 601,856 bits

NAME: _______________________________________

Page 6 of 9

Problem 4: (25 points)

Part A: (2 points) Odd parity is frequently used to ensure that all code words stored in memory have at
least one 1. Consider a code word pb3b2b1b0 consisting of a parity bit p and four data bits b3b2b1b0. What
is the equation to generate the parity bit p?

p ^ b3 ^ b2 ^ b1 ^ b0 = 1

p = 1 ^ b3 ^ b2 ^ b1 ^ b0

Part B: (2 points) What is the Hamming distance between 0011 0001two and 1101 0111two?

5

Part C: (2 points) What is the minimum Hamming distance between any pair of valid code words
encoded using odd parity?

2

Part D: (2 points) What is the minimum Hamming distance needed between any pair of valid code words
to correct a single bit error?

3

Part E: (2 points) What is the minimum Hamming distance needed between any pair of valid code words
to detect a single bit error?

2

Part F: (2 points) What is the minimum Hamming distance needed between any pair of valid code words
to correct a single bit error AND detect a double bit error?

4

NAME: _______________________________________

Page 7 of 9

Part G: (5 points) The parity check matrix for an error correcting code is given below. In this matrix Ci’s
denote check bits and bi’s denote information bits. The codewords are stored in memory in the bit order
C3C2C1C0b3b2b1b0.

Consider the data word b3b2b1b0 = 1010. Assuming odd parity is used to compute all check bits, what is
the codeword that is stored in memory for the data word given the above parity check matrix?

1010 1010

Part H: (4 points) Suppose that the word read from the memory is 1100 0111, calculate the syndrome
using the parity check matrix above.

Syndrome = c3 ^ c3’, c2 ^ c2’, c1 ^ c1’, c0 ^ c0’

Syndrome = 1 ^ 0, 1 ^ 1, 0 ^ 1, 0 ^ 1 = 1011

Part I: (4 points) What is the procedure for detecting a double error?

If the syndrome is non-zero AND has an even number of bits set (i.e., even parity).

With two errors, the syndrome will either be the XOR of two names, two check bits, or a
name and a check bit. Since all names have an odd number of bits, the syndome must
have even parity.

Part J: (3 points, extra credit) Was there a double bit error in Part H? If not, what was the value origi-
nally written into memory? Like most real systems, ignore the possibility of more than two errors.

No, there was only a single bit error. The syndrome has an odd number of ones.

There is an error in the matrix, since there are two bits (b3 and b0) that have the same
“name”. We have no way of knowing which of these was the bit that flipped. I will give
credit for either answer and two extra points for those that identify the problem.

b3 b2 b1 b0

C0 1 1 0 1

C1 1 0 1 1

C2 0 1 1 0

C3
1 1 1 1

Problem 5: (20 points)

Consider a bus-based multiprocessor system with writeback caches. Four processors, P1, P2, P3, and P4
perform the following sequence of loads and stores to/from lines A and B. Assume A and B do not conflict
in the data caches. Assume the protocol on the next page, which uses the three states: Invalid (I), Shared
(S), and Exclusive (E). The table below shows the state of the memory system as time flows down. The
cache blocks are represented with the following notation: address:(state, data). For example, A:(I,0)
means that cache block A is in state I with data value 0. A data value of x means the value is unknown or
undefined. Complete the table below, updating the cache and memory states in response to the sequence of
loads and stores. Indicate actions taken by the cache and memory controllers: hits, requests to get a block
shared or exclusive, and responses to requests. You may use arrows (as shown) to indicate that the state has
not changed in that cycle.

P1 P2 P3 P4 MEM

A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:0 B:0

load A
miss, get A shared
A:(S,0) B:(I,x)

respond with A
A:0 B:0

load B
miss, get B shared
A:(I,x) B:(S,0)

respond with B
A:0 B:0

load A
miss, get A in S
A:(S,0) B:(S,0)

respond with A

A: 0 B:0

store B = 1
hit, send Inv
A:(s,0) B:(E,1) A: 0 B:0

load A
miss, get A in S
A:(S,0) B:(I,x)

respond with A

A: 0 B:0

load B
miss Get B in S
A:(S,0) B:(S,1)

respond with B

A:(S,0) B:(S,1)

update B

A:0 B:1

invalidate A
A:(I,0) B:(S,1)

invalidate A
A:(I,0) B:(S,1)

invalidate A
A:(I,0) B:(I,x)

store A = 3
miss, Get A in E
A:(A,3) B:(I,x)

respond with A

A: 0 B:1

load A
miss, get A in S
A:(S,3) B:(S,1)

respond with A

A:(S,3) B:(I,x)

update A

A:3 B:1

load B
miss, get B in S
A:(S,3) B:(S,1)

Respond with B

A:3 B: 1

